• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Bingyi, Liu Guanhong, Gu Ze, Li Weike, Tian Ye, Wang Bo, Liu Xiaodong, Shu Lifu. Characteristics of soil nitrogen change in the burned area of Pinus tabuliformis forest in Pingquan County, Hebei Province of northern China[J]. Journal of Beijing Forestry University, 2023, 45(3): 1-10. DOI: 10.12171/j.1000-1522.20220007
Citation: Li Bingyi, Liu Guanhong, Gu Ze, Li Weike, Tian Ye, Wang Bo, Liu Xiaodong, Shu Lifu. Characteristics of soil nitrogen change in the burned area of Pinus tabuliformis forest in Pingquan County, Hebei Province of northern China[J]. Journal of Beijing Forestry University, 2023, 45(3): 1-10. DOI: 10.12171/j.1000-1522.20220007

Characteristics of soil nitrogen change in the burned area of Pinus tabuliformis forest in Pingquan County, Hebei Province of northern China

More Information
  • Received Date: January 12, 2022
  • Revised Date: February 19, 2022
  • Available Online: February 26, 2023
  • Published Date: March 24, 2023
  •   Objective  The variation characteristics of soil nitrogen of Pinus tabuliformis natural secondary forest in Pingquan County, Hebei Province of northern China were analyzed in different years after fire, and the influencing factors of soil nitrogen were explored in combination with stand factors, site factors and fuel factors, so as to provide a scientific basis for nutrient circulation and vegetation restoration after fire.
      Method  Study sites were burnt areas located in Liuxi Town of Pingquan County. Soil samples were collected in 2015(the year after the fire, 0 year), 2016 (1 year after the fire, 1 year) and 2021 (6 years after the fire, 6 years), respectively. We analyzed the tendency of content of soil total nitrogen (TN), alkali-hydrolysable nitrogen (AN), ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3-N) under different years (0 year, 1 year and 6 years), different fire intensities (CK, control test plots which is unburnt area; L, low intensity burnt area; M, moderate intensity burnt area; H, heavy intensity burnt area), and different soil layers (0−10 cm and 10−20 cm). Correlation analysis (Pearson) and redundancy analysis (RDA) were used to explore the potential impact of stand factors (tree height, DBH, canopy density), site factors (slope position and slope gradient) and fuel factors (1 h, 10 h, 100 h fuel load, 1 h,10 h,100 h fuel water content) on soil nitrogen.
      Result  (1) Fire intensity, soil layer and years had significant influence on 4 types of soil nitrogen (P < 0.05). Fire intensity and soil layer had an interaction with all kinds of soil nitrogen (P < 0.05) in 2015. Fire intensity and years had an interaction with all kinds of soil nitrogen (P < 0.05). Fire intensity, soil layer and years showed no three-factor interaction with all kinds of soil nitrogen (P > 0.05). (2) Total nitrogen content, ammonium nitrogen content and nitrate nitrogen content increased in 2016 (1 year), especially in heavy intensity areas (H), and the amplification was 464.67%, 397.97%, 185.63%, respectively. But alkali-hydrolysable nitrogen content decreased in each sample plot, especially in M-plot (52.48%). Total nitrogen content, ammonium nitrogen content and alkali-hydrolase nitrogen content increased in 2021 (6 years), especially in moderate intensity areas (M), and the amplification was 368.78%, 209.00%, 427.51%, respectively. But nitrate nitrogen content decreased by 14.31% and 14.34% in low intensity areas (L) and moderate intensity areas (M), respectively. (3) RDA results showed that fuel water content had the most contribution to the change of soil nitrogen content. 1 h fuel water content had an effect on alkali-hydrolase nitrogen content. 100 h fuel water content had an effect on nitrate nitrogen content. Both of them had a positive relationship between fuel factors and soil nitrogen. Stand factors and site factors had little explanatory on soil nitrogen content, which was the indirect effect.
      Conclusion  The change of soil nitrogen content decreases first and then raises up, which is the common action with fire intensity, soil and years. At the early stage after burning (2015, 0 year; 2016, 1 year), fire intensity plays a significant role in affecting soil nitrogen content. However, the influence power of fire intensity decreased in 2021 (6 years). The direct impact of fire intensity on soil nitrogen content is reduced, and the mediation between fire intensity and soil continues to affect the change of soil nitrogen content through soil moisture content, temperature, pH and other indicators. The regeneration and development of vegetation in burnt areas is also affected by mediating effects. The differences in nutrient utilization strategies at different growth stages and the accumulation of vegetation litter are also important reasons for the significant changes of soil nitrogen content in 1 year and 6 years after fire.
  • [1]
    Prieto-Fernandez A, Villar M C, Carballas M, et al. Short-term effects of a wildfire on the nitrogen status and its mineralization kinetics in an Atlantic forest soil[J]. Soil Biology & Biochemistry, 1994, 25(12): 1657−1664. doi: 10.1016/0038-0717(93)90167-A
    [2]
    John T V S, Rundel P W. The role of fire as a mineralizing agent in a Sierran coniferous forest[J]. Oecologia, 1976, 25(1): 35−45. doi: 10.1007/BF00345032
    [3]
    Rundel P W. Impact of fire on nutrient cycles in Mediterranean-type ecosystems with reference to chaparral[J]. Mediterranean-Type Ecosystems, 1983, 43: 192−207. doi: 10.1007/978-3-642-68935-2_11
    [4]
    Baird M, Zabowski D, Everett R L. Wildfire effects on carbon and nitrogen in inland coniferous forests[J]. Plant and Soil, 1999, 209(2): 233−243. doi: 10.1023/A:1004602408717
    [5]
    Smithwick E A H, Naithani K J, Balser T C, et al. Post-fire spatial patterns of soil nitrogen mineralization and microbial abundance[J]. PLoS One, 2012, 7(11): 1−9. doi: 10.1371/journal.pone.0050597
    [6]
    程瑞梅, 王娜, 肖文发, 等. 陆地生态系统生态化学计量学研究进展[J]. 林业科学, 2018, 54(7): 130−136. doi: 10.11707/j.1001-7488.20180714

