• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Gao Xu, Mu Changcheng, Liang Daosheng, Lu Yi. Spatial differentiation law and main control factors of carbon storage in natural plant communities of Taihu National Wetland Park of northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(8): 16-28. DOI: 10.12171/j.1000-1522.20220045
Citation: Gao Xu, Mu Changcheng, Liang Daosheng, Lu Yi. Spatial differentiation law and main control factors of carbon storage in natural plant communities of Taihu National Wetland Park of northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(8): 16-28. DOI: 10.12171/j.1000-1522.20220045

Spatial differentiation law and main control factors of carbon storage in natural plant communities of Taihu National Wetland Park of northeastern China

More Information
  • Received Date: January 25, 2022
  • Revised Date: April 26, 2022
  • Accepted Date: July 01, 2023
  • Available Online: July 02, 2023
  • Published Date: August 24, 2023
  •   Objective  This paper aims to reveal the spatial distribution pattern and the cause of formation of the natural plant ecosystem carbon storage in the semi-arid area of temperate Nenjiang River of Taihu National Wetland Park of Northeastern China along the lakeshore to the highland environmental gradient, and to provide a scientific basis for the long term carbon sink management of natural vegetation in the temperate semi-arid area of China.
      Method  The ecosystem carbon storage (vegetation carbon storage and soil carbon storage), net primary productivity (NPP), annual net carbon sequestration (ANCS) and related environmental factors (water level, total nitrogen and total phosphorus, etc.) of eight plant communities, i.e. Typha angustifolia wetland (XYP), Typha minima wetland (XP), Phragmites australis wetland (L), tussock wetland (C), Calamagrostis epigeios meadow (F), wet Leymus chinensis grassland (S), dry Leymus chinensis grassland (H), sand dune Ulmus pumila sparse forest (Y) distributed along the lakeshore to the highland environmental gradient were simultaneously determined by relative growth equation and carbon/nitrogen analyzer method, so as to reveal its spatial differentiation law and its formation mechanism.
      Result  (1) The vegetation carbon storage (0.98−27.86 t/ha) showed a downward and then ascending tendency along the lakeshore to the highland environmental gradient (Y > L, XYP, XP > C, F, S, H), and herbaceous carbon storage (0.30−8.11 t/ha) showed a stepwise decreasing trend (L, XYP, XP > C, F, S > H, Y). (2) The soil carbon storage (38.49−321.72 t/ha) showed a stepwise decreasing trend along the lakeshore to the highland environmental gradient, and there were obvious horizontal spaces (XYP, XP were the highest at all soil layers; L, C were higher at most soil layers; F, S, H only was higher at the surface layer; Y was the lowest at all soil layers) and vertical space (XYP, XP, L decreased with soil depth; F, S, H at middle and upper soil layers decreased; C and Y were similar at all layers) differentiation regularity. (3) Ecosystem carbon storage (66.35−329.94 t/ha) also showed a stepwise decreasing trend along the lakeshore to the highland environmental gradient, and its distribution pattern was mostly dominated by soil carbon storage (95.43%−99.04%), only Y soil carbon storage accounted for low proportion (58.2%); (4) The NPP (2.11−16.28 t/(ha·year)) and ANCS (0.68−7.00 t/(ha·year)) of vegetation showed a decreasing trend along the lakeshore to the highland environmental gradient (XYP, XP and L were significantly higher than the other five communities by 0.3−9.3 times), and the ANCS of L and XYP was higher than the average carbon sequestration of vegetation in China and the world by 10.6%−70.7%; (5) Ecosystem carbon stocks and annual net carbon sequestration of vegetation of plant communities in permanently flooded habitat in the lower part of the environmental gradient were controlled by water level; plant communities in seasonally flooded habitat in the middle environment gradient were controlled by SOM, TN, TP and AK; plant communities in arid habitats in the upper environmental gradient were controlled by SOM and AP.
      Conclusion  Therefore, the spatial heterogeneity of water and nutrient redistribution caused by the micro-topography controls the distribution of plant communities and their carbon sinks along the lakeshore to the highland environmental gradient in the Nenjiang River of Taihu National Wetland Park of China, so the integrity of such environmental gradients should be protected.
