• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Xiaojing, Wen Xin, Zhao Rui, Chen Shaoliang, Zhao Nan, Li Jinke, Zhou Xiaoyang, Yao Jun. Overexpression of Populus euphratica PeCSP1 negatively regulating salt tolerance in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2023, 45(7): 9-17. DOI: 10.12171/j.1000-1522.20220020
Citation: Liu Xiaojing, Wen Xin, Zhao Rui, Chen Shaoliang, Zhao Nan, Li Jinke, Zhou Xiaoyang, Yao Jun. Overexpression of Populus euphratica PeCSP1 negatively regulating salt tolerance in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2023, 45(7): 9-17. DOI: 10.12171/j.1000-1522.20220020

Overexpression of Populus euphratica PeCSP1 negatively regulating salt tolerance in Arabidopsis thaliana

More Information
  • Received Date: January 07, 2022
  • Revised Date: March 20, 2022
  • Accepted Date: April 22, 2023
  • Available Online: April 23, 2023
  • Published Date: July 24, 2023
  •   Objective  Cold shock proteins (CSPs) exist in prokaryotes and eukaryotes and can participate in cold, drought and salt stress. However, the role of CSPs in Populus euphratica is not well understood under abiotic stress. The paper aims to further reveal the physiological and molecular mechanisms of plant salt tolerance by studying the role of P. euphratica PeCSP1 in plant salt tolerance.
      Method  Referring to the NCBI database information, primer5 was used to design primers, Mega7 software was used for multiplex sequence alignment and evolutionary tree analysis, and quantitative PCR was used to detect gene expression. The transgenic lines PeCSP1 (OE1, OE2), wild type and vector control were used as materials, and the response mechanism of PeCSP1 in salt stress was studied from the perspectives of physiology, biochemistry and molecular biology.
      Result  The P. euphratica PeCSP1 was homologous to CSP1 of Populus trichocrapa. PeCSP1 gene in leaves of P. euphratica was down-regulated under short-term salt stress. The decrease of seed germination rate and root length of PeCSP1-overexpressed Arabidopsis thaliana were higher than those of wild-type (WT) and vector control (VC) after NaCl treatment (75, 100, 125 mmol/L), and the content of Na+ in roots of transgenic A. thaliana was significantly higher than that of WT and VC after salt treatment. Under salt stress, the activity of SOD, POD and CAT was significantly increased in WT and VC, but the salt stimulation of antioxidant enzymes was much less pronounced in OE1 and OE2. After 12 d of salt treatment, the maximum photoquantum efficiency (Fv/Fm) was not decreased in soil-cultured seedlings of OE1 and OE2, but relative electron transfer rate (ETR), actual photosynthetic quantum yield (ΦPSⅡ) and chlorophyll content of transgenic lines showed a high reduction than WT and VC.
      Conclusion  Overexpression of P. euphratica PeCSP1 negatively regulates the salt tolerance of A. thaliana.
  • [1]
    Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance[J]. Planta, 2003, 218(1): 1−14. doi: 10.1007/s00425-003-1105-5
    [2]
    Roy S J, Tucker E J, Tester M. Genetic analysis of abiotic stress tolerance in crops[J]. Current Opinion in Plant Biology, 2011, 14(3): 232−239. doi: 10.1016/j.pbi.2011.03.002
    [3]
    肖文斐, 阮松林, 倪深,等. 植物冷激蛋白的研究进展[J]. 植物生理学报, 2011, 14(3): 232−239.

