• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Xiaolin, Wang Yin, He Yicheng, Yang Hui, Qu Mengjun, Zou Xuge, Li Jingwen. Stoichiometric characteristics of carbon and nitrogen in plants and their influencing factors in the lower reaches of the Heihe River, northwestern China[J]. Journal of Beijing Forestry University, 2023, 45(4): 50-59. DOI: 10.12171/j.1000-1522.20210545
Citation: Wang Xiaolin, Wang Yin, He Yicheng, Yang Hui, Qu Mengjun, Zou Xuge, Li Jingwen. Stoichiometric characteristics of carbon and nitrogen in plants and their influencing factors in the lower reaches of the Heihe River, northwestern China[J]. Journal of Beijing Forestry University, 2023, 45(4): 50-59. DOI: 10.12171/j.1000-1522.20210545

Stoichiometric characteristics of carbon and nitrogen in plants and their influencing factors in the lower reaches of the Heihe River, northwestern China

More Information
  • Received Date: December 21, 2021
  • Revised Date: May 10, 2022
  • Accepted Date: August 10, 2022
  • Available Online: August 15, 2022
  • Published Date: April 24, 2023
  •   Objective  Carbon (C) and nitrogen (N) elements are crucial for plant growth and development, especially in extremely arid inland river basins. Plants in different functional groups would show varied stoichiometric characteristics due to the variations in requirements for soil water and nutrients. It is of great significance to explore stoichiometric characteristics among different plant functional groups in the lower reaches of the Heihe River of northwestern China, as well as their nutrient contents responsing to groundwater fluctuation, aiming to further understand desert ecosystems under the background of global climate change.
      Method  In the lower reaches of the Heihe River, a total of 22 sampling sites were set up according to the vertical distance between vegetation and river. Correlation analysis and variation partition analysis (VPA) were applied to determine the relationship between plant stoichiometry and environmental factors among plant functional groups, respectively.
      Result  The average C contents of leaves and fine roots of plants in the lower reaches of Heihe River were 408.53 and 16.30 mg/g, the average N contents were 500.34 and 11.81 mg/g, and the average C∶N ratios were 30.74 and 49.48, respectively. Compared with global and regional studies, it was found that plants in the lower reaches of the Heihe River had higher C content, lower N content and higher C∶N. Different from herbaceous plants, the C content, N content and C∶N of woody plants were significantly correlated with the changes of groundwater depth. We found that the stoichiometric characteristics of plant carbon and nitrogen in the lower reaches of the Heihe River were significantly correlated with soil properties. The groundwater and soil variables jointly explained 53%−75% of the variation in woody plant stoichiometry. Additionally, soil pH and soil electrical conductivity explained 20% of the variation in herbaceous plant stoichiometry.
      Conclusion  Our study finds that groundwater is the key factor influencing the carbon and nitrogen stoichiometry of woody plants under extreme drought and saline-alkali environment, and the carbon and nitrogen stoichiometry of herbaceous plants is mainly influenced by soil pH and soil electrical conductivity.
  • [1]
    Ling H B, Zhang P, Xu H L, et al. How to regenerate and protect desert riparian Populus euphratica forest in arid areas[J/OL]. Scientific Reports, 2015, (5): 15418−15430[2021−12−29]. https://www.nature.com/articles/srep15418.
    [2]
    Zhu Y H, Chen Y N, Ren L L, et al. Ecosystem restoration and conservation in the arid inland river basins of Northwest China: problems and strategies[J]. Ecological Engineering, 2016, 94(1): 629−637.
    [3]
    Zhang X L, Zhou J H, Guan T Y, et al. Spatial variation in leaf nutrient traits of dominant desert riparian plant species in an arid inland river basin of China[J]. Ecology and Evolution, 2019, 9(3): 1523−1531. doi: 10.1002/ece3.4877
    [4]
    Tamea S, Laio F, Ridolfi L, et al. Ecohydrology of groundwater-dependent ecosystems(2): stochastic soil moisture dynamics[J]. Water Resources Research, 2009, 45(5): 5420−5433.
    [5]
    古力米热·哈那提, 王光焰, 张音, 等. 干旱区间歇性生态输水对地下水位与植被的影响机理研究[J]. 干旱区地理, 2018, 41(4): 726−733. doi: 10.12118/j.issn.1000-6060.2018.04.07

