Citation: | Wang Xiaolin, Wang Yin, He Yicheng, Yang Hui, Qu Mengjun, Zou Xuge, Li Jingwen. Stoichiometric characteristics of carbon and nitrogen in plants and their influencing factors in the lower reaches of the Heihe River, northwestern China[J]. Journal of Beijing Forestry University, 2023, 45(4): 50-59. DOI: 10.12171/j.1000-1522.20210545 |
[1] |
Ling H B, Zhang P, Xu H L, et al. How to regenerate and protect desert riparian Populus euphratica forest in arid areas[J/OL]. Scientific Reports, 2015, (5): 15418−15430[2021−12−29]. https://www.nature.com/articles/srep15418.
|
[2] |
Zhu Y H, Chen Y N, Ren L L, et al. Ecosystem restoration and conservation in the arid inland river basins of Northwest China: problems and strategies[J]. Ecological Engineering, 2016, 94(1): 629−637.
|
[3] |
Zhang X L, Zhou J H, Guan T Y, et al. Spatial variation in leaf nutrient traits of dominant desert riparian plant species in an arid inland river basin of China[J]. Ecology and Evolution, 2019, 9(3): 1523−1531. doi: 10.1002/ece3.4877
|
[4] |
Tamea S, Laio F, Ridolfi L, et al. Ecohydrology of groundwater-dependent ecosystems(2): stochastic soil moisture dynamics[J]. Water Resources Research, 2009, 45(5): 5420−5433.
|
[5] |
古力米热·哈那提, 王光焰, 张音, 等. 干旱区间歇性生态输水对地下水位与植被的影响机理研究[J]. 干旱区地理, 2018, 41(4): 726−733. doi: 10.12118/j.issn.1000-6060.2018.04.07
Gulimire·Hanati, Wang G Y, Zhang Y, et al. Influence mechanism of intermittent ecological water conveyance on groundwater level and vegetation in arid land[J]. Arid Land Geography, 2018, 41(4): 726−733. doi: 10.12118/j.issn.1000-6060.2018.04.07
|
[6] |
Yao Y, Tian Y, Andrews C, et al. Role of groundwater in the dryland ecohydrological system: a case study of the Heihe River Basin[J]. Journal of Geophysical Research-Atmospheres, 2018, 123: 6760−6776. doi: 10.1029/2018JD028432
|
[7] |
Harper J L. The value of a leaf[J]. Oecologia, 1989, 80: 53−58. doi: 10.1007/BF00789931
|
[8] |
Castellanos A E, Llano-Sotelo J M, Machado-Encinas L I, et al. Foliar C, N, and P stoichiometry characterize successful plant ecological strategies in the Sonoran Desert[J]. Plant Ecology, 2018, 219: 775−788. doi: 10.1007/s11258-018-0833-3
|
[9] |
Sommer B, Froend R. Phreatophytic vegetation responses to groundwater depth in a drying Mediterranean type landscape[J]. Journal of Vegetation Science, 2014, 25: 1045−1055. doi: 10.1111/jvs.12178
|
[10] |
Westheimer F. Why nature chose phosphates[J]. Science, 1987, 235: 1173−1178. doi: 10.1126/science.2434996
|
[11] |
Dawson T P, Curran P J. Technical note a new technique for interpolating the reflectance red edge position[J]. International Journal of Remote Sensing, 1998, 19(11): 2133−2139. doi: 10.1080/014311698214910
|
[12] |
曾德慧, 陈广生. 生态化学计量学: 复杂生命系统奥秘的探索[J]. 植物生态学报, 2005, 29(6): 141−153.
Zeng D H, Chen G S. Ecological stoichiometry: a science to explore the complexity of living systems[J]. Chinese Journal of Plant Ecology, 2005, 29(6): 141−153.
|
[13] |
Han W X, Fang J Y, Guo D L, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168: 377−385. doi: 10.1111/j.1469-8137.2005.01530.x
|
[14] |
Marschner P, Rengel Z. Nutrient cycling in terrestrial ecosystems [M]. Berlin: Springer-Verlag, 2007: 159−182.
|
[15] |
Aroca R. Plant responses to drought stress[M]. Berlin: Springer, 2012.
|
[16] |
Farooq M, Wahid A, Kobayashi N, et al. Plant drought stress: effects, mechanisms and management[J]. Agronomy for Sustainable Development, 2009, 29: 185−212. doi: 10.1051/agro:2008021
|
[17] |
向云西, 潘萍, 陈胜魁, 等. 天然马尾松林土壤碳氮磷特征及其与凋落物质量的关系[J]. 北京林业大学学报, 2019, 41(11): 95−103.
