• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Di, Song Wenqi, Zhao Binqing, Wang Xingchang, An Yang, Li Zongshan, Wang Xiaochun. Comparison of tree-ring xylem anatomical parameters of three tree species under different moisture conditions in the Muling area, Heilongjiang Province of northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(11): 53-65. DOI: 10.12171/j.1000-1522.20220003
Citation: Liu Di, Song Wenqi, Zhao Binqing, Wang Xingchang, An Yang, Li Zongshan, Wang Xiaochun. Comparison of tree-ring xylem anatomical parameters of three tree species under different moisture conditions in the Muling area, Heilongjiang Province of northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(11): 53-65. DOI: 10.12171/j.1000-1522.20220003

Comparison of tree-ring xylem anatomical parameters of three tree species under different moisture conditions in the Muling area, Heilongjiang Province of northeastern China

More Information
  • Received Date: January 02, 2022
  • Revised Date: August 09, 2022
  • Available Online: September 13, 2023
  • Objective 

    This paper aims to clarify the differences in the anatomical characteristics of the xylem of trees in different habitats and the growth changes of the xylem of trees under warm and dry climate conditions.

    Method 

    The relatively dry and relatively wet habitat sampling sites were set up in mixed coniferous forests in Muling City, Heilongjiang Province of northeastern China, and Pinus koraiensis, Quercus mongolica, and Tilia amurensis were sampled. Micro-sections were cut with a rotary microtome to obtain the anatomical parameters of the xylem.

    Result 

    The mean vessel area and vulnerability index of Q. mongolica in the relatively dry habitat increased significantly, but the theoretical xylem-specific hydraulic conductivity of Q. mongolica did not differ significantly between the two habitats. From relatively wet habitat to relatively dry habitat, mean vessel area, vulnerability index, and theoretical xylem-specific hydraulic conductivity of T. amurensis were significantly reduced. Among the three tree species, only the mean tracheid area and vulnerability index of P. koraiensis did not differ significantly in the two habitats, and at the same time, theoretical xylem-specific hydraulic conductivity was significantly increased in the relatively dry habitat. The tree-ring widths of P. koraiensis, Q. mongolica and T. amurensis in relatively dry habitat were all significantly positively correlated with the Palmer drought severity index (PDSI) of the growing season, and the sensitivity decreased when the water content of soil rose. The theoretical xylem-specific hydraulic conductivity of Q. mongolica in the relatively dry habitat was significantly negatively correlated with the PDSI from November of the previous year to October of the current year. The tree-ring widths and mean vessel area of T. amurensis in the relatively dry habitat were significantly positively correlated with the lowest temperature in the previous non-growing season (PNG).

    Conclusion 

    At the beginning of the growing season, drought is an important factor that restricts the tracheid area and theoretical xylem-specific hydraulic conductivity of P. koraiensis in the Muling area. In the future, P. koraiensis may feel the change of climatic conditions in northeast China more strongly. T. amurensis reduces theoretical xylem-specific hydraulic conductivity in relatively dry habitats to improve hydraulic safety. The growth and mean vessel area of Q. mongolica in the relatively dry habitat are greater than that in the relatively wet habitat, so future warm and dry climate conditions may be more beneficial to the growth of Q. mongolica, but there is also a risk of cavitation to it. Clarifying whether drought stress due to global warming will alter tree growth is critical to adjusting current silvicultural practices, which is better for mixed coniferous forests to cope with future warming and drying climatic conditions.