    Gulimire·Hanati, Wang G Y, Zhang Y, et al. Influence mechanism of intermittent ecological water conveyance on groundwater level and vegetation in arid land[J]. Arid Land Geography, 2018, 41(4): 726−733. doi: 10.12118/j.issn.1000-6060.2018.04.07
    [6]
    Yao Y, Tian Y, Andrews C, et al. Role of groundwater in the dryland ecohydrological system: a case study of the Heihe River Basin[J]. Journal of Geophysical Research-Atmospheres, 2018, 123: 6760−6776. doi: 10.1029/2018JD028432
    [7]
    Harper J L. The value of a leaf[J]. Oecologia, 1989, 80: 53−58. doi: 10.1007/BF00789931
    [8]
    Castellanos A E, Llano-Sotelo J M, Machado-Encinas L I, et al. Foliar C, N, and P stoichiometry characterize successful plant ecological strategies in the Sonoran Desert[J]. Plant Ecology, 2018, 219: 775−788. doi: 10.1007/s11258-018-0833-3
    [9]
    Sommer B, Froend R. Phreatophytic vegetation responses to groundwater depth in a drying Mediterranean type landscape[J]. Journal of Vegetation Science, 2014, 25: 1045−1055. doi: 10.1111/jvs.12178
    [10]
    Westheimer F. Why nature chose phosphates[J]. Science, 1987, 235: 1173−1178. doi: 10.1126/science.2434996
    [11]
    Dawson T P, Curran P J. Technical note a new technique for interpolating the reflectance red edge position[J]. International Journal of Remote Sensing, 1998, 19(11): 2133−2139. doi: 10.1080/014311698214910
    [12]
    曾德慧, 陈广生. 生态化学计量学: 复杂生命系统奥秘的探索[J]. 植物生态学报, 2005, 29(6): 141−153.

    Zeng D H, Chen G S. Ecological stoichiometry: a science to explore the complexity of living systems[J]. Chinese Journal of Plant Ecology, 2005, 29(6): 141−153.
    [13]
    Han W X, Fang J Y, Guo D L, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168: 377−385. doi: 10.1111/j.1469-8137.2005.01530.x
    [14]
    Marschner P, Rengel Z. Nutrient cycling in terrestrial ecosystems [M]. Berlin: Springer-Verlag, 2007: 159−182.
    [15]
    Aroca R. Plant responses to drought stress[M]. Berlin: Springer, 2012.
    [16]
    Farooq M, Wahid A, Kobayashi N, et al. Plant drought stress: effects, mechanisms and management[J]. Agronomy for Sustainable Development, 2009, 29: 185−212. doi: 10.1051/agro:2008021
    [17]
    向云西, 潘萍, 陈胜魁, 等. 天然马尾松林土壤碳氮磷特征及其与凋落物质量的关系[J]. 北京林业大学学报, 2019, 41(11): 95−103.

    Xiang Y X, Pan P, Chen S K, et al. Characteristics of soil C, N, P and their relationship with litter quality in natural Pinus massoniana forest[J]. Journal of Beijing Forestry University, 2019, 41(11): 95−103.
    [18]
    张珂, 何明珠, 李新荣, 等. 阿拉善荒漠典型植物叶片碳、氮、磷化学计量特征[J]. 生态学报, 2014, 34(22): 6538−6547.