    Xiao W F, Ruan S L, Ni S, et al. Advances in plant cold shock proteins[J]. Plant Physiology Journal, 2011, 14(3): 232−239.
    [4]
    Chinnusamy V, Zhu J, Zhu J K. Cold stress regulation of gene expression in plants[J]. Trends in Plant Science, 2007(10): 444−451.
    [5]
    Chaikam V, Karlson D T. Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins[J]. BMB Reports, 2010, 43(1): 1−8. doi: 10.5483/BMBRep.2010.43.1.001
    [6]
    Jones P G, van Bogelen R A, Neidhardt F C. Induction of proteins in response to low temperatures in Escherichia coli[J]. Journal of Bacteriology, 1987, 169: 2092−2095. doi: 10.1128/jb.169.5.2092-2095.1987
    [7]
    Nakaminami K, Karlson D T, Imai R. Functional conservation of cold shock domains in bacteria and higher plants[J]. Proceedings of the National Academy of Sciences, 2006, 103(26): 10122−10127. doi: 10.1073/pnas.0603168103
    [8]
    Karlson D, Nakaminami K, Toyomasu T, et al. A cold regulated nucleic acid-binding protein of winter wheat shares a domain with bacterial cold shock proteins[J]. Journal of Biological Chemistry, 2002, 277(38): 35248−35256. doi: 10.1074/jbc.M205774200
    [9]
    Chaikam V, Karlson D. Functional characterization of two cold shock domain proteins from Oryza sativa[J]. Plant Cell and Environment, 2008, 31: 995−1006. doi: 10.1111/j.1365-3040.2008.01811.x
    [10]
    Nakaminami K, Hill K, Perry S E, et al. Arabidopsis cold shock domain proteins: relationships to floral and silique development[J]. Journal of Experimental Botany, 2009, 60(3): 1047−1062. doi: 10.1093/jxb/ern351
    [11]
    Sasaki K, Kim M H, Imai R. Arabidopsis cold shock domain protein 2 is a RNA chaperone that is regulated by cold and developmental signals[J]. Biochemical and Biophysical Research Communications, 2007, 364: 633−638. doi: 10.1016/j.bbrc.2007.10.059
    [12]
    Sasaki K, Kim M H, Imai R. Arabidopsis cold shock domain protein 2 is a negative regulator of cold acclimation[J]. New Phytologist, 2013, 198(1): 95−102. doi: 10.1111/nph.12118
    [13]
    Kim J S, Park S J, Kwak K J, et al. Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli[J]. Nucleic Acids Research, 2007, 35(2): 506−516.
    [14]
    Huang F, Tang J, Hou X. Molecular cloning and characterization of BcCSP1, a Pak-choi (Brassica rapa ssp. chinensis) cold shock protein gene highly co-expressed under ABA and cold stimulation[J]. Acta Physiologiae Plantarum, 2016, 38(2): 1−8.
    [15]
    Park S J, Kwak K J, Oh T R, et al. Cold shock domain proteins affect seed germination and growth of Arabidopsis thaliana under abiotic stress conditions[J]. Plant and Cell Physiology, 2009, 50(4): 869−878. doi: 10.1093/pcp/pcp037
    [16]
    Choi M J, Park Y R, Park S J, et al. Stress-responsive expression patterns and functional characterization of cold shock domain proteins in cabbage (Brassica rapa) under abiotic stress conditions[J]. Plant Physiology and Biochemistry, 2015, 96: 132−140. doi: 10.1016/j.plaphy.2015.07.027
    [17]
    Sasaki K, Liu Y L, Kim M, et al. An RNA chaperone, AtCSP2, negatively regulates salt stress tolerance[J]. Plant Signaling and Behavior, 2015, 10: e1042637. doi: 10.1080/15592324.2015.1042637
    [18]
    Kim M, Sato S, Sasaki K, et al. Cold shock domain protein 3 is involved in salt and drought stress tolerance in Arabidopsis[J]. FEBS Open Bio, 2013, 3: 438−442. doi: 10.1016/j.fob.2013.10.003
    [19]
    Li C S, Hou N, Fang N, et al. Cold shock protein 3 plays a negative role in apple drought tolerance by regulating oxidative stress response[J]. Plant Physiology and Biochemistry, 2021, 168: 83−92. doi: 10.1016/j.plaphy.2021.10.003
    [20]
    王杨. 沙冬青AmDE1及AmCSDP基因提高转基因大肠杆菌与拟南芥非生物胁迫抗性研究[D]. 北京: 北京林业大学, 2019.

