• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Xiaojing, Wen Xin, Zhao Rui, Chen Shaoliang, Zhao Nan, Li Jinke, Zhou Xiaoyang, Yao Jun. Overexpression of Populus euphratica PeCSP1 negatively regulating salt tolerance in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2023, 45(7): 9-17. DOI: 10.12171/j.1000-1522.20220020
Citation: Liu Xiaojing, Wen Xin, Zhao Rui, Chen Shaoliang, Zhao Nan, Li Jinke, Zhou Xiaoyang, Yao Jun. Overexpression of Populus euphratica PeCSP1 negatively regulating salt tolerance in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2023, 45(7): 9-17. DOI: 10.12171/j.1000-1522.20220020

Overexpression of Populus euphratica PeCSP1 negatively regulating salt tolerance in Arabidopsis thaliana

More Information
  • Received Date: January 07, 2022
  • Revised Date: March 20, 2022
  • Accepted Date: April 22, 2023
  • Available Online: April 23, 2023
  • Published Date: July 24, 2023
  •   Objective  Cold shock proteins (CSPs) exist in prokaryotes and eukaryotes and can participate in cold, drought and salt stress. However, the role of CSPs in Populus euphratica is not well understood under abiotic stress. The paper aims to further reveal the physiological and molecular mechanisms of plant salt tolerance by studying the role of P. euphratica PeCSP1 in plant salt tolerance.
      Method  Referring to the NCBI database information, primer5 was used to design primers, Mega7 software was used for multiplex sequence alignment and evolutionary tree analysis, and quantitative PCR was used to detect gene expression. The transgenic lines PeCSP1 (OE1, OE2), wild type and vector control were used as materials, and the response mechanism of PeCSP1 in salt stress was studied from the perspectives of physiology, biochemistry and molecular biology.
      Result  The P. euphratica PeCSP1 was homologous to CSP1 of Populus trichocrapa. PeCSP1 gene in leaves of P. euphratica was down-regulated under short-term salt stress. The decrease of seed germination rate and root length of PeCSP1-overexpressed Arabidopsis thaliana were higher than those of wild-type (WT) and vector control (VC) after NaCl treatment (75, 100, 125 mmol/L), and the content of Na+ in roots of transgenic A. thaliana was significantly higher than that of WT and VC after salt treatment. Under salt stress, the activity of SOD, POD and CAT was significantly increased in WT and VC, but the salt stimulation of antioxidant enzymes was much less pronounced in OE1 and OE2. After 12 d of salt treatment, the maximum photoquantum efficiency (Fv/Fm) was not decreased in soil-cultured seedlings of OE1 and OE2, but relative electron transfer rate (ETR), actual photosynthetic quantum yield (ΦPSⅡ) and chlorophyll content of transgenic lines showed a high reduction than WT and VC.
      Conclusion  Overexpression of P. euphratica PeCSP1 negatively regulates the salt tolerance of A. thaliana.
  • [1]
    Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance[J]. Planta, 2003, 218(1): 1−14. doi: 10.1007/s00425-003-1105-5
    [2]
    Roy S J, Tucker E J, Tester M. Genetic analysis of abiotic stress tolerance in crops[J]. Current Opinion in Plant Biology, 2011, 14(3): 232−239. doi: 10.1016/j.pbi.2011.03.002
    [3]
    肖文斐, 阮松林, 倪深,等. 植物冷激蛋白的研究进展[J]. 植物生理学报, 2011, 14(3): 232−239.