    Zhang K, He M Z, Li X R, et al. Foliar carbon, nitrogen and phosphorus stoichiometry of typical desert plants across the Alashan Desert[J]. Acta Ecologica Sinica, 2014, 34(22): 6538−6547.
    [19]
    Rong Q Q, Liu J T, Cai Y P, et al. Leaf carbon, nitrogen and phosphorus stoichiometry of Tamarix chinensis Lour. in the Laizhou Bay Coastal Wetland, China[J]. Ecological Engineering, 2015, 76: 57−65. doi: 10.1016/j.ecoleng.2014.03.002
    [20]
    Canadell J, Jackson R B, Ehleringer J B, et al. Maximum rooting depth of vegetation types at the global scale[J]. Oecologia, 1996, 108: 583−595. doi: 10.1007/BF00329030
    [21]
    Luo Y, Peng Q, Li K, et al. Patterns of nitrogen and phosphorus stoichiometry among leaf, stem and root of desert plants and responses to climate and soil factors in Xinjiang, China[J]. Catena, 2021, 199: 105100. doi: 10.1016/j.catena.2020.105100
    [22]
    Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428: 821−827. doi: 10.1038/nature02403
    [23]
    Xu Z Z, Zhou G S, Wang Y H. Combined effects of elevated CO2 and soil drought on carbon and nitrogen allocation of the desert shrub Carag ana intermedia[J]. Plant and Soil, 2007, 301(1/2): 87−97.
    [24]
    钟华平, 刘恒, 王义, 等. 黑河流域下游额济纳绿洲与水资源的关系[J]. 水科学进展, 2002, 13(2): 223−228. doi: 10.3321/j.issn:1001-6791.2002.02.016

    Zhong H P, Liu H, Wang Y, et al. Relationship between Ejina oasis and water resources in the lower Heihe River Basin[J]. Advances in Water Science, 2002, 13(2): 223−228. doi: 10.3321/j.issn:1001-6791.2002.02.016
    [25]
    赵传燕, 赵阳, 彭守璋, 等. 黑河下游绿洲胡杨生长状况与叶生态特征[J]. 生态学报, 2014, 34(16): 4518−4525.

    Zhao C Y, Zhao Y, Peng S Z, et al. The growth state of Populus euphratical Oliv. and its leaf ecological characteristics in the lower reaches of Heihe River[J]. Acta Ecologica Sinica, 2014, 34(16): 4518−4525.
    [26]
    Wang R, Wang Q F, Zhao N, et al. Different phylogenetic and environmental controls of first-order root morphological and nutrient traits: evidence of multidimensional root traits[J]. Functional Ecology, 2017, 32: 29−39.
    [27]
    王健铭, 崔盼杰, 钟悦鸣, 等. 阿拉善高原植物区域物种丰富度格局及其环境解释[J]. 北京林业大学学报, 2019, 41(3): 14−23.

    Wang J M, Cui P J, Zhong Y M, et al. Biogeographic patterns and environmental interpretation of plant regional species richness in Alxa Plateau of northern China[J]. Journal of Beijing Forestry University, 2019, 41(3): 14−23.
    [28]
    Agren G I. Stoichiometry and nutrition of plant growth in natural communities[J]. Annual Review of Ecology, Evolution and Systematics, 2008, 39(39): 153−170.
    [29]
    Foulds W. Nutrient concentrations of foliage and soil in south-western Australia[J]. New Phytologist, 1993, 125(3): 529−546. doi: 10.1111/j.1469-8137.1993.tb03901.x
    [30]
    阎恩荣, 王希华, 周武. 天童常绿阔叶林演替系列植物群落的N∶P化学计量特征[J]. 植物生态学报, 2008, 32(1): 13−22. doi: 10.3773/j.issn.1005-264x.2008.01.002

    Yan E R, Wang X H, Zhou W. N∶P stoichiometry in secondary succession in evergreen broadleaved forest, Tiantong, East China[J]. Chinese Journal of Plant Ecology, 2008, 32(1): 13−22. doi: 10.3773/j.issn.1005-264x.2008.01.002
    [31]
    Yuan Z Y, Chen H Y, Reich P B. Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus[J]. Nature Communications, 2011, 2: 344. doi: 10.1038/ncomms1346
    [32]
    李玉霖, 毛伟, 赵学勇, 等. 北方典型荒漠及荒漠化地区植物叶片氮磷化学计量特征研究[J]. 环境科学, 2010, 31(8): 1716−1725.