    Cheng R M, Wang N, Xiao W F, et al. Advances in studies of ecological stoichiometry of terrestrial ecosystems[J]. Scientia Silvae Sinicae, 2018, 54(7): 130−136. doi: 10.11707/j.1001-7488.20180714
    [7]
    赵楚, 盛茂银, 白义鑫, 等. 喀斯特石漠化地区不同土地利用类型土壤氮磷有效性及其环境影响因子[J]. 应用生态学报, 2021, 32(4): 1383−1392. doi: 10.13287/j.1001-9332.202104.018

    Zhao C, Sheng M Y, Bai Y X, et al. Soil available nitrogen and phosphorus contents and the environmental impact factors across different land use types in typical karst rocky desertification area, Southwest China[J]. Chinese Journal of Applied Ecology, 2021, 32(4): 1383−1392. doi: 10.13287/j.1001-9332.202104.018
    [8]
    孙向阳. 土壤学[M]. 北京: 中国林业出版社, 2013: 248−250.

    Sun X Y. Soil science[M]. Beijing: China Forestry Publishing House, 2013: 248−250.
    [9]
    段媛媛, 宋丽娟, 牛素旗, 等. 不同林龄刺槐叶功能性状差异及其与土壤养分的关系[J]. 应用生态学报, 2017, 28(1): 28−36. doi: 10.13287/j.1001-9332.201701.036

    Duan Y Y, Song L J, Niu S Q, et al. Variation in leaf functional traits of different-aged Robinia pseudoacacia communities and relationships with soil nutrients[J]. Chinese Journal of Applied Ecology, 2017, 28(1): 28−36. doi: 10.13287/j.1001-9332.201701.036
    [10]
    Chintala R, McDonald L M, Bryan W B. Effect of soil water and nutrients on productivity of Kentucky bluegrass system in acidic soils[J]. Journal of Plant Nutrition, 2012, 35(2): 288−303. doi: 10.1080/01904167.2012.636131
    [11]
    孔健健, 杨健. 火烧对中国东北部兴安落叶松林土壤性质和营养元素有效性的影响[J]. 生态学杂志, 2013, 32(11): 2837−2843. doi: 10.13292/j.1000-4890.2013.0469