    Xiao W F, Ruan S L, Ni S, et al. Advances in plant cold shock proteins[J]. Plant Physiology Journal, 2011, 14(3): 232−239.
    [4]
    Chinnusamy V, Zhu J, Zhu J K. Cold stress regulation of gene expression in plants[J]. Trends in Plant Science, 2007(10): 444−451.
    [5]
    Chaikam V, Karlson D T. Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins[J]. BMB Reports, 2010, 43(1): 1−8. doi: 10.5483/BMBRep.2010.43.1.001
    [6]
    Jones P G, van Bogelen R A, Neidhardt F C. Induction of proteins in response to low temperatures in Escherichia coli[J]. Journal of Bacteriology, 1987, 169: 2092−2095. doi: 10.1128/jb.169.5.2092-2095.1987
    [7]
    Nakaminami K, Karlson D T, Imai R. Functional conservation of cold shock domains in bacteria and higher plants[J]. Proceedings of the National Academy of Sciences, 2006, 103(26): 10122−10127. doi: 10.1073/pnas.0603168103
    [8]
    Karlson D, Nakaminami K, Toyomasu T, et al. A cold regulated nucleic acid-binding protein of winter wheat shares a domain with bacterial cold shock proteins[J]. Journal of Biological Chemistry, 2002, 277(38): 35248−35256. doi: 10.1074/jbc.M205774200
    [9]
    Chaikam V, Karlson D. Functional characterization of two cold shock domain proteins from Oryza sativa[J]. Plant Cell and Environment, 2008, 31: 995−1006. doi: 10.1111/j.1365-3040.2008.01811.x
    [10]
    Nakaminami K, Hill K, Perry S E, et al. Arabidopsis cold shock domain proteins: relationships to floral and silique development[J]. Journal of Experimental Botany, 2009, 60(3): 1047−1062. doi: 10.1093/jxb/ern351
    [11]
    Sasaki K, Kim M H, Imai R. Arabidopsis cold shock domain protein 2 is a RNA chaperone that is regulated by cold and developmental signals[J]. Biochemical and Biophysical Research Communications, 2007, 364: 633−638. doi: 10.1016/j.bbrc.2007.10.059
    [12]
    Sasaki K, Kim M H, Imai R. Arabidopsis cold shock domain protein 2 is a negative regulator of cold acclimation[J]. New Phytologist, 2013, 198(1): 95−102. doi: 10.1111/nph.12118
    [13]
    Kim J S, Park S J, Kwak K J, et al. Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli[J]. Nucleic Acids Research, 2007, 35(2): 506−516.
    [14]
    Huang F, Tang J, Hou X. Molecular cloning and characterization of BcCSP1, a Pak-choi (Brassica rapa ssp. chinensis) cold shock protein gene highly co-expressed under ABA and cold stimulation[J]. Acta Physiologiae Plantarum, 2016, 38(2): 1−8.
    [15]
    Park S J, Kwak K J, Oh T R, et al. Cold shock domain proteins affect seed germination and growth of Arabidopsis thaliana under abiotic stress conditions[J]. Plant and Cell Physiology, 2009, 50(4): 869−878. doi: 10.1093/pcp/pcp037
    [16]
    Choi M J, Park Y R, Park S J, et al. Stress-responsive expression patterns and functional characterization of cold shock domain proteins in cabbage (Brassica rapa) under abiotic stress conditions[J]. Plant Physiology and Biochemistry, 2015, 96: 132−140. doi: 10.1016/j.plaphy.2015.07.027
    [17]
    Sasaki K, Liu Y L, Kim M, et al. An RNA chaperone, AtCSP2, negatively regulates salt stress tolerance[J]. Plant Signaling and Behavior, 2015, 10: e1042637. doi: 10.1080/15592324.2015.1042637
    [18]
    Kim M, Sato S, Sasaki K, et al. Cold shock domain protein 3 is involved in salt and drought stress tolerance in Arabidopsis[J]. FEBS Open Bio, 2013, 3: 438−442. doi: 10.1016/j.fob.2013.10.003
    [19]
    Li C S, Hou N, Fang N, et al. Cold shock protein 3 plays a negative role in apple drought tolerance by regulating oxidative stress response[J]. Plant Physiology and Biochemistry, 2021, 168: 83−92. doi: 10.1016/j.plaphy.2021.10.003
    [20]
    王杨. 沙冬青AmDE1及AmCSDP基因提高转基因大肠杆菌与拟南芥非生物胁迫抗性研究[D]. 北京: 北京林业大学, 2019.

    Wang Y. AmDE1 and AmCSDP genes of Sha Holly improve the resistance of transgenic E. coli to Arabidopsis thaliana in abiotic stress[D]. Beijing: Beijing Forestry University, 2019.
    [21]
    Castiglioni P, Warner D, Bensen R J, et al. Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions[J]. Plant Physiology, 2008, 147(2): 446−455. doi: 10.1104/pp.108.118828
    [22]
    Sun J, Li L S, Liu M Q, et al. Hydrogen peroxide and nitric oxide mediate K+/Na+ homeostasis and antioxidant defense in NaCl stressed callus cells of two contrasting poplars[J]. Plant Cell Tissue and Organ Culture, 2010, 103(2): 205−215. doi: 10.1007/s11240-010-9768-7
    [23]
    Ding M Q, Hou P C, Shen X, et al. Salt-induced expression of genes related to Na+/K+ and ROS homeostasis in leaves of salt resistant and salt-sensitive poplar species[J]. Plant Molecular Biology, 2010, 73: 251−269. doi: 10.1007/s11103-010-9612-9
    [24]
    张一南, 王洋, 张会龙, 等. 过表达胡杨 PeRIN4基因拟南芥提高质膜 H+-ATPase 活性和耐盐性[J]. 北京林业大学学报, 2017, 39(11): 1−8.