    Li Y L, Mao W, Zhao X Y, et al. Leaf nitrogen and phosphorus stoichiometry in typical desert and desertified regions, North China[J]. Environmental Science, 2010, 31(8): 1716−1725.
    [33]
    宁志英, 李玉霖, 杨红玲, 等. 科尔沁沙地主要植物细根和叶片碳、氮、磷化学计量特征[J]. 植物生态学报, 2017, 41(10): 1069−1080. doi: 10.17521/cjpe.2017.0048

    Ning Z Y, Li Y L, Yang H L, et al. Carbon, nitrogen and phosphorus stoichiometry in leaves and fine roots of dominant plants in Horqin Sandy Land[J]. Chinese Journal of Plant Ecology, 2017, 41(10): 1069−1080. doi: 10.17521/cjpe.2017.0048
    [34]
    Herbert D A, Williams M, Rastetter E B. A model analysis of N and P limitation on carbon accumulation in Amazonian secondary forest after alternate land-use abandonment[J]. Biogeochemistry, 2003, 65(1): 121−150. doi: 10.1023/A:1026020210887
    [35]
    Zhang Q, Xiong G M, Li J X, et al. Nitrogen and phosphorus concentrations and allocation strategies among shrub organs: the effects of plant growth forms and nitrogen-fixation types[J]. Plant and Soil, 2018, 427(1−2): 305−319. doi: 10.1007/s11104-018-3655-0
    [36]
    Zhang K, Li M M, Su Y Z, et al. Stoichiometry of leaf carbon, nitrogen, and phosphorus along a geographic, climatic, and soil gradients in temperate desert of Hexi Corridor, northwest China[J]. Journal of Plant Ecology, 2019, 13(1): 114−121.
    [37]
    何茂松, 罗艳, 彭庆文, 等. 新疆45种荒漠植物粗根碳、氮、磷计量特征及其与环境的关系[J]. 生态学杂志, 2019, 38(9): 2603−2614.

    He M S, Luo Y, Peng Q W, et al. Carbon, nitrogen and phosphorus stoichimentry in the coarse roots of 45 desert plant species in relation to environmental factors across the deserts in Xinjiang[J]. Chinese Journal of Ecology, 2019, 38(9): 2603−2614.
    [38]
    Vitousek P M, Howarth R W. Nitrogen limitation on land and in the sea: how can it occur[J]. Biogeochemistry, 1991, 13(2): 87−115.
    [39]
    Yang Y H, Luo Y Q. Carbon: nitrogen stoichiometry in forest ecosystems during stand development[J]. Global Ecology and Biogeography, 2011, 20(2): 354−361. doi: 10.1111/j.1466-8238.2010.00602.x
    [40]
    王凯博, 上官周平. 黄土丘陵区燕沟流域典型植物叶片C、N、P化学计量特征季节变化[J]. 生态学报, 2011, 31(17): 4985−4991.

    Wang K B, Shangguan Z P. Seasonal variations in leaf C, N and P stoichiometry of typical plants in the Yangou Watershed in the loess hilly gully region[J]. Acta Ecologica Sinica, 2011, 31(17): 4985−4991.
    [41]
    Gusewell S. N∶P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164(2): 243−266. doi: 10.1111/j.1469-8137.2004.01192.x
    [42]
    Thompson K, Parkinson J A, Band S R, et al. A comparative study of leaf nutrient concentrations in a regional herbaceous flora[J]. New Phytologist, 1997, 136: 679−689. doi: 10.1046/j.1469-8137.1997.00787.x
    [43]
    Reich P B, Oleksyn J. Global patternsof plant leaf N and Pinrelation to temperature and latitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 11001−11006. doi: 10.1073/pnas.0403588101
    [44]
    Zhang J H, He N P, Liu C C, et al. Allocation strategies for nitrogen and phosphorus in forest plants[J]. Oikos, 2018, 127(10): 1506−1514. doi: 10.1111/oik.05517
    [45]
    王振南, 杨惠敏. 植物碳氮磷生态化学计量对非生物因子的响应[J]. 草业科学, 2013, 30(6): 927−934.

    Wang Z N, Yang H M. Response of ecological stoichiometry of carbon, nitrogen and phosphorus in plants to abiotic environmental factors[J]. Pratacultural Science, 2013, 30(6): 927−934.
    [46]
    Li W, Yu T F, Li X Y, et al. Sap flow characteristics and their response to environmental variables in a desert riparian forest along lower Heihe River Basin, northwest China[J]. Environmental Monitoring and Assessment, 2016, 188: 561. doi: 10.1007/s10661-016-5570-2
    [47]
    钟悦鸣, 王文娟, 王健铭, 等. 极端干旱区绿洲植物叶功能性状及其对土壤水盐因子的响应[J]. 北京林业大学学报, 2019, 41(10): 20−29.