    Kong J J, Yang J. Effects of fire on soil properties and nutrient availability in a Dahurian larch forest in Great Xing’an Mountains of Northeast China[J]. Chinese Journal of Ecology, 2013, 32(11): 2837−2843. doi: 10.13292/j.1000-4890.2013.0469
    [12]
    孙毓鑫, 吴建平, 周丽霞, 等. 广东鹤山火烧迹地植被恢复后土壤养分含量变化[J]. 应用生态学报, 2009, 20(3): 513−517. doi: 10.13287/j.1001-9332.2009.0104

    Kong Y X, Wu J P, Zhou L X, et al. Changes of soil nutrient contents after prescribed burning of forestland in Heshan City, Guangdong Province[J]. Chinese Journal of Applied Ecology, 2009, 20(3): 513−517. doi: 10.13287/j.1001-9332.2009.0104
    [13]
    Yang J Y, Fan J. Review of study on mineralization, saturation and cycle of nitrogen in forest ecosystems[J]. Journal of Forestry Research, 2003, 43(3): 239−243. doi: 10.1007/BF02856838
    [14]
    William M L J. Effects of fire on nutrient movement in a south carolina pine forest[J]. Ecology, 1974, 55(5): 1120−1127. doi: 10.2307/1940362
    [15]
    黄桥明, 黄俊, 吕茂奎, 等. 恢复年限、林下植被及季节对马尾松林土壤氮转化的影响[J]. 生态学杂志, 2020, 39(8): 2556−2564. doi: 10.13292/j.1000-4890.202008.008

    Huang Q M, Huang J, Lü M K, et al. Effects of restoration duration understory vegetation and seasons on soil nitrogen transformation in Pinus massoniana forests[J]. Chinese Journal of Ecology, 2020, 39(8): 2556−2564. doi: 10.13292/j.1000-4890.202008.008
    [16]
    Pritchett W L, Fisher R F. Properties and management of forest soils[J]. Soil Science, 1988, 145(2): 73−74. doi: 10.1016/0378-1127(80)90007-9
    [17]
    Caon L, Vallejo V R, Ritsema C J, et al. Effects of wildfire on soil nutrients in Mediterranean ecosystems[J]. Earth-Science Reviews, 2014, 139: 47−58. doi: 10.1016/j.earscirev.2014.09.001
    [18]
    Kong J J, Yang J, Chu H Y, et al. Effects of wildfire and topography on soil nitrogen availability in a boreal larch forest of northeastern China[J]. International Journal of Wildland Fire, 2015, 24(3): 433−442. doi: 10.1071/WF13218
    [19]
    Parker J L, Fernandez I J, Rustad L E, et al. Effects of nitrogen enrichment, wildfire, and harvesting on forest-soil carbon and nitrogen[J]. Soil Science Society of America Journal, 2001, 65(4): 1248−1255. doi: 10.2136/sssaj2001.6541248x
    [20]
    Christensen N L. Fire and the nitrogen cycle in California chaparral[J]. Science, 1973, 181: 66−68. doi: 10.1126/science.181.4094.6
    [21]
    朱光艳, 胡同欣, 李飞, 等. 火后不同年限兴安落叶松林土壤氮的矿化速率及其影响因素[J]. 中南林业科技大学学报, 2018, 38(3): 88−96. doi: 10.14067/j.cnki.1673-923x.2018.03.015

    Zhu G Y, Hu T X, Li F, et al. Soil nitrogen mineralization rate and its impact factors in Larix gmelinii forest after different years fire disturbance[J]. Journal of Central South University of Forestry & Technology, 2018, 38(3): 88−96. doi: 10.14067/j.cnki.1673-923x.2018.03.015
    [22]
    刘晓东, 张彦雷, 金琳, 等. 北京西山林场火烧迹地植被更新及可燃物负荷量研究[J]. 林业资源管理, 2011(2): 36−41. doi: 10.13466/j.cnki.lyzygl.2011.02.013

    Liu X D, Zhang Y L, Jin L, et al. The forest regeneration and fuel load on the burned areas of Beijing Xishan Forest Farm[J]. Forest Resources Management, 2011(2): 36−41. doi: 10.13466/j.cnki.lyzygl.2011.02.013
    [23]
    唐志明, 刘炳响, 屈宇. 河北太行山区典型水土保持林乔木层生物量及碳储量研究[J]. 林业资源管理, 2020(1): 102−107. doi: 10.13466/j.cnki.lyzygl.2020.01.013