  • [1]
    Lin E D, Guo L P, Ju H. Challenges to increasing the soil carbon pool of agro-ecosystems in China[J]. Journal of Integrative Agriculture, 2018, 17(4): 723−725. doi: 10.1016/S2095-3119(17)61744-1
    [2]
    Tu C L, He T B, Lu X H, et al. Extent to which pH and topographic factors control soil organic carbon level in dry farming cropland soils of the mountainous region of Southwest China[J]. Catena, 2018, 163: 204−209. doi: 10.1016/j.catena.2017.12.028
    [3]
    Nadia S S, María F A, Rachael H N, et al. Storage of organic carbon in the soils of Mexican temperate forests[J]. Forest Ecology and Management, 2019, 446: 115−125. doi: 10.1016/j.foreco.2019.05.029
    [4]
    Martin H, Markus R. Terrestrial ecosystem carbon dynamics and climate feedbacks[J]. Nature, 2008, 451: 289−292. doi: 10.1038/nature06591
    [5]
    Piao S L, Fang J Y, Ciais P, et al. The carbon balance of terrestrial ecosystems in China[J]. Nature, 2009, 458: 1009−1013. doi: 10.1038/nature07944
    [6]
    Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263: 185−190. doi: 10.1126/science.263.5144.185
    [7]
    Xu L, Yu G R, He N P, et al. Carbon storage in China’s terrestrial ecosystems: a synthesis[J]. Scientific Reports, 2018, 8(1): 2806−2818. doi: 10.1038/s41598-018-20764-9
    [8]
    Cox P M, Betts R A, Jones C D, et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model[J]. Nature, 2000, 408: 184−187. doi: 10.1038/35041539
    [9]
    Don A, Schumacher J, Scherer-Lorenzen M, et al. Spatial and vertical variation of soil carbon at two grassland sites: implications for measuring soil carbon stocks[J]. Geoderma, 2007, 141(3−4): 272−282. doi: 10.1016/j.geoderma.2007.06.003
    [10]
    Saiz G, Bird M I, Domingues T, et al. Variation in soil carbon stocks and their determinants across a precipitation gradient in West Africa[J]. Global Change Biology, 2012, 18(5): 1670−1683. doi: 10.1111/j.1365-2486.2012.02657.x
    [11]
    Wang J Y, Song C C, Wang X W, et al. Changes in labile soil organic carbon fractions in wetland ecosystems along a latitudinal gradient in Northeast China[J]. Catena, 2012, 96: 83−89. doi: 10.1016/j.catena.2012.03.009
    [12]
    Meeussen C, Govaert S, Vanneste T, et al. Drivers of carbon stocks in forest edges across Europe[J]. Science of the Total Environment, 2021, 759: 497−538.
    [13]
    Charman J D, Amesbury J M, Hinchliffe W, et al. Drivers of Holocene peatland carbon accumulation across a climate gradient in northeastern North America[J]. Quaternary Science Reviews, 2015, 121: 110−119. doi: 10.1016/j.quascirev.2015.05.012
    [14]
    Giardina P C, Ryan G M. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature[J]. Nature, 2000, 404: 858−861. doi: 10.1038/35009076
    [15]
    Osland J M, Gabler A C, Grace B J, et al. Climate and plant controls on soil organic matter in coastal wetlands[J]. Global Change Biology, 2018, 24(11): 5361−5379. doi: 10.1111/gcb.14376
    [16]
    Jiang T, Wang D Y, Wei S Q, et al. Influences of the alternation of wet-dry periods on the variability of chromophoric dissolved organic matter in the water level fluctuation zone of the Three Gorges Reservoir area, China[J]. Science of the Total Environment, 2018, 636: 249−259. doi: 10.1016/j.scitotenv.2018.04.262
    [17]
    Zheng L L, Xu J Y, Tan Z Q, et al. Spatial distribution of soil organic matter related to microtopography and NDVI changes in Poyang Lake, China[J]. Wetlands, 2019, 39(4): 789−801. doi: 10.1007/s13157-019-01131-4
    [18]
    Guo X L, Lu X G, Tong S Z, et al. Influence of environment and substrate quality on the decomposition of wetland plant root in the Sanjiang Plain, Northeast China[J]. Journal of Environmental Sciences, 2008, 20(12): 1445−1452. doi: 10.1016/S1001-0742(08)62547-4
    [19]
    Gong L, Liu G H, Wang M, et al. Effects of vegetation restoration on soil organic carbon in China: a meta-analysis[J]. Chinese Geographical Science, 2017, 27(2): 188−200. doi: 10.1007/s11769-017-0858-x
    [20]
    Ma K, Zhang Y, Tang S X, et al. Spatial distribution of soil organic carbon in the Zoige alpine wetland, northeastern Qinghai-Tibet Plateau[J]. Catena, 2016, 144: 102−108. doi: 10.1016/j.catena.2016.05.014
    [21]
    Mazurczyk T, Brooks P R. Carbon storage dynamics of temperate freshwater wetlands in Pennsylvania[J]. Wetlands Ecology and Management, 2018, 26(5): 893−914. doi: 10.1007/s11273-018-9619-6
    [22]
    刘华兵, 李谦维, 高俊琴, 等. 红碱淖湿地不同水分条件下芦苇群落对土壤有机碳组分和无机氮含量的影响[J]. 环境科学学报, 2022, 42(1): 1−8.

