• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Shi Jianmin, Zhang Wangfei, Zeng Peng, Zhao Lixian, Wang Mengjin. Inversion of forest aboveground biomass from combined images of GF-1 and GF-3[J]. Journal of Beijing Forestry University, 2022, 44(11): 70-81. DOI: 10.12171/j.1000-1522.20220029
Citation: Shi Jianmin, Zhang Wangfei, Zeng Peng, Zhao Lixian, Wang Mengjin. Inversion of forest aboveground biomass from combined images of GF-1 and GF-3[J]. Journal of Beijing Forestry University, 2022, 44(11): 70-81. DOI: 10.12171/j.1000-1522.20220029

Inversion of forest aboveground biomass from combined images of GF-1 and GF-3

More Information
  • Received Date: January 16, 2022
  • Revised Date: April 11, 2022
  • Available Online: October 27, 2022
  • Published Date: November 24, 2022
  •   Objective  The objective of this study was to explore the feasibility of GF-1, GF-3, and combination of GF-1 and GF-3 for total forest aboveground biomass (AGB) and its component inversion.
      Method  In this study, the vegetation indices, texture characterizations extracted from GF-1, backscattering coefficients, texture characterizations and polarimetric decomposition features extracted from GF-3 were used independently and in combination to estimate total AGB and component AGB of a pure forest of Yunnan pine (Pinus yunnanensis), located in Xiaoshao Forest Region in Yiliang County, Yunnan Province of southwestern China. A fast iterative features selection method for k-NN method (KNN-FIFS) was applied in forest total AGB and component AGB inversion and the leave one out cross validation (LOOCV) method was used to evaluate the model and the inversion results and the results were mapped and analyzed.
      Result  The joint GF-1 and GF-3 data had the highest accuracy for inversion of forest AGB and each component AGB, and the R2 of each exceeded 0.710, and the values of RMSEr were between 22% and 27%, among which the inversion accuracy of foliage was the best, with the model’s R2 of 0.714, RMSE of 10.270 t/ha, and RMSEr of 24.58%; except for foliage component AGB, forest AGB and other components of AGB had better accuracy than the inversion results with GF-3 features when only the features extracted from GF-1 were used for the inversion.
      Conclusion  Combining GF-1 optical data and GF-3 fully polarized SAR data can achieve a certain degree of complementarity to improve the inversion accuracy of forest AGB and fractional AGB. In addition, the KNN-FIFS method is robust in the inversion of AGB and fractional AGB of pure Yunnan pine forests at low biomass levels, and the important parameters preferred by KNN-FIFS mostly are texture features extracted form SAR and optics data.
  • [1]
    菅永峰, 韩泽民, 黄光体, 等. 基于高分辨率遥感影像的北亚热带森林生物量反演[J]. 生态学报, 2021, 41(6): 2161−2169.

    Jian Y F, Han Z M, Huang G T, et al. Estimation of forest biomass using high spatial resolution remote sensing imagery in north subtropical forests[J]. Acta Ecologica Sinica, 2021, 41(6): 2161−2169.
    [2]
    胥辉, 张会儒. 林木生物量模型研究[M]. 昆明: 云南科学技术出版社, 2002.

    Xu H, Zhang H R. Study on forest biomass model[M]. Kunming: Yunnan Science and Technology Press, 2002.
    [3]
    李德仁, 王长委, 胡月明, 等. 遥感技术估算森林生物量的研究进展[J]. 武汉大学学报·信息科学版, 2012, 37(6): 631−635. doi: 10.13203/j.whugis2012.06.001

    Li D R, Wang C W, Hu Y M, et al. Research progress of forest biomass inversion by remote sensing technology[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 631−635. doi: 10.13203/j.whugis2012.06.001
    [4]
    魏晶昱, 范文义, 于颖, 等. GF-3全极化SAR数据极化分解估算人工林冠层生物量[J]. 林业科学, 2020, 56(9): 174−183. doi: 10.11707/j.1001-7488.20200919

    Wei J Y, Fan W Y, Yu Y, et al. Polarimetric decomposition parameters for artificial forest canopy biomass inversion using GF-3 fully polarimetric SAR data[J]. Scientia Silvae Sinicae, 2020, 56(9): 174−183. doi: 10.11707/j.1001-7488.20200919
    [5]
    曾晶, 张晓丽. 高分一号遥感影像下崂山林场林分生物量反演估算研究[J]. 中南林业科技大学学报, 2016, 36(1): 46−51. doi: 10.14067/j.cnki.1673-923x.2016.01.008