    Tang Z M, Liu B X, Qu Y. Study on biomass and carbon storage of arbor layers in typical soil and water conservation forests in Taihang Mountain Range in Hebei Province[J]. Forest Resources Management, 2020(1): 102−107. doi: 10.13466/j.cnki.lyzygl.2020.01.013
    [24]
    邱新彩, 彭道黎, 李伟丽, 等. 北京延庆区不同林龄油松人工林土壤理化性质[J]. 应用与环境生物学报, 2018, 24(2): 221−229. doi: 10.19675/j.cnki.1006-687x.2017.05012

    Qiu X C, Peng D L, Li W L, et al. Soil physicochemical properties of Pinus tabuliformis plantations of different ages in Yanqing, Beijing[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(2): 221−229. doi: 10.19675/j.cnki.1006-687x.2017.05012
    [25]
    徐福利, 阿培 T. 电超滤法(EUF)浸提测定15N标记植物残体有机氮和无机氮的转化[J]. 西北农业学报, 1995, 4(2): 45−58.

    Xu F L, Appel T. Extractability of 15N labelled plant residues in soil by electro-ultrafiltration(EUF)[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 1995, 4(2): 45−58.
    [26]
    Niccoli F, Esposito A, Altieri S, et al. Fire severity influences ecophysiological responses of Pinus pinaster Ait[J]. Frontiers in Plant Science, 2019, 10: 1−11. doi: 10.3389/fpls.2019.00001
    [27]
    倪宝龙, 刘兆刚. 不同强度火干扰下盘古林场天然落叶松林的空间结构[J]. 生态学报, 2013, 33(16): 4975−4984. doi: 10.5846/stxb201204130532

    Ni B L, Liu Z G. A dynamic analysis of spatial distribution pattern of Larix gmelinii natural forest in Pangu Farm under varying intensity of fire disturbance[J]. Acta Ecologica Sinica, 2013, 33(16): 4975−4984. doi: 10.5846/stxb201204130532
    [28]
    郑琼, 崔晓阳, 邸雪颖, 等. 不同林火强度对大兴安岭偃松林土壤微生物功能多样性的影响[J]. 林业科学, 2012, 48(5): 95−100. doi: 10.11707/j.1001-7488.20120515

    Zheng Q, Cui X Y, Di X Y, et al. Effects of different forest fire intensities on microbial community functional diversity in forest soil in Daxing’anling[J]. Scientia Silvae Sinicae, 2012, 48(5): 95−100. doi: 10.11707/j.1001-7488.20120515
    [29]
    王雪艳, 曹建军, 张小芳, 等. 地形因子对黄土高原山杏叶片功能性状的影响[J]. 应用生态学报, 2019, 30(8): 2591−2599. doi: 10.13287/j.1001-9332.201908.027

    Wang X Y, Cao J J, Zhang X F, et al. Effects of topographic factors on leaf traits of apricot in the Loess Plateau, Northwest China[J]. Chinese Journal of Applied Ecology, 2019, 30(8): 2591−2599. doi: 10.13287/j.1001-9332.201908.027
    [30]
    文志, 赵赫, 刘磊, 等. 基于土地利用变化的热带植物群落功能性状与土壤质量的关系[J]. 生态学报, 2019, 39(1): 371−380. doi: 10.5846/stxb201703290541

    Wen Z, Zhao H, Liu L, et al. Relationships between plant community functional traits and soil quality based on land use changes in tropical region[J]. Acta Ecologica Sinica, 2019, 39(1): 371−380. doi: 10.5846/stxb201703290541
    [31]
    吴旭东, 季波, 何建龙, 等. 控制降水梯度对荒漠草原优势植物叶功能性状及土壤养分的影响[J]. 生态学报, 2021, 41(7): 2719−2727. doi: 10.5846/stxb202003140535

    Wu X D, Ji B, He J L, et al. The effects of precipitation gradient control on the leaf functional traits and soil nutrients of the dominant plants in a desert steppe[J]. Acta Ecologica Sinica, 2021, 41(7): 2719−2727. doi: 10.5846/stxb202003140535
    [32]
    国家林业局. 森林土壤氮的测定: LY/T 1228—2015[S]. 北京: 中国标准出版社, 2015.