Xiang Y X, Pan P, Chen S K, et al. Characteristics of soil C, N, P and their relationship with litter quality in natural Pinus massoniana forest[J]. Journal of Beijing Forestry University, 2019, 41(11): 95−103.
|
[18] |
张珂, 何明珠, 李新荣, 等. 阿拉善荒漠典型植物叶片碳、氮、磷化学计量特征[J]. 生态学报, 2014, 34(22): 6538−6547.
Zhang K, He M Z, Li X R, et al. Foliar carbon, nitrogen and phosphorus stoichiometry of typical desert plants across the Alashan Desert[J]. Acta Ecologica Sinica, 2014, 34(22): 6538−6547.
|
[19] |
Rong Q Q, Liu J T, Cai Y P, et al. Leaf carbon, nitrogen and phosphorus stoichiometry of Tamarix chinensis Lour. in the Laizhou Bay Coastal Wetland, China[J]. Ecological Engineering, 2015, 76: 57−65. doi: 10.1016/j.ecoleng.2014.03.002
|
[20] |
Canadell J, Jackson R B, Ehleringer J B, et al. Maximum rooting depth of vegetation types at the global scale[J]. Oecologia, 1996, 108: 583−595. doi: 10.1007/BF00329030
|
[21] |
Luo Y, Peng Q, Li K, et al. Patterns of nitrogen and phosphorus stoichiometry among leaf, stem and root of desert plants and responses to climate and soil factors in Xinjiang, China[J]. Catena, 2021, 199: 105100. doi: 10.1016/j.catena.2020.105100
|
[22] |
Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428: 821−827. doi: 10.1038/nature02403
|
[23] |
Xu Z Z, Zhou G S, Wang Y H. Combined effects of elevated CO2 and soil drought on carbon and nitrogen allocation of the desert shrub Carag ana intermedia[J]. Plant and Soil, 2007, 301(1/2): 87−97.
|
[24] |
钟华平, 刘恒, 王义, 等. 黑河流域下游额济纳绿洲与水资源的关系[J]. 水科学进展, 2002, 13(2): 223−228. doi: 10.3321/j.issn:1001-6791.2002.02.016
Zhong H P, Liu H, Wang Y, et al. Relationship between Ejina oasis and water resources in the lower Heihe River Basin[J]. Advances in Water Science, 2002, 13(2): 223−228. doi: 10.3321/j.issn:1001-6791.2002.02.016
|
[25] |
赵传燕, 赵阳, 彭守璋, 等. 黑河下游绿洲胡杨生长状况与叶生态特征[J]. 生态学报, 2014, 34(16): 4518−4525.
Zhao C Y, Zhao Y, Peng S Z, et al. The growth state of Populus euphratical Oliv. and its leaf ecological characteristics in the lower reaches of Heihe River[J]. Acta Ecologica Sinica, 2014, 34(16): 4518−4525.
|
[26] |
Wang R, Wang Q F, Zhao N, et al. Different phylogenetic and environmental controls of first-order root morphological and nutrient traits: evidence of multidimensional root traits[J]. Functional Ecology, 2017, 32: 29−39.
|
[27] |
王健铭, 崔盼杰, 钟悦鸣, 等. 阿拉善高原植物区域物种丰富度格局及其环境解释[J]. 北京林业大学学报, 2019, 41(3): 14−23.
Wang J M, Cui P J, Zhong Y M, et al. Biogeographic patterns and environmental interpretation of plant regional species richness in Alxa Plateau of northern China[J]. Journal of Beijing Forestry University, 2019, 41(3): 14−23.
|
[28] |
Agren G I. Stoichiometry and nutrition of plant growth in natural communities[J]. Annual Review of Ecology, Evolution and Systematics, 2008, 39(39): 153−170.