    Wang Y. AmDE1 and AmCSDP genes of Sha Holly improve the resistance of transgenic E. coli to Arabidopsis thaliana in abiotic stress[D]. Beijing: Beijing Forestry University, 2019.
    [21]
    Castiglioni P, Warner D, Bensen R J, et al. Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions[J]. Plant Physiology, 2008, 147(2): 446−455. doi: 10.1104/pp.108.118828
    [22]
    Sun J, Li L S, Liu M Q, et al. Hydrogen peroxide and nitric oxide mediate K+/Na+ homeostasis and antioxidant defense in NaCl stressed callus cells of two contrasting poplars[J]. Plant Cell Tissue and Organ Culture, 2010, 103(2): 205−215. doi: 10.1007/s11240-010-9768-7
    [23]
    Ding M Q, Hou P C, Shen X, et al. Salt-induced expression of genes related to Na+/K+ and ROS homeostasis in leaves of salt resistant and salt-sensitive poplar species[J]. Plant Molecular Biology, 2010, 73: 251−269. doi: 10.1007/s11103-010-9612-9
    [24]
    张一南, 王洋, 张会龙, 等. 过表达胡杨 PeRIN4基因拟南芥提高质膜 H+-ATPase 活性和耐盐性[J]. 北京林业大学学报, 2017, 39(11): 1−8.

    Zhang Y N, Wang Y, Zhang H L, et al. Overexpression of PeRIN4 enhanced salinity tolerance through up regulation of PM H+-ATPase in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2017, 39(11): 1−8.
    [25]
    Abbott A G, Ainsworth C C, Flavell R B. Characterization of anther differentiation in cytoplasmic male sterile maize using a specific isozyme system (esterase)[J]. Theoretical and Applied Genetics, 1984, 67: 469−473. doi: 10.1007/BF00263415
    [26]
    Shen Z D, Yao J, Sun J, et al. Populus euphratica HSF binds the promoter of WRKY1 to enhance salt tolerance[J]. Plant Science, 2015, 235: 89−100. doi: 10.1016/j.plantsci.2015.03.006
    [27]
    Kraus T E, Fletcher R A. Paclobutrazol protects wheat seedlings from heat and paraquat injury is detoxification of active oxygen involved[J]. Plant and Cell Physiology, 1994, 35: 45−52.
    [28]
    王瑞, 陈永忠, 陈隆升, 等. 油茶叶片SPAD 值与叶绿素含量的相关分析[J]. 中南林业科技大学学报, 2013, 33(2): 77−80.

    Wang R, Chen Y Z, Chen L S, et al. Correlation analysis of SPAD value and chlorophyll content in leaves of Camellia oleifera[J]. Journal of Central South University of Forestry and Technology, 2013, 33(2): 77−80.
    [29]
    Zgallaï H, Steppe K, Lemeur R. Effects of different levels of water stress on leaf water potential, stomatal resistance, protein and chlorophyll content and certain anti-oxidative enzymes in tomato plants[J]. Journal of Integrative Plant Biology, 2006, 48(6): 679−685. doi: 10.1111/j.1744-7909.2006.00272.x
    [30]
    Ottow E A, Brinker M, Teichmann T, et al. Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress[J]. Plant Physiology, 2005, 139: 1762−1772. doi: 10.1104/pp.105.069971
    [31]
    Chen S, Li J, Wang T, et al. Osmotic stress and ion-specific effects on xylem abscisic acid and the relevance to salinity tolerance in poplar[J]. Journal of Plant Growth Regulation, 2002b, 21: 224−233. doi: 10.1007/s00344-002-1001-4
    [32]
    Brinker M, Brosché M, Vinocur B, et al. Linking the salt transcriptome with physiological responses of a salt-resistant Populus species as a strategy to identify genes important for stress acclimation[J]. Plant Physiology, 2010, 154: 1697−1709. doi: 10.1104/pp.110.164152
    [33]
    Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science, 2002, 7(9): 405−410. doi: 10.1016/S1360-1385(02)02312-9
    [34]
    Lang Y, Wang M, Zhang G C, et al. Experimental and simulatedlightresponses of photosynthe-sis in leaves of three tree species under different soil water conditions[J]. Photosynthetica, 2013, 51(3): 370−378. doi: 10.1007/s11099-013-0036-z
  • Cited by

