Citation: | Liu Xiaojing, Wen Xin, Zhao Rui, Chen Shaoliang, Zhao Nan, Li Jinke, Zhou Xiaoyang, Yao Jun. Overexpression of Populus euphratica PeCSP1 negatively regulating salt tolerance in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2023, 45(7): 9-17. DOI: 10.12171/j.1000-1522.20220020 |
[1] |
Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance[J]. Planta, 2003, 218(1): 1−14. doi: 10.1007/s00425-003-1105-5
|
[2] |
Roy S J, Tucker E J, Tester M. Genetic analysis of abiotic stress tolerance in crops[J]. Current Opinion in Plant Biology, 2011, 14(3): 232−239. doi: 10.1016/j.pbi.2011.03.002
|
[3] |
肖文斐, 阮松林, 倪深,等. 植物冷激蛋白的研究进展[J]. 植物生理学报, 2011, 14(3): 232−239.
Xiao W F, Ruan S L, Ni S, et al. Advances in plant cold shock proteins[J]. Plant Physiology Journal, 2011, 14(3): 232−239.
|
[4] |
Chinnusamy V, Zhu J, Zhu J K. Cold stress regulation of gene expression in plants[J]. Trends in Plant Science, 2007(10): 444−451.
|
[5] |
Chaikam V, Karlson D T. Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins[J]. BMB Reports, 2010, 43(1): 1−8. doi: 10.5483/BMBRep.2010.43.1.001
|
[6] |
Jones P G, van Bogelen R A, Neidhardt F C. Induction of proteins in response to low temperatures in Escherichia coli[J]. Journal of Bacteriology, 1987, 169: 2092−2095. doi: 10.1128/jb.169.5.2092-2095.1987
|
[7] |
Nakaminami K, Karlson D T, Imai R. Functional conservation of cold shock domains in bacteria and higher plants[J]. Proceedings of the National Academy of Sciences, 2006, 103(26): 10122−10127. doi: 10.1073/pnas.0603168103
|
[8] |
Karlson D, Nakaminami K, Toyomasu T, et al. A cold regulated nucleic acid-binding protein of winter wheat shares a domain with bacterial cold shock proteins[J]. Journal of Biological Chemistry, 2002, 277(38): 35248−35256. doi: 10.1074/jbc.M205774200
|
[9] |
Chaikam V, Karlson D. Functional characterization of two cold shock domain proteins from Oryza sativa[J]. Plant Cell and Environment, 2008, 31: 995−1006. doi: 10.1111/j.1365-3040.2008.01811.x
|
[10] |
Nakaminami K, Hill K, Perry S E, et al. Arabidopsis cold shock domain proteins: relationships to floral and silique development[J]. Journal of Experimental Botany, 2009, 60(3): 1047−1062. doi: 10.1093/jxb/ern351
|
[11] |
Sasaki K, Kim M H, Imai R. Arabidopsis cold shock domain protein 2 is a RNA chaperone that is regulated by cold and developmental signals[J]. Biochemical and Biophysical Research Communications, 2007, 364: 633−638. doi: 10.1016/j.bbrc.2007.10.059
|
[12] |
Sasaki K, Kim M H, Imai R. Arabidopsis cold shock domain protein 2 is a negative regulator of cold acclimation[J]. New Phytologist, 2013, 198(1): 95−102. doi: 10.1111/nph.12118
|
[13] |
Kim J S, Park S J, Kwak K J, et al. Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli[J]. Nucleic Acids Research, 2007, 35(2): 506−516.
|
[14] |
Huang F, Tang J, Hou X. Molecular cloning and characterization of BcCSP1, a Pak-choi (Brassica rapa ssp. chinensis) cold shock protein gene highly co-expressed under ABA and cold stimulation[J]. Acta Physiologiae Plantarum, 2016, 38(2): 1−8.
