Citation: | Yang Zhihui, Mu Changcheng, Wang Yahui, Li Xuannan, Liu Ting. Effects of tending intensity on carbon source/sink of Korean pine forests with different forest types by planting coniferous forest and reserving broadleaved forest[J]. Journal of Beijing Forestry University, 2023, 45(6): 19-32. DOI: 10.12171/j.1000-1522.20220033 |
[1] |
IPCC. Climate change 2013: the physical science basis. Contribution of working group Ⅰ to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2013.
|
[2] |
Pan Y, Birdsey R A, Fang J, et al. A large and persistent carbon sink in the world's forests[J]. Science, 2011, 333: 988−993. doi: 10.1126/science.1201609
|
[3] |
Denman K L, Brasseur G, Chidthaisong A, et al. Couplings between changes in the climate system and biogeochemistry[M]// Solomon S, Qin D, Manning M, et al. Climate change 2007: the physical science basis: contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007.
|
[4] |
Dixon R K, Solomon A, Brown S, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263: 185−190. doi: 10.1126/science.263.5144.185
|
[5] |
Vayreda J, Martinez-Vilalta J, Gracia M, et al. Recent climate changes interact with stand structure and management to determine changes in tree carbon stocks in Spanish forests[J]. Global Change Biology, 2012, 18(3): 1028−1041. doi: 10.1111/j.1365-2486.2011.02606.x
|
[6] |
Alvarez S, Ortiz C, Díaz-Pinés E, et al. Influence of tree species composition, thinning intensity and climate change on carbon sequestration in Mediterranean Mountain forests: a case study using the CO2 fix model[J]. Mitigation and Adaptation Strategies for Global Change, 2016, 21(7): 1045−1058.
|
[7] |
Fernandez I, Älvarez-Gonzalez J G, Carrasco B, et al. Post-thinning soil organic matter evolution and soil CO2 effluxes in temperate radiata pine plantations: impacts of moderate thinning regimes on the forest C cycle[J]. Canadian Journal of Forest Research, 2012, 42(11): 1953−1964. doi: 10.1139/x2012-137
|
[8] |
Boncina A, Kadunc A, Robic D. Effects of selective thinning on growth and development of beech (Fagus sylvatica L.) forest stands in south-Eastern Slovenia[J]. Annals of Forest Science, 2007, 64(1): 47−57. doi: 10.1051/forest:2006087
|
[9] |
Olajuyigbe S, Tobin B, Saunders M, et al. Forest thinning and soil respiration in a Sitka spruce forest in Ireland[J]. Agricultural and Forest Meteorology, 2012, 157: 86−95. doi: 10.1016/j.agrformet.2012.01.016
|
[10] |
Lena G, Baker S C, Jürgen B, et al. Retention forestry to maintain multifunctional forests: a world perspective[J]. BioScience, 2012, 7: 633−645.
|
[11] |
Lei L, Xiao W, Zeng L, et al. Thinning but not understory removal increased heterotrophic respiration and total soil respiration in Pinus massoniana stands[J]. Science of the Total Environment, 2018, 621: 1360−1369. doi: 10.1016/j.scitotenv.2017.10.092
|
[12] |
Doukalianou F, Radoglou K, Agnelli A E, et al. Annual greenhouse-gas emissions from forest soil of a peri-urban conifer forest in greece under different thinning intensities and their climate-change mitigation potential[J]. Forest Science, 2019, 65(4): 387−400. doi: 10.1093/forsci/fxy069
|
[13] |
Han M G, Gao W F, Shi B K, et al. Long-term (42 years) effect of thinning on soil CO2 emission in a mixed broadleaved-Korean pine (Pinus koraiensis) forest in northeast China[J]. Pedosphere, 2021, 31(2): 353−362. doi: 10.1016/S1002-0160(20)60066-2
|
[14] |
Sullivan B W, Kolb T E, Hart S C, et al. Thinning reduces soil carbon dioxide but not methane flux from southwestern USA ponderosa pine forests[J]. Forest Ecology and Management, 2008, 255(12): 4047−4055. doi: 10.1016/j.foreco.2008.03.051
|
[15] |
Yang L, Niu S L, Tian D S, et al. A global synthesis reveals increases in soil greenhouse gas emissions under forest thinning[J/OL]. Science of the Total Environment, 2022, 804: 150225[2022−01−18]. https://doi.org/10.1016/j.scitotenv.2021.150225.