|
[29] |
Foulds W. Nutrient concentrations of foliage and soil in south-western Australia[J]. New Phytologist, 1993, 125(3): 529−546. doi: 10.1111/j.1469-8137.1993.tb03901.x
|
[30] |
阎恩荣, 王希华, 周武. 天童常绿阔叶林演替系列植物群落的N∶P化学计量特征[J]. 植物生态学报, 2008, 32(1): 13−22. doi: 10.3773/j.issn.1005-264x.2008.01.002
Yan E R, Wang X H, Zhou W. N∶P stoichiometry in secondary succession in evergreen broadleaved forest, Tiantong, East China[J]. Chinese Journal of Plant Ecology, 2008, 32(1): 13−22. doi: 10.3773/j.issn.1005-264x.2008.01.002
|
[31] |
Yuan Z Y, Chen H Y, Reich P B. Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus[J]. Nature Communications, 2011, 2: 344. doi: 10.1038/ncomms1346
|
[32] |
李玉霖, 毛伟, 赵学勇, 等. 北方典型荒漠及荒漠化地区植物叶片氮磷化学计量特征研究[J]. 环境科学, 2010, 31(8): 1716−1725.
Li Y L, Mao W, Zhao X Y, et al. Leaf nitrogen and phosphorus stoichiometry in typical desert and desertified regions, North China[J]. Environmental Science, 2010, 31(8): 1716−1725.
|
[33] |
宁志英, 李玉霖, 杨红玲, 等. 科尔沁沙地主要植物细根和叶片碳、氮、磷化学计量特征[J]. 植物生态学报, 2017, 41(10): 1069−1080. doi: 10.17521/cjpe.2017.0048
Ning Z Y, Li Y L, Yang H L, et al. Carbon, nitrogen and phosphorus stoichiometry in leaves and fine roots of dominant plants in Horqin Sandy Land[J]. Chinese Journal of Plant Ecology, 2017, 41(10): 1069−1080. doi: 10.17521/cjpe.2017.0048
|
[34] |
Herbert D A, Williams M, Rastetter E B. A model analysis of N and P limitation on carbon accumulation in Amazonian secondary forest after alternate land-use abandonment[J]. Biogeochemistry, 2003, 65(1): 121−150. doi: 10.1023/A:1026020210887
|
[35] |
Zhang Q, Xiong G M, Li J X, et al. Nitrogen and phosphorus concentrations and allocation strategies among shrub organs: the effects of plant growth forms and nitrogen-fixation types[J]. Plant and Soil, 2018, 427(1−2): 305−319. doi: 10.1007/s11104-018-3655-0
|
[36] |
Zhang K, Li M M, Su Y Z, et al. Stoichiometry of leaf carbon, nitrogen, and phosphorus along a geographic, climatic, and soil gradients in temperate desert of Hexi Corridor, northwest China[J]. Journal of Plant Ecology, 2019, 13(1): 114−121.
|
[37] |
何茂松, 罗艳, 彭庆文, 等. 新疆45种荒漠植物粗根碳、氮、磷计量特征及其与环境的关系[J]. 生态学杂志, 2019, 38(9): 2603−2614.
He M S, Luo Y, Peng Q W, et al. Carbon, nitrogen and phosphorus stoichimentry in the coarse roots of 45 desert plant species in relation to environmental factors across the deserts in Xinjiang[J]. Chinese Journal of Ecology, 2019, 38(9): 2603−2614.
|
[38] |
Vitousek P M, Howarth R W. Nitrogen limitation on land and in the sea: how can it occur[J]. Biogeochemistry, 1991, 13(2): 87−115.
|
[39] |
Yang Y H, Luo Y Q. Carbon: nitrogen stoichiometry in forest ecosystems during stand development[J]. Global Ecology and Biogeography, 2011, 20(2): 354−361. doi: 10.1111/j.1466-8238.2010.00602.x
|
[40] |
王凯博, 上官周平. 黄土丘陵区燕沟流域典型植物叶片C、N、P化学计量特征季节变化[J]. 生态学报, 2011, 31(17): 4985−4991.