    Zhang Y N, Wang Y, Zhang H L, et al. Overexpression of PeRIN4 enhanced salinity tolerance through up regulation of PM H+-ATPase in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2017, 39(11): 1−8.
    [25]
    Abbott A G, Ainsworth C C, Flavell R B. Characterization of anther differentiation in cytoplasmic male sterile maize using a specific isozyme system (esterase)[J]. Theoretical and Applied Genetics, 1984, 67: 469−473. doi: 10.1007/BF00263415
    [26]
    Shen Z D, Yao J, Sun J, et al. Populus euphratica HSF binds the promoter of WRKY1 to enhance salt tolerance[J]. Plant Science, 2015, 235: 89−100. doi: 10.1016/j.plantsci.2015.03.006
    [27]
    Kraus T E, Fletcher R A. Paclobutrazol protects wheat seedlings from heat and paraquat injury is detoxification of active oxygen involved[J]. Plant and Cell Physiology, 1994, 35: 45−52.
    [28]
    王瑞, 陈永忠, 陈隆升, 等. 油茶叶片SPAD 值与叶绿素含量的相关分析[J]. 中南林业科技大学学报, 2013, 33(2): 77−80.

    Wang R, Chen Y Z, Chen L S, et al. Correlation analysis of SPAD value and chlorophyll content in leaves of Camellia oleifera[J]. Journal of Central South University of Forestry and Technology, 2013, 33(2): 77−80.
    [29]
    Zgallaï H, Steppe K, Lemeur R. Effects of different levels of water stress on leaf water potential, stomatal resistance, protein and chlorophyll content and certain anti-oxidative enzymes in tomato plants[J]. Journal of Integrative Plant Biology, 2006, 48(6): 679−685. doi: 10.1111/j.1744-7909.2006.00272.x
    [30]
    Ottow E A, Brinker M, Teichmann T, et al. Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress[J]. Plant Physiology, 2005, 139: 1762−1772. doi: 10.1104/pp.105.069971
    [31]
    Chen S, Li J, Wang T, et al. Osmotic stress and ion-specific effects on xylem abscisic acid and the relevance to salinity tolerance in poplar[J]. Journal of Plant Growth Regulation, 2002b, 21: 224−233. doi: 10.1007/s00344-002-1001-4
    [32]
    Brinker M, Brosché M, Vinocur B, et al. Linking the salt transcriptome with physiological responses of a salt-resistant Populus species as a strategy to identify genes important for stress acclimation[J]. Plant Physiology, 2010, 154: 1697−1709. doi: 10.1104/pp.110.164152
    [33]
    Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science, 2002, 7(9): 405−410. doi: 10.1016/S1360-1385(02)02312-9
    [34]
    Lang Y, Wang M, Zhang G C, et al. Experimental and simulatedlightresponses of photosynthe-sis in leaves of three tree species under different soil water conditions[J]. Photosynthetica, 2013, 51(3): 370−378. doi: 10.1007/s11099-013-0036-z
  • Related Articles