|
[16] |
Chiang J M, Mcewan R W, Yaussy D A, et al. The effects of prescribed fire and silvicultural thinning on the aboveground carbon stocks and net primary production of overstory trees in an oak-hickory ecosystem in southern Ohio[J]. Forest Ecology and Management, 2008, 255(5−6): 1584−1594. doi: 10.1016/j.foreco.2007.11.016
|
[17] |
Saunders M, Tobin B, Black K, et al. Thinning effects on the net ecosystem carbon exchange of a Sitka spruce forest are temperature-dependent[J]. Agricultural and Forest Meteorology, 2012, 157: 1−10. doi: 10.1016/j.agrformet.2012.01.008
|
[18] |
Ogaya R, Escolà A, Liu D, et al. Effects of thinning in a water-limited holm oak forest[J]. Journal of Sustainable Forestry, 2020, 39(4): 365−378. doi: 10.1080/10549811.2019.1673179
|
[19] |
Dore S, Kolb T E, Montes-Helu M, et al. Carbon and water fluxes from ponderosa pine forests disturbed by wildfire and thinning[J]. Ecological Applications, 2010, 20(3): 663−683. doi: 10.1890/09-0934.1
|
[20] |
Aun K, Kukumgi M, Varik M, et al. Short-term effect of thinning on the carbon budget of young and middle-aged silver birch (Betula pendula Roth) stands[J/OL]. Forest Ecology and Management, 2021, 11: 118660[2022−01−12]. https://doi.org/10.1016/j.foreco.2020.118660.
|
[21] |
Dore S, Fry D L, Collins B M, et al. Management impacts on carbon dynamics in a Sierra Nevada mixed conifer forest [J/OL]. PLoS One, 2016, 11(2): e0150256[2022−01−17]. https://doi.org/10.1371/journal.pone.0150256.
|
[22] |
Davis S C, Hessl A E, Scott C J, et al. Forest carbon sequestration changes in response to timber harvest[J]. Forest Ecology and Management, 2009, 258(9): 2101−2109. doi: 10.1016/j.foreco.2009.08.009
|
[23] |
Moreno-Fernández D, Díaz-Pinés E, Barbeito I, et al. Temporal carbon dynamics over the rotation period of two alternative management systems in Mediterranean Mountain Scots pine forests[J]. Forest Ecology and Management, 2015, 348: 186−195. doi: 10.1016/j.foreco.2015.03.043
|
[24] |
Pukkala T. Does management improve the carbon balance of forestry? [J]. Forestry, 2017, 90(1): 125−135.
|
[25] |
Thornton P E, Law B E, Gholz H L, et al. Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests[J]. Agricultural and Forest Meteorology, 2002, 113(1−4): 185−222. doi: 10.1016/S0168-1923(02)00108-9
|
[26] |
Pregitzer K S, Euskirchen E S. Carbon cycling and storage in world forests: biome patterns related to forest age[J]. Global Change Biology, 2010, 10(12): 2052−2077.
|
[27] |
李俊清, 王业蘧. 天然林内红松种群数量变化的波动性[J]. 生态学杂志, 1986, 5(5): 1−5.
Li J Q, Wang Y J. Wave features of population changes of Pinus koraiensis in natural forest[J]. Journal of Ecology, 1986, 5(5): 1−5.
|
[28] |
李景文. 红松混交林生态与经营[M]. 哈尔滨: 东北林业大学出版社, 1997.
Li J W. Ecology and management of Korean pine mixed forest[M]. Harbin: Northeast Forestry University Press, 1997.
|
[29] |
特喜铁, 邓庆华, 戎可. 红松资源的合理开发与东北地区生态安全[J]. 安徽农业科学, 2011, 39(23): 14082−14083,14132. doi: 10.3969/j.issn.0517-6611.2011.23.071
Te X T, Deng Q H, Rong K. Rational exploitation of Korean pines resources and ecological security in northeast China[J]. Journal of Anhui Agricultural Sciences, 2011, 39(23): 14082−14083,14132. doi: 10.3969/j.issn.0517-6611.2011.23.071
|
[30] |
于大炮, 周莉, 代力民. 长白山区阔叶红松林经营历史与研究历程[J]. 应用生态学报, 2019, 30(5): 1426−1434.