|
[15] |
Park S J, Kwak K J, Oh T R, et al. Cold shock domain proteins affect seed germination and growth of Arabidopsis thaliana under abiotic stress conditions[J]. Plant and Cell Physiology, 2009, 50(4): 869−878. doi: 10.1093/pcp/pcp037
|
[16] |
Choi M J, Park Y R, Park S J, et al. Stress-responsive expression patterns and functional characterization of cold shock domain proteins in cabbage (Brassica rapa) under abiotic stress conditions[J]. Plant Physiology and Biochemistry, 2015, 96: 132−140. doi: 10.1016/j.plaphy.2015.07.027
|
[17] |
Sasaki K, Liu Y L, Kim M, et al. An RNA chaperone, AtCSP2, negatively regulates salt stress tolerance[J]. Plant Signaling and Behavior, 2015, 10: e1042637. doi: 10.1080/15592324.2015.1042637
|
[18] |
Kim M, Sato S, Sasaki K, et al. Cold shock domain protein 3 is involved in salt and drought stress tolerance in Arabidopsis[J]. FEBS Open Bio, 2013, 3: 438−442. doi: 10.1016/j.fob.2013.10.003
|
[19] |
Li C S, Hou N, Fang N, et al. Cold shock protein 3 plays a negative role in apple drought tolerance by regulating oxidative stress response[J]. Plant Physiology and Biochemistry, 2021, 168: 83−92. doi: 10.1016/j.plaphy.2021.10.003
|
[20] |
王杨. 沙冬青AmDE1及AmCSDP基因提高转基因大肠杆菌与拟南芥非生物胁迫抗性研究[D]. 北京: 北京林业大学, 2019.
Wang Y. AmDE1 and AmCSDP genes of Sha Holly improve the resistance of transgenic E. coli to Arabidopsis thaliana in abiotic stress[D]. Beijing: Beijing Forestry University, 2019.
|
[21] |
Castiglioni P, Warner D, Bensen R J, et al. Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions[J]. Plant Physiology, 2008, 147(2): 446−455. doi: 10.1104/pp.108.118828
|
[22] |
Sun J, Li L S, Liu M Q, et al. Hydrogen peroxide and nitric oxide mediate K+/Na+ homeostasis and antioxidant defense in NaCl stressed callus cells of two contrasting poplars[J]. Plant Cell Tissue and Organ Culture, 2010, 103(2): 205−215. doi: 10.1007/s11240-010-9768-7
|
[23] |
Ding M Q, Hou P C, Shen X, et al. Salt-induced expression of genes related to Na+/K+ and ROS homeostasis in leaves of salt resistant and salt-sensitive poplar species[J]. Plant Molecular Biology, 2010, 73: 251−269. doi: 10.1007/s11103-010-9612-9
|
[24] |
张一南, 王洋, 张会龙, 等. 过表达胡杨 PeRIN4基因拟南芥提高质膜 H+-ATPase 活性和耐盐性[J]. 北京林业大学学报, 2017, 39(11): 1−8.
Zhang Y N, Wang Y, Zhang H L, et al. Overexpression of PeRIN4 enhanced salinity tolerance through up regulation of PM H+-ATPase in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2017, 39(11): 1−8.
|
[25] |
Abbott A G, Ainsworth C C, Flavell R B. Characterization of anther differentiation in cytoplasmic male sterile maize using a specific isozyme system (esterase)[J]. Theoretical and Applied Genetics, 1984, 67: 469−473. doi: 10.1007/BF00263415
|
[26] |
Shen Z D, Yao J, Sun J, et al. Populus euphratica HSF binds the promoter of WRKY1 to enhance salt tolerance[J]. Plant Science, 2015, 235: 89−100. doi: 10.1016/j.plantsci.2015.03.006
|
[27] |
Kraus T E, Fletcher R A. Paclobutrazol protects wheat seedlings from heat and paraquat injury is detoxification of active oxygen involved[J]. Plant and Cell Physiology, 1994, 35: 45−52.
|
[28] |
王瑞, 陈永忠, 陈隆升, 等. 油茶叶片SPAD 值与叶绿素含量的相关分析[J]. 中南林业科技大学学报, 2013, 33(2): 77−80.
Wang R, Chen Y Z, Chen L S, et al. Correlation analysis of SPAD value and chlorophyll content in leaves of Camellia oleifera[J]. Journal of Central South University of Forestry and Technology, 2013, 33(2): 77−80.