    Zeng J, Zhang X L. Laoshan forest biomass estimation based on GF-1 images with inversion algorithm[J]. Journal of Central South University of Forestry & Technology, 2016, 36(1): 46−51. doi: 10.14067/j.cnki.1673-923x.2016.01.008
    [6]
    丁家祺, 黄文丽, 刘迎春, 等. 基于机器学习和多源数据的湘西北森林地上生物量估测[J]. 林业科学, 2021, 57(10): 36−48. doi: 10.11707/j.1001-7488.20211004

    Ding J Q, Huang W L, Liu Y C, et al. Estimation of forest aboveground biomass in northwest Hunan Province based on machine learning and multi-source data[J]. Scientia Silvae Sinicae, 2021, 57(10): 36−48. doi: 10.11707/j.1001-7488.20211004
    [7]
    李春梅, 张王菲, 李增元, 等. 基于多源数据的根河实验区生物量反演研究[J]. 北京林业大学学报, 2016, 38(3): 64−72. doi: 10.13332/j.1000-1522.20150209

    Li C M, Zhang W F, Li Z Y, et al. Retrieval of forest above-ground biomass using multi-source data in Genhe, Inner Mongolia[J]. Journal of Beijing Forestry University, 2016, 38(3): 64−72. doi: 10.13332/j.1000-1522.20150209
    [8]
    李云, 张王菲, 崔鋆波, 等. 参数优选支持的光学与SAR数据森林地上生物量反演研究[J]. 北京林业大学学报, 2020, 42(10): 11−19.

    Li Y, Zhang W F, Cui J B, et al. Inversion exploration on forest aboveground biomass of optical and SAR data supported by parameter optimization method[J]. Journal of Beijing Forestry University, 2020, 42(10): 11−19.
    [9]
    潘婧靓, 邢艳秋, 黄佳鹏, 等. 联合 GF-3 PolSAR 数据与Landsat-8 OLI 数据的森林地上生物量估测[J]. 中南林业科技大学学报, 2020, 40(8): 83−90.

    Pan J J, Xing Y Q, Huang J P, et al. Estimation of forest above-ground biomass based on GF-3 PolSAR data and Landsat-8 OLI data[J]. Journal of Central South University of Forestry & Technology, 2020, 40(8): 83−90.
    [10]
    许振宇, 李盈昌, 李明阳. 基于Sentinel-1A和Landsat8数据的区域森林生物量反演[J]. 中南林业科技大学学报, 2020, 40(11): 147−155.

    Xu Z Y, Li Y C, Li M Y, et al. Forest biomass retrieval based on Sentinel-1A and Landsat 8 image[J]. Journal of Central South University of Forestry & Technology, 2020, 40(11): 147−155.
    [11]
    边瑞. 基于多源遥感数据的祁连山国家公园森林生物量估算研究[D]. 兰州: 兰州大学, 2021.

    Bian R. Estimation of forest aboveground biomass in the Qilian Mountain National Park based on multi-source remote sensing data[D]. Lanzhou: Lanzhou University, 2021.
    [12]
    韩宗涛, 江洪, 王威, 等. 基于多源遥感的森林地上生物量KNN-FIFS估测[J]. 林业科学, 2018, 54(9): 70−79. doi: 10.11707/j.1001-7488.20180909

    Han Z T, Jiang H, Wang W, et al. Forest above-ground biomass estimation using KNN-FIFS method based on multi-source remote sensing data[J]. Scientia Silvae Sinicae, 2018, 54(9): 70−79. doi: 10.11707/j.1001-7488.20180909
    [13]
    巨一琳, 姬永杰, 黄继茂, 等. 联合LiDAR和多光谱数据森林地上生物量反演研究[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 58−68.

    Ju Y L, Ji Y J, Huang J M, et al. Inversion of forest aboveground biomass using combination of LiDAR and multispectral data[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(1): 58−68.
    [14]
    黄从德, 张健, 杨万勤, 等. 四川省及重庆地区森林植被碳储量动态[J]. 生态学报, 2008, 28(3): 966−975. doi: 10.3321/j.issn:1000-0933.2008.03.008

    Huang C D, Zhang J, Yang W Q, et al. Dynamics on forest carbon stock in Sichuan Province and Chongqing City[J]. Acta Ecologica Sinica, 2008, 28(3): 966−975. doi: 10.3321/j.issn:1000-0933.2008.03.008
    [15]
    国家林业局. 立木生物量模型及碳计量参数−云南松: LY/T 2262—2014[S]. 北京: 中国标准出版社, 2014.