  • [1]
    Pan Y, Birdsey R A, Fang J Y, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333: 988−993. doi: 10.1126/science.1201609
    [2]
    Anderegg W R L, Flint A, Huang C Y, et al. Tree mortality predicted from drought-induced vascular damage[J]. Nature Geoscience, 2015, 8: 367−371. doi: 10.1038/ngeo2400
    [3]
    Allen C D, Macalady A K, Chenchouni H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J]. Forest Ecology and Management, 2010, 259(4): 660−684. doi: 10.1016/j.foreco.2009.09.001
    [4]
    Kannenberg S A, Maxwell J T, Pederson N, et al. Drought legacies are dependent on water table depth, wood anatomy and drought timing across the eastern US[J]. Ecology Letters, 2019, 22(1): 119−127. doi: 10.1111/ele.13173
    [5]
    Castagneri D, Carrer M, Regev L, et al. Precipitation variability differently affects radial growth, xylem traits and ring porosity of three Mediterranean oak species at xeric and mesic sites[J]. Science of the Total Environment, 2020, 699: 134285. doi: 10.1016/j.scitotenv.2019.134285
    [6]
    Castagneri D, Petit G, Carrer M. Divergent climate response on hydraulic-related xylem anatomical traits of Picea abies along a 900-m altitudinal gradient[J]. Tree Physiology, 2015, 35(12): 1378−1387. doi: 10.1093/treephys/tpv085
    [7]
    Hudson P J, Limousin J M, Krofcheck D J, et al. Impacts of long-term precipitation manipulation on hydraulic architecture and xylem anatomy of pinon and juniper in Southwest USA[J]. Plant Cell & Environment, 2017, 41(2): 421−435.
    [8]
    Björklund J, Seftigen K, Schweingruber F, et al. Cell size and wall dimensions drive distinct variability of earlywood and latewood density in Northern Hemisphere conifers[J]. New Phytologist, 2017, 216(3): 728−740. doi: 10.1111/nph.14639
    [9]
    Rita A, Cherubini P, Leonardi S, et al. Functional adjustments of xylem anatomy to climatic variability: insights from long-term Ilex aquifolium tree-ring series[J]. Tree Physiology, 2015, 35(8): 817−828. doi: 10.1093/treephys/tpv055
    [10]
    Brodribb T J. Xylem hydraulic physiology: the functional backbone of terrestrial plant productivity[J]. Plant Science, 2009, 177(4): 245−251. doi: 10.1016/j.plantsci.2009.06.001
    [11]
    Losso A, Anfodillo T, Ganthaler A, et al. Robustness of xylem properties in conifers: analyses of tracheid and pit dimensions along elevational transects[J]. Tree Physiology, 2018, 38(2): 212−222. doi: 10.1093/treephys/tpx168
    [12]
    Khansaritoreh E, Schuldt B, Dulamsuren C. Hydraulic traits and tree-ring width in Larix sibirica Ledeb. as affected by summer drought and forest fragmentation in the Mongolian forest steppe[J]. Annals of Forest Science, 2018, 75: 30. doi: 10.1007/s13595-018-0701-2
    [13]
    Zalloni E, Battipaglia G, Cherubini P, et al. Contrasting physiological responses to Mediterranean climate variability are revealed by intra-annual density fluctuations in tree rings of Quercus ilex L. and Pinus pinea L.[J]. Tree Physiology, 2018, 38(8): 1213−1224. doi: 10.1093/treephys/tpy061
    [14]
    Rubio-Cuadrado Á, Camarero J J, del Río M, et al. Long-term impacts of drought on growth and forest dynamics in a temperate beech-oak-birch forest[J]. Agricultural and Forest Meteorology, 2018, 259: 48−59. doi: 10.1016/j.agrformet.2018.04.015
    [15]
    Carnicer J, Barbeta A, Sperlich D, et al. Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale[J]. Frontiers in Plant Science, 2013, 4: 409.
    [16]
    Poyatos R, Aguadé D, Galiano L, et al. Drought-induced defoliation and long periods of near-zero gas exchange play a key role in accentuating metabolic decline of Scots pine[J]. New Phytologist, 2013, 200(2): 388−401. doi: 10.1111/nph.12278
    [17]
    Barbeta A, Peñuelas J. Increasing carbon discrimination rates and depth of water uptake favor the growth of Mediterranean evergreen trees in the ecotone with temperate deciduous forests[J]. Global Change Biology, 2017, 23(12): 5054−5068. doi: 10.1111/gcb.13770
    [18]
    Vitasse Y, Bottero A, Cailleret M, et al. Contrasting resistance and resilience to extreme drought and late spring frost in five major European tree species[J]. Global Change Biology, 2019, 25(11): 3781−3792. doi: 10.1111/gcb.14803
    [19]
    Willis K J, Jeffers E S, Tovar C. What makes a terrestrial ecosystem resilient?[J]. Science, 2018, 359: 988−989. doi: 10.1126/science.aar5439
    [20]
    Cavin L, Jump A S. Highest drought sensitivity and lowest resistance to growth suppression are found in the range core of the tree Fagus sylvatica L. not the equatorial range edge[J]. Global Change Biology, 2017, 23(1): 362−379. doi: 10.1111/gcb.13366
    [21]
    Helman D, Lensky I M, Yakir D, et al. Forests growing under dry conditions have higher hydrological resilience to drought than do more humid forests[J]. Global Change Biology, 2017, 23(7): 2801−2817. doi: 10.1111/gcb.13551
    [22]
    韩金生, 赵慧颖, 朱良军, 等. 小兴安岭蒙古栎和黄菠萝径向生长对气候变化的响应比较[J]. 应用生态学报, 2019, 30(7): 2218−2230.

    Han J S, Zhao H Y, Zhu L J, et al. Comparing the responses of radial growth between Quercus mongolica and Phellodendron amurense to climate change in Xiaoxing’an Mountains, China[J]. Chinese Journal of Applied Ecology, 2019, 30(7): 2218−2230.
    [23]
    朱良军. 4个温带硬阔导管特征与径向生长对气候变化的响应[D]. 哈尔滨: 东北林业大学, 2019.