|
[29] |
Zgallaï H, Steppe K, Lemeur R. Effects of different levels of water stress on leaf water potential, stomatal resistance, protein and chlorophyll content and certain anti-oxidative enzymes in tomato plants[J]. Journal of Integrative Plant Biology, 2006, 48(6): 679−685. doi: 10.1111/j.1744-7909.2006.00272.x
|
[30] |
Ottow E A, Brinker M, Teichmann T, et al. Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress[J]. Plant Physiology, 2005, 139: 1762−1772. doi: 10.1104/pp.105.069971
|
[31] |
Chen S, Li J, Wang T, et al. Osmotic stress and ion-specific effects on xylem abscisic acid and the relevance to salinity tolerance in poplar[J]. Journal of Plant Growth Regulation, 2002b, 21: 224−233. doi: 10.1007/s00344-002-1001-4
|
[32] |
Brinker M, Brosché M, Vinocur B, et al. Linking the salt transcriptome with physiological responses of a salt-resistant Populus species as a strategy to identify genes important for stress acclimation[J]. Plant Physiology, 2010, 154: 1697−1709. doi: 10.1104/pp.110.164152
|
[33] |
Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science, 2002, 7(9): 405−410. doi: 10.1016/S1360-1385(02)02312-9
|
[34] |
Lang Y, Wang M, Zhang G C, et al. Experimental and simulatedlightresponses of photosynthe-sis in leaves of three tree species under different soil water conditions[J]. Photosynthetica, 2013, 51(3): 370−378. doi: 10.1007/s11099-013-0036-z
|
1. |
孙丽,张颖,李文彬,包红光,孙迎坤. 青岛市3种常绿灌木滞尘量与叶微观特征及光合作用等的相关性分析. 西北林学院学报. 2024(04): 232-241 .
![]() | |
2. |
裴云霞,洪慧,包美玲,邓俊,陈岷轩,张强. 农业环境损害鉴定中受体植物的损害因素判别及损害程度分析. 中国司法鉴定. 2024(04): 40-48 .
![]() | |
3. |
贺丹,李朝梅,华超,李思洁,雷雅凯,张曼. 郑州市10种园林植物叶片滞尘与富集重金属的能力. 西北林学院学报. 2023(01): 230-237 .
![]() | |
4. |
张碧媛,李智琦,阮琳,潘勇军,陈国财,代色平,冯娴慧. 2种常用的植物滞纳能力测定方法对比研究. 林业与环境科学. 2023(01): 112-119 .
![]() | |
5. |
罗建平,王宁,宋菲菲,魏汉博,原白玉,唐钰鑫. 大庆市6种绿化树种对SO_2、NO_2的消减及滞尘效应. 生态学报. 2023(11): 4561-4569 .
![]() | |
6. |
张翠,马瑞,谭立佳,杜婉倩,刘涵科. 兰州市10种常用园林绿化树种叶表面微结构对其滞尘量的影响. 甘肃农业大学学报. 2023(04): 192-200+211 .
![]() | |
7. |
廖慧敏,师凤起,李明,朱逸龙. 长沙市典型园林植物叶片的滞尘等级与模式识别研究. 生态环境学报. 2022(01): 110-116 .
![]() | |
8. |
贺丹,汪安印,李紫萱,王翼飞,李朝梅,雷雅凯,李永华,董娜琳. 郑州市常绿树种滞尘能力与叶片生理结构的响应. 福建农业学报. 2022(02): 203-212 .
![]() | |
9. |
李晓璐,叶锦东,章剑,周毅烈,袁楚阳,于慧,张天然,黄芳,张贵豪,邵锋. 乔木滞留大气颗粒物能力及其与叶表面微结构关系. 中国城市林业. 2022(03): 22-28+120 .
![]() | |
10. |
王军梦,汪安印,王翼飞,贺丹,李永华,董娜琳. 不同污染程度下树种滞尘能力与叶表微形态关系研究. 林业调查规划. 2022(05): 16-21+37 .
![]() | |
11. |
孟畅,彭洋,赵杨,王秀荣,肖枫. 2种叶型膏桐幼苗的形态结构和光合特性. 林业科学. 2022(12): 32-41 .
![]() | |
12. |
岳晨,李广德,席本野,曹治国. 叶片大气颗粒物滞纳能力评估方法的定量对比. 环境科学. 2021(01): 114-126 .
![]() | |
13. |
徐立人,刘宠,张军,柳俊明,王立成,李清泉,杨敏生,李彦慧. 单叶刺槐半同胞子代叶片的滞尘能力及叶表SEM特征分析. 西部林业科学. 2021(01): 124-131 .
![]() | |
14. |
杨克彤,陈国鹏,李广,汤东,张凯. 兰州市常见阔叶树种对大气颗粒物吸滞能力的评估. 东北林业大学学报. 2021(05): 84-89 .
