Citation: | Shi Jianmin, Zhang Wangfei, Zeng Peng, Zhao Lixian, Wang Mengjin. Inversion of forest aboveground biomass from combined images of GF-1 and GF-3[J]. Journal of Beijing Forestry University, 2022, 44(11): 70-81. DOI: 10.12171/j.1000-1522.20220029 |
[1] |
菅永峰, 韩泽民, 黄光体, 等. 基于高分辨率遥感影像的北亚热带森林生物量反演[J]. 生态学报, 2021, 41(6): 2161−2169.
Jian Y F, Han Z M, Huang G T, et al. Estimation of forest biomass using high spatial resolution remote sensing imagery in north subtropical forests[J]. Acta Ecologica Sinica, 2021, 41(6): 2161−2169.
|
[2] |
胥辉, 张会儒. 林木生物量模型研究[M]. 昆明: 云南科学技术出版社, 2002.
Xu H, Zhang H R. Study on forest biomass model[M]. Kunming: Yunnan Science and Technology Press, 2002.
|
[3] |
李德仁, 王长委, 胡月明, 等. 遥感技术估算森林生物量的研究进展[J]. 武汉大学学报·信息科学版, 2012, 37(6): 631−635. doi: 10.13203/j.whugis2012.06.001
Li D R, Wang C W, Hu Y M, et al. Research progress of forest biomass inversion by remote sensing technology[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 631−635. doi: 10.13203/j.whugis2012.06.001
|
[4] |
魏晶昱, 范文义, 于颖, 等. GF-3全极化SAR数据极化分解估算人工林冠层生物量[J]. 林业科学, 2020, 56(9): 174−183. doi: 10.11707/j.1001-7488.20200919
Wei J Y, Fan W Y, Yu Y, et al. Polarimetric decomposition parameters for artificial forest canopy biomass inversion using GF-3 fully polarimetric SAR data[J]. Scientia Silvae Sinicae, 2020, 56(9): 174−183. doi: 10.11707/j.1001-7488.20200919
|
[5] |
曾晶, 张晓丽. 高分一号遥感影像下崂山林场林分生物量反演估算研究[J]. 中南林业科技大学学报, 2016, 36(1): 46−51. doi: 10.14067/j.cnki.1673-923x.2016.01.008
Zeng J, Zhang X L. Laoshan forest biomass estimation based on GF-1 images with inversion algorithm[J]. Journal of Central South University of Forestry & Technology, 2016, 36(1): 46−51. doi: 10.14067/j.cnki.1673-923x.2016.01.008
|
[6] |
丁家祺, 黄文丽, 刘迎春, 等. 基于机器学习和多源数据的湘西北森林地上生物量估测[J]. 林业科学, 2021, 57(10): 36−48. doi: 10.11707/j.1001-7488.20211004
Ding J Q, Huang W L, Liu Y C, et al. Estimation of forest aboveground biomass in northwest Hunan Province based on machine learning and multi-source data[J]. Scientia Silvae Sinicae, 2021, 57(10): 36−48. doi: 10.11707/j.1001-7488.20211004
|
[7] |
李春梅, 张王菲, 李增元, 等. 基于多源数据的根河实验区生物量反演研究[J]. 北京林业大学学报, 2016, 38(3): 64−72. doi: 10.13332/j.1000-1522.20150209
Li C M, Zhang W F, Li Z Y, et al. Retrieval of forest above-ground biomass using multi-source data in Genhe, Inner Mongolia[J]. Journal of Beijing Forestry University, 2016, 38(3): 64−72. doi: 10.13332/j.1000-1522.20150209
|
[8] |
李云, 张王菲, 崔鋆波, 等. 参数优选支持的光学与SAR数据森林地上生物量反演研究[J]. 北京林业大学学报, 2020, 42(10): 11−19.
Li Y, Zhang W F, Cui J B, et al. Inversion exploration on forest aboveground biomass of optical and SAR data supported by parameter optimization method[J]. Journal of Beijing Forestry University, 2020, 42(10): 11−19.
|
[9] |
潘婧靓, 邢艳秋, 黄佳鹏, 等. 联合 GF-3 PolSAR 数据与Landsat-8 OLI 数据的森林地上生物量估测[J]. 中南林业科技大学学报, 2020, 40(8): 83−90.
Pan J J, Xing Y Q, Huang J P, et al. Estimation of forest above-ground biomass based on GF-3 PolSAR data and Landsat-8 OLI data[J]. Journal of Central South University of Forestry & Technology, 2020, 40(8): 83−90.
|
[10] |
许振宇, 李盈昌, 李明阳. 基于Sentinel-1A和Landsat8数据的区域森林生物量反演[J]. 中南林业科技大学学报, 2020, 40(11): 147−155.
Xu Z Y, Li Y C, Li M Y, et al. Forest biomass retrieval based on Sentinel-1A and Landsat 8 image[J]. Journal of Central South University of Forestry & Technology, 2020, 40(11): 147−155.
|
[11] |
边瑞. 基于多源遥感数据的祁连山国家公园森林生物量估算研究[D]. 兰州: 兰州大学, 2021.