    Zhu L J. Response to climate change of vessel features and radial growth of four hardwood species from temperate forests of Northeast China[D]. Harbin: Northeast Forestry University, 2019.
    [24]
    谢立红, 黄庆阳, 曹宏杰, 等. 五大连池火山蒙古栎和紫椴径向生长对气候变化的响应[J]. 西北林学院学报, 2021, 36(3): 1−9.

    Xie L H, Huang Q Y, Cao H J, et al. Response of radial growth for Quercus mongolica and Tilia amurensis in Wudalianchi Volcano, China to climate changes[J]. Journal of Northwest Forestry University, 2021, 36(3): 1−9.
    [25]
    Yu D P, Liu J Q, Lewis B J, et al. Spatial variation and temporal instability in the climate–growth relationship of Korean pine in the Changbai Mountain region of Northeast China[J]. Forest Ecology and Management, 2013, 300: 96−105. doi: 10.1016/j.foreco.2012.06.032
    [26]
    刘敏, 毛子军, 厉悦, 等. 不同径级红松径向生长对气候变化的响应[J]. 应用生态学报, 2018, 29(11): 3530−3540.

    Liu M, Mao Z J, Li Y, et al. Response of radial growth to climate change in Pinus koraiensis with different diameter classes[J]. Chinese Journal of Applied Ecology, 2018, 29(11): 3530−3540.
    [27]
    陆静梅, 唐家军, 吴伟, 等. 红松根和茎木材解剖研究[J]. 东北师大学报·自然科学版, 1991(3): 73−76.

    Lu J M, Tang J J, Wu W, et al. The studies between root and trunk wood in Pinus koraiensis Sieb et Zucc[J]. Journal of Northeast Normal University (Natural Science Edition), 1991(3): 73−76.
    [28]
    吴金华, 盛芝露, 杜加强, 等. 1956—2017年东北地区气温和降水的时空变化特征[J]. 水土保持研究, 2021, 28(3): 340−347, 415.

    Wu J H, Sheng Z L, Du J Q, et al. Spatiotemporal change patterns of temperature and precipitation in northeast China from 1956 to 2017[J]. Research of Soil and Water Conservation, 2021, 28(3): 340−347, 415.
    [29]
    Stokes M A, Smiley T L. An introduction to tree-ring dating[M]. Tucson: University of Arizona Press, 1996.
    [30]
    Holmes R L. Computer-assisted quality control in tree-ring dating and measurement[J]. Tree-Ring Bulletin, 1983, 44: 69−75.
    [31]
    Gärtner H, Lucchinetti S, Schweingruber F H. New perspectives for wood anatomical analysis in dendrosciences: the GSL1-microtome[J]. Dendrochronologia, 2014, 32(1): 47−51. doi: 10.1016/j.dendro.2013.07.002
    [32]
    von Arx G, Crivellaro A, Prendin A L, et al. Quantitative wood anatomy: practical guidelines[J]. Frontiers in Plant Science, 2016, 7: 781.
    [33]
    Lewis A M, Boose E R. Estimating volume flow rates through xylem conduits[J]. American Journal of Botany, 1995, 82(9): 1112−1116. doi: 10.1002/j.1537-2197.1995.tb11581.x
    [34]
    Tyree M T, Zimmermann M H. Xylem structure and the ascent of sap[M]. New York: Springer, 2002.
    [35]
    Carlquist S. Ecological factors in wood evolution: a floristic approach[J]. American Journal of Botany, 1977, 64(7): 887−896. doi: 10.1002/j.1537-2197.1977.tb11932.x
    [36]
    Bunn A G. A dendrochronology program library in R (dplR)[J]. Dendrochronologia, 2008, 26(2): 115−124. doi: 10.1016/j.dendro.2008.01.002
    [37]
    Zang C, Biondi F. treeclim: an R package for the numerical calibration of proxy-climate relationships[J]. Ecography, 2015, 38(4): 431−436. doi: 10.1111/ecog.01335
    [38]
    黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2000.

    Huang C Y. Soil Science[M]. Beijing: China Agriculture Press, 2000.
    [39]
    Sperry J S, Meinzer F C, McCulloh K A. Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees[J]. Plant Cell & Environment, 2008, 31(5): 632−645.
    [40]
    Ewers F W. Xylem’ structure and water conduction in conifer trees, dicot trees, and llanas[J]. IAWA Journal, 1985, 6(4): 309−317. doi: 10.1163/22941932-90000959
    [41]
    Pittermann J, Sperry J S. Analysis of freeze-thaw embolism in conifers. The interaction between cavitation pressure and tracheid size[J]. Plant Physiology, 2006, 140(1): 374−382. doi: 10.1104/pp.105.067900
    [42]
    Altman J, Treydte K, Pejcha V, et al. Tree growth response to recent warming of two endemic species in Northeast Asia[J]. Climatic Change, 2020, 162(3): 1345−1364. doi: 10.1007/s10584-020-02718-1
    [43]
    Zweifel R, Steppe K, Sterck F J. Stomatal regulation by microclimate and tree water relations: interpreting ecophysiological field data with a hydraulic plant model[J]. Journal of Experimental Botany, 2007, 58(8): 2113−2131. doi: 10.1093/jxb/erm050
    [44]
    杨青霄, 朱良军, 王晓春. 凉水自然保护区红松树木年轮年表建立及特征年分析[J]. 植物研究, 2015, 35(3): 418−424.