    Zhong Y M, Wang W J, Wang J M, et al. Leaf functional traits of oasis plants in extremely arid areas and its response to soil water and salt factors[J]. Journal of Beijing Forestry University, 2019, 41(10): 20−29.
    [48]
    安申群, 贡璐, 朱美玲, 等. 塔里木盆地北缘典型荒漠植物根系化学计量特征及其与土壤理化因子的关系[J]. 生态学报, 2017, 37(16): 5444−5450.

    An S Q, Gong L, Zhu M L, et al. Root stoichiometric characteristics of desert plants and their correlation with soil physicochemical factors in the northern Tarim Basin[J]. Acta Ecologica Sinica, 2017, 37(16): 5444−5450.
    [49]
    Chaves M M, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell[J]. Annals of Botany, 2009, 103: 551−560. doi: 10.1093/aob/mcn125
    [50]
    Niu D, Zhang C, Ma P, et al. Responses of leaf C∶N∶P stoichiometry to water supply in the desert shrub Zygophyllum xanthoxylum[J]. Plant Biology, 2019, 21: 82−88. doi: 10.1111/plb.12897
    [51]
    Wang Z, Yu K, Lü S, et al. The scaling of fine root nitrogen versus phosphorus in terrestrial plants: a global synthesis[J]. Functional Ecology, 2019, 33: 2081−2094. doi: 10.1111/1365-2435.13434
    [52]
    Wang Y, Wang J M, Wang X L, et al. Dominant roles but distinct effects of groundwater depth on regulating leaf and fine-root N, P and N∶P ratios of plant communities[J]. Journal of Plant Ecology, 2021, 14(6): 1158−1174. doi: 10.1093/jpe/rtab062
    [53]
    Setia R, Gottschalk P, Smith P, et al. Soil salinity decreases global soil organic carbon stocks[J]. Science of the Total Environment, 2013, 465: 267−272. doi: 10.1016/j.scitotenv.2012.08.028
    [54]
    Wang L L, Zhao G X, Li M, et al. C∶N∶P stoichiometry and leaf traits of halophytes in an arid saline environment, northwest China[J/OL]. PLoS One, 2015, 10(3): e0119935[2021−12−24]. https://doi.org/10.1371/journal.pone.0119935.
    [55]
    Sardans J, Peñuelas J. The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system[J]. Plant Physiology, 2012, 160: 1741−1761. doi: 10.1104/pp.112.208785
    [56]
    张晓龙, 周继华, 来利明, 等. 黑河下游荒漠河岸地带土壤水盐和养分的空间分布特征[J]. 生态环境学报, 2019, 28(9): 1739−1747.

    Zhang X L, Zhou J H, Lai L M, et al. Spatial characterization of soil water-salt and nutrient in a desert riparian area along the lower reaches of Heihe River, China[J]. Ecology and Environmental Sciences, 2019, 28(9): 1739−1747.
    [57]
    杨少辉, 季静, 王罡. 盐胁迫对植物的影响及植物的抗盐机理[J]. 世界科技研究与发展, 2006(4): 70−76. doi: 10.3969/j.issn.1006-6055.2006.04.012

    Yang S H, Ji J, Wang G. Effects of salt stress on plants and the mechanism of salt tolerance[J]. World Sci-Tech R&D, 2006(4): 70−76. doi: 10.3969/j.issn.1006-6055.2006.04.012
    [58]
    Min W, Su Y, Xiao Y. Spatial distribution of soil organic carbon and its influencing factors in desert grasslands of the Hexi Corridor, northwest China[J/OL]. PLoS One, 2014, 9(4): e94652[2021−12−28]. https://doi.org/10.1371/journal.pone.0094652.
    [59]
    He M Z, Zhang K, Tan H J, et al. Nutrient levels within leaves, stems, and roots of the xeric species Reaumuria soongorica in relation to geographical, climatic, and soil conditions[J]. Ecology and Evolution, 2015, 5(7): 1494−1503. doi: 10.1002/ece3.1441
    [60]
    王健铭, 董芳宇, 巴海·那斯拉, 等. 中国黑戈壁植物多样性分布格局及其影响因素[J]. 生态学报, 2016, 36(12): 3488−3498.