    Liu H B, Li Q W, Gao J Q, et al. Effects of Phragmites australis community on soil organic carbon and inorganic nitrogen content under different soil moistures in Hongjiannao Wetland[J]. Journal of Environmental Science, 2022, 42(1): 1−8.
    [23]
    殷书柏, 杨青, 吕宪国. 三江平原典型环型湿地土壤有机碳剖面分布及碳贮量[J]. 土壤通报, 2006, 37(4): 659−661.

    Yin S B, Yang Q, Lü X G. Distribution and accumulation of organic carbon in typical annular wetlands of Sanjiang Plain[J]. Chinese Journal of Soil Science, 2006, 37(4): 659−661.
    [24]
    严格, 葛振鸣, 张利权. 崇明东滩湿地不同盐沼植物群落土壤碳储量分布[J]. 应用生态学报, 2014, 25(1): 85−91.

    Yan G, Ge Z M, Zhang L Q. Distribution of soil carbon storage in different saltmarsh plant communities in Chongming Dongtan Wetland[J]. Chinese Journal of Applied Ecology, 2014, 25(1): 85−91.
    [25]
    Bai J Y, Zong M M, Li S Y, et al. Nitrogen, water content, phosphorus and active iron jointly regulate soil organic carbon in tropical acid red soil forest[J]. European Journal of Soil Science, 2021, 72(1): 446−459.
    [26]
    Sun S, Xing F, Zhao H, et al. Response of bacterial community to simulated nitrogen deposition in soils and a unique relationship between plant species and soil bacteria in the Songnen Grassland in Northeastern China[J]. Journal of Soil Science and Plant Nutrition, 2014, 14(3): 565−580.
    [27]
    田艳林, 刘贤赵, 毛德华, 等. 基于MODIS数据的松嫩平原西部芦苇湿地地上生物量遥感估算[J]. 生态学报, 2016, 36(24): 8071−8080.

    Tian Y L, Liu X Z, Mao D H, et al. Remote sensing estimation of the aboveground biomass of reed wetland in the Western Songnen Plain, China, based on MODIS data[J]. Acta Ecologica Sinica, 2016, 36(24): 8071−8080.
    [28]
    杨金艳, 王传宽. 东北东部森林生态系统土壤碳贮量和碳通量[J]. 生态学报, 2005, 25(11): 2875−2882. doi: 10.3321/j.issn:1000-0933.2005.11.012

    Yang J Y, Wang C K. Soil carbon storage and flux of temperate forest ecosystems in northeastern China[J]. Acta Ecologica Sinica, 2005, 25(11): 2875−2882. doi: 10.3321/j.issn:1000-0933.2005.11.012
    [29]
    王伯炜, 牟长城, 王彪. 长白山原始针叶林沼泽湿地生态系统碳储量[J]. 生态学报, 2019, 39(9): 3344−3354.

