Citation: | Liu Xiaojing, Wen Xin, Zhao Rui, Chen Shaoliang, Zhao Nan, Li Jinke, Zhou Xiaoyang, Yao Jun. Overexpression of Populus euphratica PeCSP1 negatively regulating salt tolerance in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2023, 45(7): 9-17. DOI: 10.12171/j.1000-1522.20220020 |
[1] |
Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance[J]. Planta, 2003, 218(1): 1−14. doi: 10.1007/s00425-003-1105-5
|
[2] |
Roy S J, Tucker E J, Tester M. Genetic analysis of abiotic stress tolerance in crops[J]. Current Opinion in Plant Biology, 2011, 14(3): 232−239. doi: 10.1016/j.pbi.2011.03.002
|
[3] |
肖文斐, 阮松林, 倪深,等. 植物冷激蛋白的研究进展[J]. 植物生理学报, 2011, 14(3): 232−239.
Xiao W F, Ruan S L, Ni S, et al. Advances in plant cold shock proteins[J]. Plant Physiology Journal, 2011, 14(3): 232−239.
|
[4] |
Chinnusamy V, Zhu J, Zhu J K. Cold stress regulation of gene expression in plants[J]. Trends in Plant Science, 2007(10): 444−451.
|
[5] |
Chaikam V, Karlson D T. Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins[J]. BMB Reports, 2010, 43(1): 1−8. doi: 10.5483/BMBRep.2010.43.1.001
|
[6] |
Jones P G, van Bogelen R A, Neidhardt F C. Induction of proteins in response to low temperatures in Escherichia coli[J]. Journal of Bacteriology, 1987, 169: 2092−2095. doi: 10.1128/jb.169.5.2092-2095.1987
|
[7] |
Nakaminami K, Karlson D T, Imai R. Functional conservation of cold shock domains in bacteria and higher plants[J]. Proceedings of the National Academy of Sciences, 2006, 103(26): 10122−10127. doi: 10.1073/pnas.0603168103
|
[8] |
Karlson D, Nakaminami K, Toyomasu T, et al. A cold regulated nucleic acid-binding protein of winter wheat shares a domain with bacterial cold shock proteins[J]. Journal of Biological Chemistry, 2002, 277(38): 35248−35256. doi: 10.1074/jbc.M205774200
|
[9] |
Chaikam V, Karlson D. Functional characterization of two cold shock domain proteins from Oryza sativa[J]. Plant Cell and Environment, 2008, 31: 995−1006. doi: 10.1111/j.1365-3040.2008.01811.x
|
[10] |
Nakaminami K, Hill K, Perry S E, et al. Arabidopsis cold shock domain proteins: relationships to floral and silique development[J]. Journal of Experimental Botany, 2009, 60(3): 1047−1062. doi: 10.1093/jxb/ern351
|
[11] |
Sasaki K, Kim M H, Imai R. Arabidopsis cold shock domain protein 2 is a RNA chaperone that is regulated by cold and developmental signals[J]. Biochemical and Biophysical Research Communications, 2007, 364: 633−638. doi: 10.1016/j.bbrc.2007.10.059
|
[12] |
Sasaki K, Kim M H, Imai R. Arabidopsis cold shock domain protein 2 is a negative regulator of cold acclimation[J]. New Phytologist, 2013, 198(1): 95−102. doi: 10.1111/nph.12118
|
[13] |
Kim J S, Park S J, Kwak K J, et al. Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli[J]. Nucleic Acids Research, 2007, 35(2): 506−516.
|
[14] |
Huang F, Tang J, Hou X. Molecular cloning and characterization of BcCSP1, a Pak-choi (Brassica rapa ssp. chinensis) cold shock protein gene highly co-expressed under ABA and cold stimulation[J]. Acta Physiologiae Plantarum, 2016, 38(2): 1−8.
|
[15] |
Park S J, Kwak K J, Oh T R, et al. Cold shock domain proteins affect seed germination and growth of Arabidopsis thaliana under abiotic stress conditions[J]. Plant and Cell Physiology, 2009, 50(4): 869−878. doi: 10.1093/pcp/pcp037
|
[16] |
Choi M J, Park Y R, Park S J, et al. Stress-responsive expression patterns and functional characterization of cold shock domain proteins in cabbage (Brassica rapa) under abiotic stress conditions[J]. Plant Physiology and Biochemistry, 2015, 96: 132−140. doi: 10.1016/j.plaphy.2015.07.027
|
[17] |
Sasaki K, Liu Y L, Kim M, et al. An RNA chaperone, AtCSP2, negatively regulates salt stress tolerance[J]. Plant Signaling and Behavior, 2015, 10: e1042637. doi: 10.1080/15592324.2015.1042637
|
[18] |
Kim M, Sato S, Sasaki K, et al. Cold shock domain protein 3 is involved in salt and drought stress tolerance in Arabidopsis[J]. FEBS Open Bio, 2013, 3: 438−442. doi: 10.1016/j.fob.2013.10.003
|
[19] |
Li C S, Hou N, Fang N, et al. Cold shock protein 3 plays a negative role in apple drought tolerance by regulating oxidative stress response[J]. Plant Physiology and Biochemistry, 2021, 168: 83−92. doi: 10.1016/j.plaphy.2021.10.003
|
[20] |
王杨. 沙冬青AmDE1及AmCSDP基因提高转基因大肠杆菌与拟南芥非生物胁迫抗性研究[D]. 北京: 北京林业大学, 2019.