    Wang J M, Dong F Y, Bahai·Nasila, et al. Plant distribution patterns and the factors influencing plant diversity in the Black Gobi Desert of China[J]. Acta Ecologica Sinica, 2016, 36(12): 3488−3498.
  • Related Articles

    [1]Feng Yuan, Li Guixiang, He Liping, Bi Bo, Qin Yangping, Wang Faping, Hu Binxian, Yin Jiuming. Tree height curves of Pinus yunnanensis forest based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240063
    [2]Li Xinyu, Yeerjiang Baiketuerhan, Wang Juan, Zhang Xinna, Zhang Chunyu, Zhao Xiuhai. Relationship between tree height and DBH of Pinus koraiensis in northeastern China based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240321
    [3]Du Zhi, Chen Zhenxiong, Li Rui, Liu Ziwei, Huang Xin. Development of climate-sensitive nonlinear mixed-effects tree height-DBH model for Cunninghamia lanceolata[J]. Journal of Beijing Forestry University, 2023, 45(9): 52-61. DOI: 10.12171/j.1000-1522.20230052
    [4]Wang Longfeng, Xiao Weiwei, Wang Shuli. Changes of soil aggregate stability and carbon-nitrogen distribution after artificial management of natural secondary forests[J]. Journal of Beijing Forestry University, 2022, 44(7): 97-106. DOI: 10.12171/j.1000-1522.20210497
    [5]Jin Xiaojuan, Sun Yujun, Pan Lei. Prediction model of base diameter of primary branch for Larix olgensis based on mixed effects[J]. Journal of Beijing Forestry University, 2020, 42(10): 1-10. DOI: 10.12171/j.1000-1522.20200133
    [6]ZANG Hao, LEI Xiang-dong, ZHANG Hui-ru, LI Chun-ming, LU Jun. Nonlinear mixed-effects height-diameter model of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2016, 38(6): 8-9. DOI: 10.13332/j.1000-1522.20160008
    [7]DONG Li-hu, LI Feng-ri, JIA Wei-wei.. Effects of tree competition on biomass and biomass models of Pinus koraiensis plantation.[J]. Journal of Beijing Forestry University, 2013, 35(6): 14-22.
    [8]DONG Li-hu, LI Feng-ri, JIA Wei-wei. Development of tree biomass model for Pinus koraiensis plantation[J]. Journal of Beijing Forestry University, 2012, 34(6): 16-22.
    [9]WANG Xiong-bin, YU Xin-xiao, XU Cheng-li, , GU Jian-cai, ZHOU Bin, FAN Min-rui, JIA Guo-dong, LV xi-zhi. Effects of thinning on edge effect of Larix principisrupprechtii plantation.[J]. Journal of Beijing Forestry University, 2009, 31(5): 29-34.
    [10]LI Chun-ming.. Simulating basal area growth of fir plantations using a nonlinear mixed modeling approach.[J]. Journal of Beijing Forestry University, 2009, 31(1): 44-49.
  • Cited by

    Periodical cited type(44)