    [1]Jin Siyu, Peng Zuodeng. Changes in response of carbon and water physiological parameters of Robinia pseudoacacia seedlings to long-term drought and rehydration[J]. Journal of Beijing Forestry University, 2023, 45(8): 43-56. DOI: 10.12171/j.1000-1522.20220096
    [2]Zhou Cheng, Liu Tong, Wang Qinggui, Han Shijie. Effects of long-term nitrogen addition on fine root morphological, anatomical structure and stoichiometry of broadleaved Korean pine forest[J]. Journal of Beijing Forestry University, 2022, 44(11): 31-40. DOI: 10.12171/j.1000-1522.20210212
    [3]Zou Qingqin, Wang Yisong, Jiang Zhiyan, Chen Xiangwei, Wang Xiuwei. Non-structural carbohydrate allocation and interspecific differences of different soil and water conservation tree species in typical black soil region[J]. Journal of Beijing Forestry University, 2021, 43(10): 1-8. DOI: 10.12171/j.1000-1522.20210233
    [4]Wang Lina, Wu Junwen, Dong Qiong, Shi Zhuogong, Hu Haocheng, Wu Danzi, Li Luping. Effects of tending and thinning on non-structural carbon and stoichiometric characteristics of Pinus yunnanensis[J]. Journal of Beijing Forestry University, 2021, 43(8): 70-82. DOI: 10.12171/j.1000-1522.20210115
    [5]Zhang Jianjun, Chen Liqi, Li Jianguang, Sun Miao, Fan Yongming, Yu Xiaonan. Anatomical structure characteristics and growth ring analysis of underground rhizome of herbaceous peony[J]. Journal of Beijing Forestry University, 2020, 42(5): 124-131. DOI: 10.12171/j.1000-1522.20190096
    [6]LI Wei-yi, ZHANG Qiu-hui, ZHAO Guang-jie.. Structure and properties characterization of the flame retardant wood wallpaper.[J]. Journal of Beijing Forestry University, 2016, 38(7): 91-97. DOI: 10.13332/j.1000-1522.20150453
    [7]YAN Guo-yong, WANG Xiao-chun, XING Ya-juan, HAN Shi-jie, WANG Qing-gui. Response of root anatomy and tissue chemistry to nitrogen deposition in larch forest in the Great Xing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(4): 36-43. DOI: 10.13332/j.1000-1522.20150433
    [8]LI Ji-ping, FENG Yao, ZHAO Chun-yan, ZHANG Cai-cai. Quantitative analysis of stand spatial structure of Cunninghamia lanceolata non-commercial forest based on Voronoi diagram.[J]. Journal of Beijing Forestry University, 2014, 36(4): 1-7. DOI: 10.13332/j.cnki.jbfu.2014.04.005
    [9]WU Sha-sha, PENG Dong-hui, LI Wen-qi, WANG Jing-mao, L&ucirc, Ying-min. Carbohydrate metabolism and activity variation of related enzymes during the exchanging role of bulb source and sink of oriental hybrid lily ‘Sorbonne'[J]. Journal of Beijing Forestry University, 2013, 35(6): 96-102.
    [10]ZHAO Yan-xia, LUO You-qing, ZONG Shi-xiang, WANG Rong1, LUO Hong-mei. Comparison in leaf anatomical structure and drought resistance of different sex and varieties of sea buckthorn[J]. Journal of Beijing Forestry University, 2012, 34(6): 34-41.
  • Cited by

    Periodical cited type(34)