    Periodical cited type(17)

    1. 袁慧兰,郑甜甜,林佳敏,鲍雪莲,闵凯凯,朱雪峰,解宏图,梁超. 农林土壤置换对植物残体分解过程的影响. 生态学杂志. 2024(04): 1017-1024 .
    2. 李慧璇,马红亮,尹云锋,高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征. 植物生态学报. 2023(05): 618-628 .
    3. 罗国娜,车震宇. 马尾松凋落物对土壤氮循环与微生物的影响. 山东农业大学学报(自然科学版). 2023(04): 553-561 .
    4. 韦昌林,李毅,单立山,解婷婷,张鹏. 降水变化对典型荒漠植物凋落物分解的影响. 草地学报. 2022(05): 1280-1289 .
    5. Hao Qu,XueYong Zhao,XiaoAn Zuo,ShaoKun Wang,XuJun Ma,Xia Tang,XinYuan Wang,Eduardo Medina-Roldán. Litter decomposition in fragile ecosystems: A review. Sciences in Cold and Arid Regions. 2022(03): 151-161 .
    6. 王文秀,栾军伟,王一,杨怀,赵阳,李丝雨,梁昌强,孔祥河,刘世荣. 模拟干旱和磷添加对热带低地雨林叶凋落物分解的影响. 生态学报. 2022(15): 6160-6174 .
    7. 李慧业,林永慧,何兴兵. 4种内源真菌对马尾松凋落叶分解的影响. 西南农业学报. 2021(03): 618-625 .
    8. 王光燚,上官周平,方燕. 氮沉降对细根分解影响的研究进展. 水土保持研究. 2020(02): 383-391 .
    9. 舒韦维,陈琳,刘世荣,曾冀,李华,郑路,陈文军. 减雨对南亚热带马尾松人工林凋落物分解的影响. 生态学报. 2020(13): 4538-4545 .
    10. 叶贺,红梅,赵巴音那木拉,李静,闫瑾,张宇晨,梁志伟. 水氮控制对短花针茅荒漠草原根系分解的影响. 应用与环境生物学报. 2020(05): 1169-1175 .
    11. 杨晶晶,周正立,吕瑞恒,梁继业,王雄. 干旱生境下3种植物叶凋落物分解动态特征. 干旱区研究. 2019(04): 916-923 .
    12. 周书玉,袁川,王景燕,龚伟,唐海龙. 菌剂和外源氮素添加对青花椒采收剩余物分解的影响. 四川农业大学学报. 2019(06): 799-806 .
    13. 王欣,郭延朋,赵辉,孟凡军,刘国萍. 华北落叶松与白桦叶凋落物混合分解及其养分动态. 林业与生态科学. 2018(01): 29-36 .
    14. 郑欣颖,佘汉基,薛立,蔡金桓. 外源性氮和磷添加对马尾松凋落叶分解及土壤特性的影响. 生态环境学报. 2017(10): 1710-1718 .
    15. 佘汉基,蔡金桓,薛立,郑欣颖. 模拟外源性氮磷对尾叶桉和马占相思混合凋落叶分解的影响. 西北林学院学报. 2017(06): 45-52 .
    16. 蔡金桓,郑欣颖,薛立,佘汉基. 外源性氮和磷对杉木和藜蒴锥混合凋落叶分解的影响. 西南林业大学学报(自然科学). 2017(04): 103-112 .
    17. 蔡金桓,王卓敏,薛立,郑欣颖,佘汉基. 外源性氮和磷对藜蒴林凋落叶分解的影响. 中南林业科技大学学报. 2017(07): 105-111 .

    Other cited types(16)

Catalog

    Article views (735) PDF downloads (105) Cited by(33)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return