    1. 韩彦隆,魏亚娟,左小锋,左轶璆,康帅,童国利,李建媛,王永平. 吉兰泰荒漠绿洲过渡带土壤生态化学计量特征及养分恢复状况研究. 水土保持研究. 2025(02): 207-214+223 .
    2. 罗婷,黄甫昭,李健星,陆芳,文淑均,阮枰臻,李先琨. 广西漓江流域喀斯特地区植被不同恢复阶段植物优势种叶片和土壤的生态化学计量特征. 植物资源与环境学报. 2024(02): 80-90 .
    3. 任泽文,陈昕,陈玥,钟曲颖,余泽平,刘骏,杨清培,宋庆妮. 亚热带森林演替中优势种茎干-土壤碳氮磷生态化学计量的变化特征. 江西农业大学学报. 2024(02): 401-410 .
    4. 侯贻菊,姚雾清,杨光能,崔迎春,周华. 黔竹笋期生长特性及配方施肥效应研究. 贵州林业科技. 2024(02): 19-24 .
    5. 刘亚博,冯天骄,王平,卫伟. 黄土丘陵区典型小流域不同植被恢复方式土壤理化性质差异及其影响因素. 生态学报. 2024(15): 6652-6666 .
    6. 史丽娟,吕海涛,张树梓,李联地,任启文,冯广. 白洋淀上游典型林分类型土壤理化性质及其化学计量特征. 土壤通报. 2024(04): 960-967 .
    7. 武仁杰,邢玮,葛之葳,毛岭峰,彭思利. 4种林分凋落叶不同分解阶段化学计量特征. 浙江农林大学学报. 2023(01): 155-163 .
    8. 孙阔,袁兴中,王晓锋,袁嘉,候春丽,魏丽景. 三峡水库消落带土壤养分含量及生态化学计量特征. 长江流域资源与环境. 2023(02): 403-414 .
    9. 刘根,岳翰林,陈雨志,汪富资,李先宝,代智蓝,李德欢,李思雨,卫万荣. 3种修复措施对高原高速公路边坡土壤化学计量特征的影响. 草业科学. 2023(01): 71-78 .
    10. 王艺伟,仇模升,孙彩丽. 植物反馈作用对火棘群落土壤养分、酶活性及化学计量特征的影响. 中南林业科技大学学报. 2023(03): 127-134 .
    11. 梁楚欣,范弢,陈培云. 滇东石漠化坡地不同恢复模式下云南松林土壤碳氮磷化学计量特征及其影响因子. 浙江农林大学学报. 2023(03): 511-519 .
    12. 白金珂,李笑雨,王力. 1980s与2020s青藏高原南部土壤质量变化. 应用生态学报. 2023(05): 1367-1374 .
    13. 徐子涵,王磊,崔明,刘玉国,赵紫晴,李嘉豪. 南水北调水源区不同植被恢复模式的土壤化学计量特征. 南京林业大学学报(自然科学版). 2023(03): 173-181 .
    14. 何芳远,苏权,陈坤铨,陈善栋,姜勇,罗明,梁士楚. 基于功能性状及系统发育的桂林喀斯特石山群落构建. 广西师范大学学报(自然科学版). 2023(03): 171-181 .
    15. 吴丹,温晨,卫伟,张钦弟. 黄土高原小流域不同植物群落土壤生态化学计量的垂直变化特征. 广西植物. 2023(05): 923-935 .
    16. 宁静,杨磊,曹建华,李亮. 基于文献计量分析的岩溶区植被恢复研究现状与热点. 中国岩溶. 2023(02): 321-336 .
    17. 李雪梅,舒英格. 不同土地利用类型下土壤养分变化及生态化学计量特征分析. 中国农学通报. 2023(28): 62-69 .
    18. 周士锋,魏亚娟,何磊,王项飞,刘美萍,刘澜波. 包头市南海湿地不同季节土壤养分分布特征. 北方园艺. 2023(20): 69-76 .
    19. 侯贻菊,姚雾清,杨光能,崔迎春,周华,张喜. 黔竹秆形结构和地上生物量分配格局研究. 竹子学报. 2023(04): 51-57 .
    20. 胡林安,邱江梅,李强. 云南岩溶断陷盆地植被演替土壤碳氮磷化学计量学特征. 中国岩溶. 2023(06): 1213-1223 .
    21. 袁在翔,关庆伟,李俊杰,韩梦豪,金雪梅,陈霞. 不同植被恢复模式对紫金山森林土壤理化性质的影响. 东北林业大学学报. 2022(01): 52-57 .
    22. 曹全恒 ,胡健 ,陈雪玲 ,孙梅玲 ,刘小龙 ,杨丽雪 ,周青平 . 川西北沙地植被恢复对土壤碳氮磷及生态化学计量特征的影响. 草地学报. 2022(03): 523-531 .
    23. 蔡雅梅,冯民权,肖瑜. 人类活动对河岸带植被氮磷生态化学计量特征的影响——以汾河临汾段为例. 水土保持通报. 2022(01): 17-25 .