Bian R. Estimation of forest aboveground biomass in the Qilian Mountain National Park based on multi-source remote sensing data[D]. Lanzhou: Lanzhou University, 2021.
|
[12] |
韩宗涛, 江洪, 王威, 等. 基于多源遥感的森林地上生物量KNN-FIFS估测[J]. 林业科学, 2018, 54(9): 70−79. doi: 10.11707/j.1001-7488.20180909
Han Z T, Jiang H, Wang W, et al. Forest above-ground biomass estimation using KNN-FIFS method based on multi-source remote sensing data[J]. Scientia Silvae Sinicae, 2018, 54(9): 70−79. doi: 10.11707/j.1001-7488.20180909
|
[13] |
巨一琳, 姬永杰, 黄继茂, 等. 联合LiDAR和多光谱数据森林地上生物量反演研究[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 58−68.
Ju Y L, Ji Y J, Huang J M, et al. Inversion of forest aboveground biomass using combination of LiDAR and multispectral data[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(1): 58−68.
|
[14] |
黄从德, 张健, 杨万勤, 等. 四川省及重庆地区森林植被碳储量动态[J]. 生态学报, 2008, 28(3): 966−975. doi: 10.3321/j.issn:1000-0933.2008.03.008
Huang C D, Zhang J, Yang W Q, et al. Dynamics on forest carbon stock in Sichuan Province and Chongqing City[J]. Acta Ecologica Sinica, 2008, 28(3): 966−975. doi: 10.3321/j.issn:1000-0933.2008.03.008
|
[15] |
国家林业局. 立木生物量模型及碳计量参数−云南松: LY/T 2262—2014[S]. 北京: 中国标准出版社, 2014.
National Forestry Administration. Tree biomass models and related parameters to carbon accounting for Pinus yunnannensis: LY/T 2262−2014[S]. Beijing: Chinese Standard Publishing House, 2014.
|
[16] |
张庆君. 高分三号卫星总体设计与关键技术[J]. 测绘学报, 2017, 46(3): 269−277. doi: 10.11947/j.AGCS.2017.20170049
Zhang Q J. System design and key technologies of gaogao-3 satellite[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3): 269−277. doi: 10.11947/j.AGCS.2017.20170049
|
[17] |
Lal P, Kumar A, Saikia P, et al. Effect of vegetation structure on above ground biomass in tropical deciduous forests of Central India[J]. Geocarto International, 2022, 37(21): 6294−6310.
|
[18] |
魏晶昱. 基于GF-3全极化SAR数据估算森林冠层生物量[D]. 哈尔滨: 东北林业大学, 2019.
Wei J Y. Polarimetric decomposition parameters for artificial forest canopy biomass inversion using GF-3 fully polarimetric SAR data[D]. Harbin: Northeast Forestry University, 2019
|
[19] |
Yamaguchi Y, Moriyama T, Ishido M, et al. Four-component scattering model for polarimetric SAR image decomposition[J]. IEEE Trans. Geosci Remote Sens, 2005, 43(8): 1699−1706. doi: 10.1109/TGRS.2005.852084
|
[20] |
苏彩霞, 胡娟, 欧卫华, 等. 基于SPAN与NDVI的全极化SAR数据喀斯特地区土地类型划分[J]. 农业工程学报, 2020, 36(24): 265−272. doi: 10.11975/j.issn.1002-6819.2020.24.031
Su C X, Hu J, Ou W H, et al. Land type classification of full polarization SAR data using SPAN and NDVI in karst areas, China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(24): 265−272. doi: 10.11975/j.issn.1002-6819.2020.24.031
|
[21] |
Tsui O W, Coops N C, Wulder M A, et al. Using multi-frequency radar and discrete-return LiDAR measurements to estimate above-ground biomass and biomass components in a coastal temperate forest[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 69: 121−133. doi: 10.1016/j.isprsjprs.2012.02.009
|
[22] |
Gao Y, Lu D, Li G, et al. Comparative analysis of modeling algorithms for forest aboveground biomass inversion in a subtropical region[J]. Remote Sensing (Basel, Switzerland), 2018, 10(4): 627−649.
|
[23] |
王昆. 基于Quickbird和极化雷达数据的森林生物量估测方法研究[D]. 北京: 北京林业大学, 2013.
Wang K. Study on the estimation method of forest biomass using Quickbird and polarimetric SAR data[D]. Beijing: Beijing Forestry University, 2013.
|
[24] |
刘龙飞, 陈云浩, 李京. 遥感影像纹理分析方法综述与展望[J]. 遥感技术与应用, 2003, 18(6): 441−447. doi: 10.3969/j.issn.1004-0323.2003.06.015
Liu L F, Chen Y H, Li J. Review and prospect of texture analysis methods of remote sensing images[J]. Remote Sensing Technology and Application, 2003, 18(6): 441−447. doi: 10.3969/j.issn.1004-0323.2003.06.015
|