    The State Forestry Administration. Nitrogen determination methods of forest soils: LY/T 1228−2015[S]. Beijing: Standards Press of China, 2015.
    [33]
    Debano L F, Conrad C E. The effect of fire on nutrients in a chaparral ecosystem[J]. Ecology, 1978, 59(3): 489−497. doi: 10.2307/1936579
    [34]
    Raison R J. Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: a review[J]. Plant and Soil, 1979, 51(1): 73−108. doi: 10.1007/BF02205929
    [35]
    Marion G M, Moreno J M, Oechel W C. Fire severity, ash deposition, and clipping effects on soil nutrients in chaparral[J]. Soil Science Society of America Journal, 1991, 55(1): 235−240. doi: 10.2136/sssaj1991.03615995005500010040x
    [36]
    Russell J D, Fraser A R, Watson J R, et al. Thermal decomposition of protein in soil organic matter[J]. Geoderma, 1974, 11(1): 63−66. doi: 10.1016/0016-7061(74)90007-X
    [37]
    Deluca T H, Mackenzie M D, Gundale M J, et al. Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests[J]. Soil Science Society of America Journal, 2006, 70(2): 448−453. doi: 10.2136/sssaj2005.0096
    [38]
    Covington W W, Sackett S S. Soil mineral nitrogen changes following prescribed burning in ponderosa pine[J]. Forest Ecology & Management, 1992, 54(1): 175−191. doi: 10.1016/0378-1127(92)90011-W
    [39]
    赵娜, 王俊博, 李少宁, 等. 北京松山4种典型林分枯落物持水特征研究[J]. 生态环境学报, 2021, 30(6): 1139−1147. doi: 10.16258/j.cnki.1674-5906.2021.06.004

    Zhao N, Wang J B, Li S N, et al. Study on water holding characteristics of four typical forest litter in Songshan, Beijing[J]. Ecology and Environmental Sciences, 2021, 30(6): 1139−1147. doi: 10.16258/j.cnki.1674-5906.2021.06.004
    [40]
    俞新妥, 杨玉盛. 林火与水土流失[J]. 世界林业研究, 1992, 15(3): 30−35. doi: 10.13348/j.cnki.sjlyyj.1992.03.006

    Yu X T, Yang Y S. Forest fire and soil and water loss[J]. World Forestry Research, 1992, 15(3): 30−35. doi: 10.13348/j.cnki.sjlyyj.1992.03.006
    [41]
    李伟克. 林火对河北平泉油松林土壤微生物群落特征影响[D]. 北京: 北京林业大学, 2019.

    Li W K. Effect of forest fire on soil microbial community characteristics of Pinus tabuliformis stands in Pingquan, Hebei Province[D]. Beijing: Beijing Forestry University, 2019.
    [42]
    刘旻霞. 亚高寒草甸不同坡向植物光合生理和叶片形态差异[J]. 生态学报, 2017, 24(37): 393−403. doi: 10.5846/stxb201610132072

    Liu M X. Studies on physiological and leaf morphological traits for photosynthesis on different slopes in a subalpine meadow[J]. Acta Ecologica Sinica, 2017, 24(37): 393−403. doi: 10.5846/stxb201610132072
    [43]
    Kemmitt S J, Lanyon C V, Waite I S, et al. Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass: a new perspective[J]. Soil Biology & Biochemistry, 2008, 40(1): 61−73. doi: 10.1016/j.soilbio.2007.06.021
    [44]
    Wang Q K, Zhong M C, Wang S L. A meta-analysis on the response of microbial biomass, dissolved organic matter, respiration, and N mineralization in mineral soil to fire in forest ecosystems[J]. Forest Ecology and Management, 2012, 271(1): 91−97. doi: 10.1016/j.foreco.2012.02.006
    [45]
    Smithwick E A H, Turner M G, Mack M C, et al. Postfire soil N cycling in northern conifer forests affected by severe, stand-replacing wildfires[J]. Ecosystems, 2005, 8(2): 163−181. doi: 10.1007/s10021-004-0097-8
  • Related Articles