    24. 孟海,王海燕,侯文宁,赵晗,宁一泓. 重庆笋溪河流域河岸带水体-土壤-植物的氮磷特征及影响因素. 水土保持学报. 2022(02): 275-282+291 .
    25. 章润阳,钱前,刘坤平,梁月明,张伟,靳振江,潘复静. 喀斯特不同土地利用方式和恢复模式对土壤酶活性C∶N∶P比值的影响. 广西植物. 2022(06): 970-982 .
    26. 王杰. 河岸带土壤氮磷时空分布及影响因素分析. 水土保持应用技术. 2022(04): 13-16 .
    27. 孙渝雯,马赞文,陶贞,张乾柱,唐文魁,吴迪,钟庆祥,王振刚,丁健. 海南岛西南部土壤生物硅分布的时空差异及其驱动机制. 生态学报. 2022(17): 7092-7104 .
    28. 张萌,沈雅飞,陈天,王丽君,曾立雄,孙鹏飞,肖文发,田耀武,程瑞梅. 宜阳县不同森林类型土壤化学计量特征. 陆地生态系统与保护学报. 2022(02): 1-8 .
    29. 陈培云,范弢,何停,户红红. 滇东岩溶高原不同恢复阶段云南松林叶片-枯落物-土壤碳氮磷化学计量特征. 应用与环境生物学报. 2022(06): 1549-1556 .
    30. 刘翔,张连凯,黄超,徐灿,马一奇,杨慧. 广西岩溶区芒果园土壤碳氮磷化学计量特征. 南方农业学报. 2022(12): 3346-3356 .
    31. 李强. 土地利用方式对岩溶断陷盆地土壤细菌和真核生物群落结构的影响. 地球学报. 2021(03): 417-425 .
    32. 陈云,李玉强,王旭洋,牛亚毅. 中国典型生态脆弱区生态化学计量学研究进展. 生态学报. 2021(10): 4213-4225 .
    33. 蔡雅梅,冯民权. 汾河河岸带土壤氮、磷的时空分布规律及其影响因素研究. 水土保持学报. 2021(04): 222-229+236 .
    34. 蔡国俊,锁盆春,张丽敏,符裕红,李安定. 黔南喀斯特峰丛洼地3种建群树种不同器官C、N、P化学计量特征. 贵州师范大学学报(自然科学版). 2021(05): 36-44 .
    35. 魏亚娟,汪季,党晓宏,韩彦隆,高岩,李鹏,金山. 白刺灌丛沙堆演化过程中叶片C、N、P、K含量及其生态化学计量的变化特征. 中南林业科技大学学报. 2021(10): 102-110+139 .
    36. 杨洪炳,肖以华,李明,许涵,史欣,郭晓敏. 典型城市森林旱季土壤团聚体稳定性与微生物胞外酶活性耦合关系. 生态环境学报. 2021(10): 1976-1989 .
    37. 陈剑,王四海,杨卫,吴超. 外来入侵植物肿柄菊群落动态变化特征. 生态学杂志. 2020(02): 469-477 .
    38. 郑鸾,龙翠玲. 茂兰喀斯特森林不同地形土壤生态化学计量特征. 南方农业学报. 2020(03): 545-551 .
    39. 夏光辉,郭青霞,卢庆民,杜轶,康庆. 黄土丘陵区不同土地利用方式下土壤养分及生态化学计量特征. 水土保持通报. 2020(02): 140-147+153 .
    40. 吴鹏,崔迎春,赵文君,侯贻菊,朱军,丁访军,杨文斌. 茂兰喀斯特区68种典型植物叶片化学计量特征. 生态学报. 2020(14): 5063-5080 .
    41. 朱平宗,张光辉,杨文利,赵建民. 红壤区林地浅沟不同植被类型土壤生态化学计量特征. 水土保持研究. 2020(06): 60-65 .
    42. 余杭,罗清虎,李松阳,林勇明,王道杰. 灾害干扰受损森林土壤的碳、氮、磷初期恢复特征与变异性. 山地学报. 2020(04): 532-541 .
    43. 郭汝凤,刘鑫铭,李冠军,黄婷,吴承祯,林勇明,李键. 武夷山人工湿地系统植物生长期内土壤-植物碳氮磷变化特点. 应用与环境生物学报. 2020(02): 433-441 .
    44. 闫丽娟,王海燕,李广,吴江琪. 黄土丘陵区4种典型植被对土壤养分及酶活性的影响. 水土保持学报. 2019(05): 190-196+204 .

    Other cited types(42)

Catalog

    Article views (876) PDF downloads (121) Cited by(86)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return