Wang K B, Shangguan Z P. Seasonal variations in leaf C, N and P stoichiometry of typical plants in the Yangou Watershed in the loess hilly gully region[J]. Acta Ecologica Sinica, 2011, 31(17): 4985−4991.
|
[41] |
Gusewell S. N∶P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164(2): 243−266. doi: 10.1111/j.1469-8137.2004.01192.x
|
[42] |
Thompson K, Parkinson J A, Band S R, et al. A comparative study of leaf nutrient concentrations in a regional herbaceous flora[J]. New Phytologist, 1997, 136: 679−689. doi: 10.1046/j.1469-8137.1997.00787.x
|
[43] |
Reich P B, Oleksyn J. Global patternsof plant leaf N and Pinrelation to temperature and latitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 11001−11006. doi: 10.1073/pnas.0403588101
|
[44] |
Zhang J H, He N P, Liu C C, et al. Allocation strategies for nitrogen and phosphorus in forest plants[J]. Oikos, 2018, 127(10): 1506−1514. doi: 10.1111/oik.05517
|
[45] |
王振南, 杨惠敏. 植物碳氮磷生态化学计量对非生物因子的响应[J]. 草业科学, 2013, 30(6): 927−934.
Wang Z N, Yang H M. Response of ecological stoichiometry of carbon, nitrogen and phosphorus in plants to abiotic environmental factors[J]. Pratacultural Science, 2013, 30(6): 927−934.
|
[46] |
Li W, Yu T F, Li X Y, et al. Sap flow characteristics and their response to environmental variables in a desert riparian forest along lower Heihe River Basin, northwest China[J]. Environmental Monitoring and Assessment, 2016, 188: 561. doi: 10.1007/s10661-016-5570-2
|
[47] |
钟悦鸣, 王文娟, 王健铭, 等. 极端干旱区绿洲植物叶功能性状及其对土壤水盐因子的响应[J]. 北京林业大学学报, 2019, 41(10): 20−29.
Zhong Y M, Wang W J, Wang J M, et al. Leaf functional traits of oasis plants in extremely arid areas and its response to soil water and salt factors[J]. Journal of Beijing Forestry University, 2019, 41(10): 20−29.
|
[48] |
安申群, 贡璐, 朱美玲, 等. 塔里木盆地北缘典型荒漠植物根系化学计量特征及其与土壤理化因子的关系[J]. 生态学报, 2017, 37(16): 5444−5450.
An S Q, Gong L, Zhu M L, et al. Root stoichiometric characteristics of desert plants and their correlation with soil physicochemical factors in the northern Tarim Basin[J]. Acta Ecologica Sinica, 2017, 37(16): 5444−5450.
|
[49] |
Chaves M M, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell[J]. Annals of Botany, 2009, 103: 551−560. doi: 10.1093/aob/mcn125
|
[50] |
Niu D, Zhang C, Ma P, et al. Responses of leaf C∶N∶P stoichiometry to water supply in the desert shrub Zygophyllum xanthoxylum[J]. Plant Biology, 2019, 21: 82−88. doi: 10.1111/plb.12897
|
[51] |
Wang Z, Yu K, Lü S, et al. The scaling of fine root nitrogen versus phosphorus in terrestrial plants: a global synthesis[J]. Functional Ecology, 2019, 33: 2081−2094. doi: 10.1111/1365-2435.13434
|
[52] |
Wang Y, Wang J M, Wang X L, et al. Dominant roles but distinct effects of groundwater depth on regulating leaf and fine-root N, P and N∶P ratios of plant communities[J]. Journal of Plant Ecology, 2021, 14(6): 1158−1174. doi: 10.1093/jpe/rtab062
|
[53] |
Setia R, Gottschalk P, Smith P, et al. Soil salinity decreases global soil organic carbon stocks[J]. Science of the Total Environment, 2013, 465: 267−272. doi: 10.1016/j.scitotenv.2012.08.028
|
[54] |
Wang L L, Zhao G X, Li M, et al. C∶N∶P stoichiometry and leaf traits of halophytes in an arid saline environment, northwest China[J/OL]. PLoS One, 2015, 10(3): e0119935[2021−12−24]. https://doi.org/10.1371/journal.pone.0119935.
|
[55] |
Sardans J, Peñuelas J. The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system[J]. Plant Physiology, 2012, 160: 1741−1761. doi: 10.1104/pp.112.208785
|
[56] |
张晓龙, 周继华, 来利明, 等. 黑河下游荒漠河岸地带土壤水盐和养分的空间分布特征[J]. 生态环境学报, 2019, 28(9): 1739−1747.