![]() | |
15. |
刘宇,张楠,王晓立,周力行,韩浩章. 冬季苏北8种常绿乔木吸滞颗粒物能力与叶表微结构关系. 西北林学院学报. 2021(03): 80-87+127 .
![]() | |
16. |
王薇,张蕾. 基于CiteSpace的城市环境中细颗粒物研究进展的可视化分析. 生态环境学报. 2021(06): 1321-1332 .
![]() | |
17. |
谢长坤,郭健康,梁安泽,汪静,姜睿原,车生泉. 园林植物表面对大气颗粒物削减过程研究进展. 世界林业研究. 2021(05): 38-43 .
![]() | |
18. |
吴桂香,徐成林,刘杰,杨燕飞. 城市道路植物叶面滞尘的微观效应研究. 昆明理工大学学报(自然科学版). 2021(06): 109-115 .
![]() | |
19. |
陈胜楠,陈左司南,张志强. 北京山区油松和元宝槭冠层气孔导度特征及其环境响应. 植物生态学报. 2021(12): 1329-1340 .
![]() | |
20. |
王琴,冯晶红,黄奕,王鹏程,谢梦婷,万好,苏泽琳,王仁鹏,王征洋,余刘思. 武汉市15种阔叶乔木滞尘能力与叶表微形态特征. 生态学报. 2020(01): 213-222 .
![]() | |
21. |
童凌云,何婉璎,裘璐函,陈健,刘美华. 基于层次分析法的杭州市8种园林植物林分环境质量评价. 浙江林业科技. 2020(01): 56-62 .
![]() | |
22. |
苏维,刘苑秋,赖胜男,古新仁,刘青,龚鹏. 南昌市8种乔木叶片性状对叶表滞留颗粒物的影响. 西北林学院学报. 2020(04): 61-67 .
![]() | |
23. |
刘开琳,李学敏,万翔,刘淑娟,李菁菁,徐先英,刘虎俊. 民勤植物园3种灌木的叶面微结构及其滞尘能力研究. 中国农学通报. 2020(26): 62-68 .
![]() | |
24. |
孙应都,陈奇伯,李艳梅,杨思莹. 昆明市6个绿化树种叶表微结构与滞尘能力的关系研究. 西南林业大学学报(自然科学). 2019(03): 78-85 .
![]() | |
25. |
张俊叶,邹明,刘晓东,王林,朱晨晨,俞元春. 南京城市森林植物叶面颗粒物的含量特征. 环境污染与防治. 2019(07): 837-843 .
![]() | |
26. |
林星宇,李海梅,李彦华,姜月梅. 八种乔木滞尘效益及其与叶表面特征关系. 北方园艺. 2019(17): 94-101 .
![]() | |
27. |
林星宇,李海梅,李彦华,刘志科. 灌木滞尘能力与重金属含量间的关系. 江苏农业科学. 2019(15): 180-183 .
![]() | |
28. |
姜霞,侯贻菊,刘延惠,舒德远,崔迎春,李成龙,杨冰,丁访军. 3种木樨科树种叶片滞尘效应动态变化及其与叶片特征的关系. 江苏农业科学. 2019(16): 150-154 .
![]() | |
29. |
林星宇,李彦华,李海梅,李士美. 乔木对不同粒径颗粒物吸滞作用研究. 福建农业学报. 2019(08): 912-919 .
![]() | |
30. |
阿丽亚·拜都热拉,甄敬,潘存德,张中远,胡梦玲,喀哈尔·扎依木. 乌鲁木齐市河滩快速路林带内颗粒物浓度变化特征. 新疆农业大学学报. 2019(05): 378-384 .
![]() | |
31. |
林星宇,李海梅,李彦华,郑茗月. 5种灌木的滞尘效益研究. 现代农业科技. 2018(02): 150-151+155 .
![]() | |
32. |
赵文君,侯贻菊,舒德远,刘延惠,崔迎春,丁访军. 贵阳市木兰科树种叶片滞尘效应及影响因素. 贵州林业科技. 2018(02): 19-24 .
![]() | |
33. |
李艳梅,陈奇伯,王邵军,孙应都,杨淏舟,杨思莹. 昆明市主要绿化树种叶片滞尘能力的叶表微形态学解释. 林业科学. 2018(05): 18-29 .
![]() | |
34. |
朱济友,于强,刘亚培,覃国铭,李金航,徐程扬,何韦均. 植物功能性状及其叶经济谱对城市热环境的响应. 北京林业大学学报. 2018(09): 72-81 .
![]() |