    [1]Yang Zhou, Zhang Jianjun, Zhao Jiongchang, Hu Yawei, Li Yang, Wang Bo. Response of soil carbon, nitrogen and phosphorus stoichiometric characteristics of Pinus tabuliformis forests to stand age and density in the Loess Plateau region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2024, 46(12): 30-40. DOI: 10.12171/j.1000-1522.20240188
    [2]Zhou Zhiyong, Xu Mengyao, Wang Yongqiang, Gao Yu, Jia Kuangdi. Evolutionary characteristics of soil quality and organic carbon stability with forest stand age for Pinus tabuliformis forests in the Taiyue Mountain of Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2022, 44(10): 112-119. DOI: 10.12171/j.1000-1522.20220320
    [3]Jin Shan, Wu Shuaikai. Niche and interspecific association of dominant species in herb layer of burned Pinus tabuliformis forest in the southern Taihang Mountain of northern China[J]. Journal of Beijing Forestry University, 2021, 43(4): 35-46. DOI: 10.12171/j.1000-1522.20210044
    [4]Wang Bo, Han Shuwen, Wu Yingda, Niu Shukui, Liu Xiaodong. Forest regeneration of Pinus tabuliformis burned area in Liaoheyuan Nature Reserve of northern China[J]. Journal of Beijing Forestry University, 2020, 42(4): 41-50. DOI: 10.12171/j.1000-1522.20190315
    [5]Liu Guanhong, Li Bingyi, Gong Dapeng, Li Weike, Liu Xiaodong. Effects of forest fire on soil chemical properties of Pinus tabuliformis forest in Pinggu District of Beijing[J]. Journal of Beijing Forestry University, 2019, 41(2): 29-40. DOI: 10.13332/j.1000-1522.20180339
    [6]Li Lianqiang, Niu Shukui, Tao Changsen, Chen Ling, Chen Feng. Correlations between stand structure and surface potential fire behavior of Pinus tabuliformis forests in Miaofeng Mountain of Beijing[J]. Journal of Beijing Forestry University, 2019, 41(1): 73-81. DOI: 10.13332/j.1000-1522.20180304
    [7]Han Mei, Wen Peng, Xu Huimin, Zhang Yongfu, Li Weike, Liu Xiaodong. Simulation of surface fire behavior of Pinus tabuliformis forest in Ming Tombs Forest Farm in Beijing[J]. Journal of Beijing Forestry University, 2018, 40(10): 95-101. DOI: 10.13332/j.1000-1522.20180249
    [8]LI Wei-ke, LIU Xiao-dong, NIU Shu-kui, LI Bing-yi, LIU Guan-hong, CHU Yan-qin. Impact of fire on soil microbial biomass of Pinus tabuliformis forest in Pingquan County, Hebei of northern China[J]. Journal of Beijing Forestry University, 2017, 39(10): 70-77. DOI: 10.13332/j.1000-1522.20160420
    [9]WANG Jin-song, ZHAO Xiu-hai, ZHANG Chun-yu, LI Hua-shan, WANG Na, ZHAO Bo. Effects of simulated nitrogen deposition on soil organic carbon and total nitrogen content in plantation and natural forests of Pinus tabuliformis.[J]. Journal of Beijing Forestry University, 2016, 38(10): 88-94. DOI: 10.13332/j.1000-1522.20140294
    [10]LI Li-ping, XING Shao-hua, ZHAO Bo, WANG Qing-chun, CUI Guo-fa. Comparative analysis of plant diversity of Pinus tabulaeformis forests in ten regions of Beijing mountainous areas[J]. Journal of Beijing Forestry University, 2005, 27(4): 12-16.
  • Cited by

    Periodical cited type(4)

    1. 闫宇,邓焯,李斌,赵天忠. 基于Landsat 8数据的人工林地上生物量估测模型研究. 西北林学院学报. 2024(05): 53-60+77 .
    2. 张双印,赵保成,赵登忠,周伟,任斐鹏,付重庆,郑航,郑学东,徐平. 长江源草地生物量空间分布及分配初步研究. 长江科学院院报. 2024(11): 196-202 .
    3. 崔立晗,郑盛,徐敏. 内蒙古森林和草地地上生物量遥感反演. 地理科学. 2024(12): 2215-2224 .
    4. 姬永杰,徐昆鹏,张王菲,史建敏,张甫香. 不同波长极化SAR数据水云模型森林生物量反演对比分析. 北京林业大学学报. 2023(02): 24-33 . 本站查看

    Other cited types(5)

Catalog

    Article views (486) PDF downloads (77) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return