Yu D P, Zhou L, Dai L M. Exploring the history of the management theory and technology of broadleaved Korean pine forest in Changbai Mountain Region, Northeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1426−1434.
|
[31] |
陈大珂, 周晓峰, 丁宝永, 等. 黑龙江省天然次生林研究(Ⅰ)-栽针保阔的经营途径[J]. 东北林学院学报, 1984, 12(4): 1−12.
Chen D K, Zhou X F, Ding B Y, et al. Research on natural secondary forest in Heilongjiang Province: the management way of Korean pine forest restored by planting conifer and reserving broad-leaved tree[J]. Journal of Northeast Forestry University, 1984, 12(4): 1−12.
|
[32] |
牟长城, 庄宸, 韩阳瑞, 等. 透光抚育对长白山"栽针保阔"红松林植被碳储量影响[J]. 植物研究, 2014, 34(4): 529−536. doi: 10.7525/j.issn.1673-5102.2014.04.017
Mu C C, Zhuang C, Han Y R, et al. Effect of liberation cutting on the vegetation carbon storage of Korean pine forests by planting conifer and reserving broad-leaved tree in Changbai Mountains of China[J]. Bulletin of Botanical Research, 2014, 34(4): 529−536. doi: 10.7525/j.issn.1673-5102.2014.04.017
|
[33] |
韩丽冬, 牟长城, 张军辉. 透光抚育对长白山阔叶红松林冠下红松光合作用的影响[J]. 东北林业大学学报, 2016, 33(4): 38−40. doi: 10.3969/j.issn.1000-5382.2016.04.008
Han L D, Mu C C, Zhang J H. Effect of crown thinning on photosynthesis of understory Korean pine of broadleaved Korean pine mixed forests in Changbai Mountain[J]. Journal of Northeast Forestry University, 2016, 33(4): 38−40. doi: 10.3969/j.issn.1000-5382.2016.04.008
|
[34] |
韩阳瑞, 牟长城, 张晓亮, 等. 透光抚育对“栽针保阔”红松林中红松生长过程的影响[J]. 安徽农业科学, 2014, 42(8): 2365−2367. doi: 10.3969/j.issn.0517-6611.2014.08.057
Han Y R, Mu C C, Zhang X L, et al. The influence of light transmittance felling on Pinus Koraiensis growth process in the “preserving deciduous while planting coniferous” Korean pine[J]. Journal of Anhui Agricultural Sciences, 2014, 42(8): 2365−2367. doi: 10.3969/j.issn.0517-6611.2014.08.057
|
[35] |
张迪祥. 伊春市带岭地区自然地理条件对植物群落分布的影响[J]. 植物科学学报, 1983, 1(2): 229−236.
Zhang D X. The influence of natural geographical condition of Dailing Area in Yichun City to the distribution of plant community[J]. Plant Science Journal, 1983, 1(2): 229−236.
|
[36] |
张悦, 牟长城, 刘辉, 等. 透光抚育对温带帽儿山红松林非生长季土壤温室气体排放的影响[J]. 应用生态学报, 2018, 29(7): 2183−2194.
Zhang Y, Mu C C, Liu H, et al. Effects of light-felling on non-growing season greenhouse gas emission from soils in Korean pine forests in Maoer Mountain[J]. Chinese Journal of Applied Ecology, 2018, 29(7): 2183−2194.
|
[37] |
姜宁, 牟长城, 韩丽冬, 等. 采伐对大兴安岭非连续冻土区毛赤杨沼泽碳源/汇的影响[J]. 北京林业大学学报, 2020, 42(3): 1−13. doi: 10.12171/j.1000-1522.20190074
Jiang N, Mu C C, Han L D, et al. Impact of harvesting on carbon source/sink of Alnus sibirica var. hirsuta swamps in Daxing’anling Mountains discontinuous permafrost region of northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(3): 1−13. doi: 10.12171/j.1000-1522.20190074
|
[38] |
Wang C K. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Forest Ecology and Management, 2006, 222(1−3): 9−16. doi: 10.1016/j.foreco.2005.10.074
|
[39] |
Smith K A, Ball T, Conen F, et al. Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes[J]. European Journal of Soil Science, 2018, 69(1): 10−20. doi: 10.1111/ejss.12539
|
[40] |
Curry C L. Modeling the soil consumption of atmospheric methane at the global scale[J/OL]. Global Biogeochemical Cycles, 2007, 21: G84012[2022−01−10]. https://doi.org/10.1029/2006GB002818.