    1. 孙丽,张颖,李文彬,包红光,孙迎坤. 青岛市3种常绿灌木滞尘量与叶微观特征及光合作用等的相关性分析. 西北林学院学报. 2024(04): 232-241 .
    2. 裴云霞,洪慧,包美玲,邓俊,陈岷轩,张强. 农业环境损害鉴定中受体植物的损害因素判别及损害程度分析. 中国司法鉴定. 2024(04): 40-48 .
    3. 贺丹,李朝梅,华超,李思洁,雷雅凯,张曼. 郑州市10种园林植物叶片滞尘与富集重金属的能力. 西北林学院学报. 2023(01): 230-237 .
    4. 张碧媛,李智琦,阮琳,潘勇军,陈国财,代色平,冯娴慧. 2种常用的植物滞纳能力测定方法对比研究. 林业与环境科学. 2023(01): 112-119 .
    5. 罗建平,王宁,宋菲菲,魏汉博,原白玉,唐钰鑫. 大庆市6种绿化树种对SO_2、NO_2的消减及滞尘效应. 生态学报. 2023(11): 4561-4569 .
    6. 张翠,马瑞,谭立佳,杜婉倩,刘涵科. 兰州市10种常用园林绿化树种叶表面微结构对其滞尘量的影响. 甘肃农业大学学报. 2023(04): 192-200+211 .
    7. 廖慧敏,师凤起,李明,朱逸龙. 长沙市典型园林植物叶片的滞尘等级与模式识别研究. 生态环境学报. 2022(01): 110-116 .
    8. 贺丹,汪安印,李紫萱,王翼飞,李朝梅,雷雅凯,李永华,董娜琳. 郑州市常绿树种滞尘能力与叶片生理结构的响应. 福建农业学报. 2022(02): 203-212 .
    9. 李晓璐,叶锦东,章剑,周毅烈,袁楚阳,于慧,张天然,黄芳,张贵豪,邵锋. 乔木滞留大气颗粒物能力及其与叶表面微结构关系. 中国城市林业. 2022(03): 22-28+120 .
    10. 王军梦,汪安印,王翼飞,贺丹,李永华,董娜琳. 不同污染程度下树种滞尘能力与叶表微形态关系研究. 林业调查规划. 2022(05): 16-21+37 .
    11. 孟畅,彭洋,赵杨,王秀荣,肖枫. 2种叶型膏桐幼苗的形态结构和光合特性. 林业科学. 2022(12): 32-41 .
    12. 岳晨,李广德,席本野,曹治国. 叶片大气颗粒物滞纳能力评估方法的定量对比. 环境科学. 2021(01): 114-126 .
    13. 徐立人,刘宠,张军,柳俊明,王立成,李清泉,杨敏生,李彦慧. 单叶刺槐半同胞子代叶片的滞尘能力及叶表SEM特征分析. 西部林业科学. 2021(01): 124-131 .
    14. 杨克彤,陈国鹏,李广,汤东,张凯. 兰州市常见阔叶树种对大气颗粒物吸滞能力的评估. 东北林业大学学报. 2021(05): 84-89 .
    15. 刘宇,张楠,王晓立,周力行,韩浩章. 冬季苏北8种常绿乔木吸滞颗粒物能力与叶表微结构关系. 西北林学院学报. 2021(03): 80-87+127 .
    16. 王薇,张蕾. 基于CiteSpace的城市环境中细颗粒物研究进展的可视化分析. 生态环境学报. 2021(06): 1321-1332 .
    17. 谢长坤,郭健康,梁安泽,汪静,姜睿原,车生泉. 园林植物表面对大气颗粒物削减过程研究进展. 世界林业研究. 2021(05): 38-43 .
    18. 吴桂香,徐成林,刘杰,杨燕飞. 城市道路植物叶面滞尘的微观效应研究. 昆明理工大学学报(自然科学版). 2021(06): 109-115 .
    19. 陈胜楠,陈左司南,张志强. 北京山区油松和元宝槭冠层气孔导度特征及其环境响应. 植物生态学报. 2021(12): 1329-1340 .
    20. 王琴,冯晶红,黄奕,王鹏程,谢梦婷,万好,苏泽琳,王仁鹏,王征洋,余刘思. 武汉市15种阔叶乔木滞尘能力与叶表微形态特征. 生态学报. 2020(01): 213-222 .
    21. 童凌云,何婉璎,裘璐函,陈健,刘美华. 基于层次分析法的杭州市8种园林植物林分环境质量评价. 浙江林业科技. 2020(01): 56-62 .
    22. 苏维,刘苑秋,赖胜男,古新仁,刘青,龚鹏. 南昌市8种乔木叶片性状对叶表滞留颗粒物的影响. 西北林学院学报. 2020(04): 61-67 .
    23. 刘开琳,李学敏,万翔,刘淑娟,李菁菁,徐先英,刘虎俊. 民勤植物园3种灌木的叶面微结构及其滞尘能力研究. 中国农学通报. 2020(26): 62-68 .
    24. 孙应都,陈奇伯,李艳梅,杨思莹. 昆明市6个绿化树种叶表微结构与滞尘能力的关系研究. 西南林业大学学报(自然科学). 2019(03): 78-85 .
    25. 张俊叶,邹明,刘晓东,王林,朱晨晨,俞元春. 南京城市森林植物叶面颗粒物的含量特征. 环境污染与防治. 2019(07): 837-843 .
    26. 林星宇,李海梅,李彦华,姜月梅. 八种乔木滞尘效益及其与叶表面特征关系. 北方园艺. 2019(17): 94-101 .
    27. 林星宇,李海梅,李彦华,刘志科. 灌木滞尘能力与重金属含量间的关系. 江苏农业科学. 2019(15): 180-183 .
    28. 姜霞,侯贻菊,刘延惠,舒德远,崔迎春,李成龙,杨冰,丁访军. 3种木樨科树种叶片滞尘效应动态变化及其与叶片特征的关系. 江苏农业科学. 2019(16): 150-154 .
    29. 林星宇,李彦华,李海梅,李士美. 乔木对不同粒径颗粒物吸滞作用研究. 福建农业学报. 2019(08): 912-919 .
    30. 阿丽亚·拜都热拉,甄敬,潘存德,张中远,胡梦玲,喀哈尔·扎依木. 乌鲁木齐市河滩快速路林带内颗粒物浓度变化特征. 新疆农业大学学报. 2019(05): 378-384 .
    31. 林星宇,李海梅,李彦华,郑茗月. 5种灌木的滞尘效益研究. 现代农业科技. 2018(02): 150-151+155 .
    32. 赵文君,侯贻菊,舒德远,刘延惠,崔迎春,丁访军. 贵阳市木兰科树种叶片滞尘效应及影响因素. 贵州林业科技. 2018(02): 19-24 .
    33. 李艳梅,陈奇伯,王邵军,孙应都,杨淏舟,杨思莹. 昆明市主要绿化树种叶片滞尘能力的叶表微形态学解释. 林业科学. 2018(05): 18-29 .
    34. 朱济友,于强,刘亚培,覃国铭,李金航,徐程扬,何韦均. 植物功能性状及其叶经济谱对城市热环境的响应. 北京林业大学学报. 2018(09): 72-81 . 本站查看

    Other cited types(26)

Catalog

    Article views (728) PDF downloads (105) Cited by(60)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return