    Yang Q X, Zhu L J, Wang X C. Development of Pinus koraiensis tree-ring chronology and master year analysis in Liangshui National Natural Reserve, China[J]. Bulletin of Botanical Research, 2015, 35(3): 418−424.
    [45]
    潘瑞炽. 植物生理学[M]. 北京: 高等教育出版社, 2004.

    Pan R C. Plant physiology[M]. Beijing: Higher Education Press, 2004.
    [46]
    Gea-Izquierdo G, Battipaglia G, Gärtner H, et al. Xylem adjustment in Erica arborea to temperature and moisture availability in contrasting climates[J]. IAWA Journal, 2013, 34(2): 109−126. doi: 10.1163/22941932-00000010
    [47]
    Islam M, Rahman M, Bräuning A. Long-term hydraulic adjustment of three tropical moist forest tree species to changing climate[J]. Frontiers in Plant Science, 2018, 9: 1761. doi: 10.3389/fpls.2018.01761
    [48]
    Mencuccini M. The ecological significance of long-distance water transport: short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms[J]. Plant Cell & Environment, 2003, 26(1): 163−182.
    [49]
    Gea-Izquierdo G, Fonti P, Cherubini P, et al. Xylem hydraulic adjustment and growth response of Quercus canariensis Willd. to climatic variability[J]. Tree Physiology, 2012, 32(4): 401−413. doi: 10.1093/treephys/tps026
    [50]
    Zimmermann J, Link R M, Hauck M, et al. 60-year record of stem xylem anatomy and related hydraulic modification under increased summer drought in ring- and diffuse-porous temperate broad-leaved tree species[J]. Trees, 2021, 35: 919−937. doi: 10.1007/s00468-021-02090-2
    [51]
    Rossi L, Sebastiani L, Tognetti R, et al. Tree-ring wood anatomy and stable isotopes show structural and functional adjustments in olive trees under different water availability[J]. Plant and Soil, 2013, 372: 567−579. doi: 10.1007/s11104-013-1759-0
    [52]
    Gleason S M, Westoby M, Jansen S, et al. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species[J]. New Phytologist, 2016, 209(1): 123−136. doi: 10.1111/nph.13646
    [53]
    Elliott K J, Miniat C F, Pederson N, et al. Forest tree growth response to hydroclimate variability in the southern Appalachians[J]. Global Change Biology, 2015, 21(12): 4627−4641. doi: 10.1111/gcb.13045
    [54]
    胡明新, 周广胜, 吕晓敏, 等. 温度和光周期协同作用对蒙古栎幼苗春季物候的影响[J]. 生态学报, 2021, 41(7): 2816−2825.

    Hu M X, Zhou G S, Lü X M, et al. Interactive effects of different warming and changing photoperiod on spring phenology of Quercus mongolicus seedings[J]. Acta Ecologica Sinica, 2021, 41(7): 2816−2825.
    [55]
    Caffarra A, Donnelly A. The ecological significance of phenology in four different tree species: effects of light and temperature on bud burst[J]. International Journal of Biometeorology, 2011, 55: 711−721. doi: 10.1007/s00484-010-0386-1
    [56]
    Körner C, Basler D. Phenology under global warming[J]. Science, 2010, 327: 1461−1462. doi: 10.1126/science.1186473
    [57]
    Martin-Benito D, Pederson N. Convergence in drought stress, but a divergence of climatic drivers across a latitudinal gradient in a temperate broadleaf forest[J]. Journal of Biogeography, 2015, 42(5): 925−937. doi: 10.1111/jbi.12462
  • Cited by

    Periodical cited type(3)

    1. 李辉,林沂,孟祥爽,史振伟,蔡万园. 基于地基激光雷达的栾树分形特征分析. 山东农业大学学报(自然科学版). 2022(03): 475-483 .
    2. 何东健,熊虹婷,芦忠忠,刘建敏. 基于多视角立体视觉的拔节期玉米水分胁迫预测模型. 农业机械学报. 2020(06): 248-257 .
    3. 郭彩玲,刘刚. 基于颜色取样的苹果树枝干点云数据提取方法. 农业机械学报. 2019(10): 189-196 .

    Other cited types(7)

Catalog

    Article views (370) PDF downloads (72) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return