|
[41] |
Borken W, Beese F. Methane and nitrous oxide fluxes of soils in pure and mixed stands of European beech and Norway spruce[J]. European Journal of Soil Science, 2005, 57(5): 617−625.
|
[42] |
Henri V K, Bodelier P, Rian H A D, et al. Resistance and recovery of methane-oxidizing communities depends on stress regime and history; a microcosm study[J/OL]. Frontiers in Microbiology, 2018, 9: 1714[2022−01−15]. https://doi.org/10.3389/fmicb.2018.01714.
|
[43] |
Ryan M, Law B. Interpreting, measuring, and modeling soil respiration[J]. Biogeochemistry, 2005, 73(1): 3−27. doi: 10.1007/s10533-004-5167-7
|
[44] |
Wu X, Brüggemann N, Gasche R, et al. Long-term effects of clear-cutting and selective cutting on soil methane fluxes in a temperate spruce forest in southern Germany[J]. Environmental Pollution, 2011, 159(10): 2467−2475.
|
[45] |
潘新丽, 林波, 刘庆. 模拟增温对川西亚高山人工林土壤有机碳含量和土壤呼吸的影响[J]. 应用生态学报, 2008, 19(8): 1637−1643.
Pan X L, Lin B, Liu Q. Effects of elevated temperature on soil organic carbon and soil respiration under subalpine coniferous forestin western Sichuan Province, China[J]. Chinese Journal of Applied Ecology, 2008, 19(8): 1637−1643.
|
[46] |
Wei Y W, Li M H, Chen H, et al. Variation in carbon storage and its distribution by stand age and forest type in boreal and temperate forests in northeastern China[J/OL]. PLoS One, 2013, 8(8): e72201[2022−03−19]. https://doi.org/10.1371/journal.pone.0072201.
|
[47] |
岳军伟. 甘肃主要森林类型固碳动态, 潜力及影响机制 [D]. 咸阳: 中国科学院大学(中国科学院教育部水土保持与生态环境研究中心), 2018.
Yue J W. Dynamics, potential and mechanism of carbon sequestration in major forest types in Gansu Province, China[D]. Xianyang: University of Chinese Academy of Sciences (Research Center for Soil and Water Conservation and Ecological Environment, Ministry of Education, Chinese Academy of Sciences), 2018.
|
[48] |
Howard E A, Gower S T, Foley J A, et al. Effects of logging on carbon dynamics of a jack pine forest in Saskatchewan, Canada[J]. Global Change Biology, 2010, 10: 1267−1284.
|
[49] |
齐麟, 于大炮, 周旺明, 等. 采伐对长白山阔叶红松林生态系统碳密度的影响[J]. 生态学报, 2013, 33(10): 3065−3073. doi: 10.5846/stxb201203060303
Qi L, Yu D P, Zhou W M, et al. Impact of logging on carbon density of broadleaved-Korean pine mixed forests on Changbai Mountains[J]. Acta Ecologica Sinica, 2013, 33(10): 3065−3073. doi: 10.5846/stxb201203060303
|
1. |
黄康庭,周娟,陈晓龙,艾辉辉,梁明伟,王荣洁,余平福. 广西珍贵乡土树种人工林林下植物的多样性. 桉树科技. 2025(01): 49-56 .
![]() | |
2. |
符航,谭国华,刘玮,蔡奇良,王琼,潘峰. 基于CiteSpace和VOSviewer软件的城市土壤食物网研究趋势分析. 生物灾害科学. 2025(01): 51-65 .
![]() | |
3. |
江姗,魏天兴,范德卉,于欢,叶小曼,谢宇,李世杰. 晋西黄土区沟谷不同部位植物多样性. 北京林业大学学报. 2024(06): 20-27 .
![]() |