Zhang X L, Zhou J H, Lai L M, et al. Spatial characterization of soil water-salt and nutrient in a desert riparian area along the lower reaches of Heihe River, China[J]. Ecology and Environmental Sciences, 2019, 28(9): 1739−1747.
|
[57] |
杨少辉, 季静, 王罡. 盐胁迫对植物的影响及植物的抗盐机理[J]. 世界科技研究与发展, 2006(4): 70−76. doi: 10.3969/j.issn.1006-6055.2006.04.012
Yang S H, Ji J, Wang G. Effects of salt stress on plants and the mechanism of salt tolerance[J]. World Sci-Tech R&D, 2006(4): 70−76. doi: 10.3969/j.issn.1006-6055.2006.04.012
|
[58] |
Min W, Su Y, Xiao Y. Spatial distribution of soil organic carbon and its influencing factors in desert grasslands of the Hexi Corridor, northwest China[J/OL]. PLoS One, 2014, 9(4): e94652[2021−12−28]. https://doi.org/10.1371/journal.pone.0094652.
|
[59] |
He M Z, Zhang K, Tan H J, et al. Nutrient levels within leaves, stems, and roots of the xeric species Reaumuria soongorica in relation to geographical, climatic, and soil conditions[J]. Ecology and Evolution, 2015, 5(7): 1494−1503. doi: 10.1002/ece3.1441
|
[60] |
王健铭, 董芳宇, 巴海·那斯拉, 等. 中国黑戈壁植物多样性分布格局及其影响因素[J]. 生态学报, 2016, 36(12): 3488−3498.
Wang J M, Dong F Y, Bahai·Nasila, et al. Plant distribution patterns and the factors influencing plant diversity in the Black Gobi Desert of China[J]. Acta Ecologica Sinica, 2016, 36(12): 3488−3498.
|
[1] | Feng Yuan, Li Guixiang, He Liping, Bi Bo, Qin Yangping, Wang Faping, Hu Binxian, Yin Jiuming. Tree height curves of Pinus yunnanensis forest based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240063 |
[2] | Li Xinyu, Yeerjiang Baiketuerhan, Wang Juan, Zhang Xinna, Zhang Chunyu, Zhao Xiuhai. Relationship between tree height and DBH of Pinus koraiensis in northeastern China based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240321 |
[3] | Du Zhi, Chen Zhenxiong, Li Rui, Liu Ziwei, Huang Xin. Development of climate-sensitive nonlinear mixed-effects tree height-DBH model for Cunninghamia lanceolata[J]. Journal of Beijing Forestry University, 2023, 45(9): 52-61. DOI: 10.12171/j.1000-1522.20230052 |
[4] | Wang Longfeng, Xiao Weiwei, Wang Shuli. Changes of soil aggregate stability and carbon-nitrogen distribution after artificial management of natural secondary forests[J]. Journal of Beijing Forestry University, 2022, 44(7): 97-106. DOI: 10.12171/j.1000-1522.20210497 |
[5] | Jin Xiaojuan, Sun Yujun, Pan Lei. Prediction model of base diameter of primary branch for Larix olgensis based on mixed effects[J]. Journal of Beijing Forestry University, 2020, 42(10): 1-10. DOI: 10.12171/j.1000-1522.20200133 |
[6] | ZANG Hao, LEI Xiang-dong, ZHANG Hui-ru, LI Chun-ming, LU Jun. Nonlinear mixed-effects height-diameter model of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2016, 38(6): 8-9. DOI: 10.13332/j.1000-1522.20160008 |
[7] | DONG Li-hu, LI Feng-ri, JIA Wei-wei.. Effects of tree competition on biomass and biomass models of Pinus koraiensis plantation.[J]. Journal of Beijing Forestry University, 2013, 35(6): 14-22. |
[8] | DONG Li-hu, LI Feng-ri, JIA Wei-wei. Development of tree biomass model for Pinus koraiensis plantation[J]. Journal of Beijing Forestry University, 2012, 34(6): 16-22. |
[9] | WANG Xiong-bin, YU Xin-xiao, XU Cheng-li, , GU Jian-cai, ZHOU Bin, FAN Min-rui, JIA Guo-dong, LV xi-zhi. Effects of thinning on edge effect of Larix principisrupprechtii plantation.[J]. Journal of Beijing Forestry University, 2009, 31(5): 29-34. |
[10] | LI Chun-ming.. Simulating basal area growth of fir plantations using a nonlinear mixed modeling approach.[J]. Journal of Beijing Forestry University, 2009, 31(1): 44-49. |