    National Forestry Administration. Tree biomass models and related parameters to carbon accounting for Pinus yunnannensis: LY/T 2262−2014[S]. Beijing: Chinese Standard Publishing House, 2014.
    [16]
    张庆君. 高分三号卫星总体设计与关键技术[J]. 测绘学报, 2017, 46(3): 269−277. doi: 10.11947/j.AGCS.2017.20170049

    Zhang Q J. System design and key technologies of gaogao-3 satellite[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3): 269−277. doi: 10.11947/j.AGCS.2017.20170049
    [17]
    Lal P, Kumar A, Saikia P, et al. Effect of vegetation structure on above ground biomass in tropical deciduous forests of Central India[J]. Geocarto International, 2022, 37(21): 6294−6310.
    [18]
    魏晶昱. 基于GF-3全极化SAR数据估算森林冠层生物量[D]. 哈尔滨: 东北林业大学, 2019.

    Wei J Y. Polarimetric decomposition parameters for artificial forest canopy biomass inversion using GF-3 fully polarimetric SAR data[D]. Harbin: Northeast Forestry University, 2019
    [19]
    Yamaguchi Y, Moriyama T, Ishido M, et al. Four-component scattering model for polarimetric SAR image decomposition[J]. IEEE Trans. Geosci Remote Sens, 2005, 43(8): 1699−1706. doi: 10.1109/TGRS.2005.852084
    [20]
    苏彩霞, 胡娟, 欧卫华, 等. 基于SPAN与NDVI的全极化SAR数据喀斯特地区土地类型划分[J]. 农业工程学报, 2020, 36(24): 265−272. doi: 10.11975/j.issn.1002-6819.2020.24.031

    Su C X, Hu J, Ou W H, et al. Land type classification of full polarization SAR data using SPAN and NDVI in karst areas, China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(24): 265−272. doi: 10.11975/j.issn.1002-6819.2020.24.031
    [21]
    Tsui O W, Coops N C, Wulder M A, et al. Using multi-frequency radar and discrete-return LiDAR measurements to estimate above-ground biomass and biomass components in a coastal temperate forest[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 69: 121−133. doi: 10.1016/j.isprsjprs.2012.02.009
    [22]
    Gao Y, Lu D, Li G, et al. Comparative analysis of modeling algorithms for forest aboveground biomass inversion in a subtropical region[J]. Remote Sensing (Basel, Switzerland), 2018, 10(4): 627−649.
    [23]
    王昆. 基于Quickbird和极化雷达数据的森林生物量估测方法研究[D]. 北京: 北京林业大学, 2013.

    Wang K. Study on the estimation method of forest biomass using Quickbird and polarimetric SAR data[D]. Beijing: Beijing Forestry University, 2013.
    [24]
    刘龙飞, 陈云浩, 李京. 遥感影像纹理分析方法综述与展望[J]. 遥感技术与应用, 2003, 18(6): 441−447. doi: 10.3969/j.issn.1004-0323.2003.06.015

    Liu L F, Chen Y H, Li J. Review and prospect of texture analysis methods of remote sensing images[J]. Remote Sensing Technology and Application, 2003, 18(6): 441−447. doi: 10.3969/j.issn.1004-0323.2003.06.015
  • Cited by

    Periodical cited type(5)

    1. 张晴晴,杜艺,张玉林,张志浩,张波,鲁艳,曾凡江. 块茎形成期不同灌溉量对油莎豆产量和品质的影响. 草地学报. 2024(11): 3636-3645 .
    2. 邵鹏,宋小双,廖诗贤,钟斯文,王铮,王宇曦,马玲,邓勋. 深色有隔内生真菌对干旱胁迫下樟子松生长及抗旱性的影响. 中南林业科技大学学报. 2023(09): 15-28 .
    3. 李金珠,张学昆,徐劲松,谢伶俐,许本波. H_2O_2处理修复老化油莎豆的生理机制. 草业科学. 2023(09): 2309-2319 .
    4. 孙蕊,钟鹏,刘泽东,高海娟,王若丁,李伟,尤海洋,宋雪莹,王晓龙. 非生物胁迫下油莎豆抗逆性研究进展. 饲料博览. 2023(05): 32-35 .
    5. 刘佳遥,程艳,魏尊苗,龙威,王靓,牟忠生. 外源激素对干旱胁迫下油莎豆生长、产量及生理特性的影响. 河南农业科学. 2022(11): 42-49 .

    Other cited types(8)

Catalog

    Article views (887) PDF downloads (124) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return