Wang Y. AmDE1 and AmCSDP genes of Sha Holly improve the resistance of transgenic E. coli to Arabidopsis thaliana in abiotic stress[D]. Beijing: Beijing Forestry University, 2019.
|
[21] |
Castiglioni P, Warner D, Bensen R J, et al. Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions[J]. Plant Physiology, 2008, 147(2): 446−455. doi: 10.1104/pp.108.118828
|
[22] |
Sun J, Li L S, Liu M Q, et al. Hydrogen peroxide and nitric oxide mediate K+/Na+ homeostasis and antioxidant defense in NaCl stressed callus cells of two contrasting poplars[J]. Plant Cell Tissue and Organ Culture, 2010, 103(2): 205−215. doi: 10.1007/s11240-010-9768-7
|
[23] |
Ding M Q, Hou P C, Shen X, et al. Salt-induced expression of genes related to Na+/K+ and ROS homeostasis in leaves of salt resistant and salt-sensitive poplar species[J]. Plant Molecular Biology, 2010, 73: 251−269. doi: 10.1007/s11103-010-9612-9
|
[24] |
张一南, 王洋, 张会龙, 等. 过表达胡杨 PeRIN4基因拟南芥提高质膜 H+-ATPase 活性和耐盐性[J]. 北京林业大学学报, 2017, 39(11): 1−8.
Zhang Y N, Wang Y, Zhang H L, et al. Overexpression of PeRIN4 enhanced salinity tolerance through up regulation of PM H+-ATPase in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2017, 39(11): 1−8.
|
[25] |
Abbott A G, Ainsworth C C, Flavell R B. Characterization of anther differentiation in cytoplasmic male sterile maize using a specific isozyme system (esterase)[J]. Theoretical and Applied Genetics, 1984, 67: 469−473. doi: 10.1007/BF00263415
|
[26] |
Shen Z D, Yao J, Sun J, et al. Populus euphratica HSF binds the promoter of WRKY1 to enhance salt tolerance[J]. Plant Science, 2015, 235: 89−100. doi: 10.1016/j.plantsci.2015.03.006
|
[27] |
Kraus T E, Fletcher R A. Paclobutrazol protects wheat seedlings from heat and paraquat injury is detoxification of active oxygen involved[J]. Plant and Cell Physiology, 1994, 35: 45−52.
|
[28] |
王瑞, 陈永忠, 陈隆升, 等. 油茶叶片SPAD 值与叶绿素含量的相关分析[J]. 中南林业科技大学学报, 2013, 33(2): 77−80.
Wang R, Chen Y Z, Chen L S, et al. Correlation analysis of SPAD value and chlorophyll content in leaves of Camellia oleifera[J]. Journal of Central South University of Forestry and Technology, 2013, 33(2): 77−80.
|
[29] |
Zgallaï H, Steppe K, Lemeur R. Effects of different levels of water stress on leaf water potential, stomatal resistance, protein and chlorophyll content and certain anti-oxidative enzymes in tomato plants[J]. Journal of Integrative Plant Biology, 2006, 48(6): 679−685. doi: 10.1111/j.1744-7909.2006.00272.x
|
[30] |
Ottow E A, Brinker M, Teichmann T, et al. Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress[J]. Plant Physiology, 2005, 139: 1762−1772. doi: 10.1104/pp.105.069971
|
[31] |
Chen S, Li J, Wang T, et al. Osmotic stress and ion-specific effects on xylem abscisic acid and the relevance to salinity tolerance in poplar[J]. Journal of Plant Growth Regulation, 2002b, 21: 224−233. doi: 10.1007/s00344-002-1001-4
|
[32] |
Brinker M, Brosché M, Vinocur B, et al. Linking the salt transcriptome with physiological responses of a salt-resistant Populus species as a strategy to identify genes important for stress acclimation[J]. Plant Physiology, 2010, 154: 1697−1709. doi: 10.1104/pp.110.164152
|
[33] |
Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science, 2002, 7(9): 405−410. doi: 10.1016/S1360-1385(02)02312-9
|
[34] |
Lang Y, Wang M, Zhang G C, et al. Experimental and simulatedlightresponses of photosynthe-sis in leaves of three tree species under different soil water conditions[J]. Photosynthetica, 2013, 51(3): 370−378. doi: 10.1007/s11099-013-0036-z
|