    Wang B W, Mu C C, Wang B. Carbon storage of a primary coniferous forested wetland ecosystem in the temperate Changbai Mountain of China[J]. Acta Ecologica Sinica, 2019, 39(9): 3344−3354.
    [30]
    彭文宏, 牟长城, 常怡慧, 等. 东北寒温带永久冻土区森林沼泽湿地生态系统碳储量[J]. 土壤学报, 2020, 57(6): 1525−1538.

    Peng W H, Mu C C, Chang Y H, et al. Carbon storage of forested wetland ecosystems in the cold temperate permafrost region, Northeast China[J]. Acta Pedologica Sinica, 2020, 57(6): 1525−1538.
    [31]
    Wu G L, Ren G H, Wang D, et al. Above- and below-ground response to soil water change in an alpine wetland ecosystem on the Qinghai-Tibetan Plateau, China[J]. Journal of Hydrology, 2013, 476(1): 120−127.
    [32]
    Brix H, Sorrell K B, Lorenzen B. Are phragmites-dominated wetlands a net source or net sink of greenhouse gases?[J]. Aquatic Botany, 2001, 69(2−4): 313−324. doi: 10.1016/S0304-3770(01)00145-0
    [33]
    Trama A F, Rizo-Patrón L F, Kumar A, et al. Wetland cover types and plant community changes in response to cattail-control activities in the Palo Verde Marsh, Costa Rica[J]. Ecological Restoration, 2009, 27(3): 278−289. doi: 10.3368/er.27.3.278
    [34]
    吴云杰. 草海湿地生态系统植被和土壤的有机碳分布特征和储量研究[D]. 哈尔滨: 东北林业大学, 2016.

    Wu Y J. Organic carbon dstribution and storage structure of vegetation and soil in Caohai Wetland ecosystem[D]. Harbin: Northeast Forestry University, 2016.
    [35]
    Anderson-Teixeira J K, Delong P J, Fox M A, et al. Differential responses of production and respiration to temperature and moisture drive the carbon balance across a climatic gradient in New Mexico[J]. Global Change Biology, 2011, 17(1): 410−424. doi: 10.1111/j.1365-2486.2010.02269.x
    [36]
    Adams D H, Guardiola-Claramonte M, Barron-Gafford A G, et al. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought[J]. Proceedings of the National Academy of Sciences, 2009, 106(17): 7063−7066. doi: 10.1073/pnas.0901438106
    [37]
    Xiong Y M, Liao B W, Proffitt E, et al. Soil carbon storage in mangroves is primarily controlled by soil properties: a study at Dongzhai Bay, China[J]. Science of the Total Environment, 2018, 619: 1226−1235.
    [38]
    Huang L B, Bai J H, Gao H F, et al. Soil organic carbon content and storage of raised field wetlands in different functional zones of a typical shallow freshwater lake, China[J]. Soil Research, 2012, 50(8): 664−671. doi: 10.1071/SR12236
    [39]
    Lawrence A B, Zedler B J. Carbon storage by carex stricta tussocks: a restorable ecosystem service?[J]. Wetlands, 2013, 33(3): 483−493. doi: 10.1007/s13157-013-0405-1
    [40]
    Zhao Q Q, Bai J H, Liu Q, et al. Spatial and seasonal variations of soil carbon and nitrogen content and stock in a tidal salt marsh with Tamarix chinensis, China[J]. Wetlands, 2016, 36(S1): 145−152. doi: 10.1007/s13157-015-0647-1
    [41]
    Sahrawat L K. Organic matter accumulation in submerged soils[J]. Advances in Agronomy, 2004, 81: 169−201.
    [42]
    Setia R, Marschner P. Carbon mineralization in saline soils as affected by residue composition and water potential[J]. Biology and Fertility of Soils, 2013, 49(1): 71−77. doi: 10.1007/s00374-012-0698-x
    [43]
    Inoue T, Koizumi H. Effects of environmental factors upon variation in soil respiration of a Zoysia japonica grassland, central Japan[J]. Ecological Research, 2012, 27(2): 445−452. doi: 10.1007/s11284-011-0918-0
    [44]
    Nahlik A M, Fennessy M S. Carbon storage in US wetlands[J]. Nature Communications, 2016, 7(1): 1−9.
    [45]
    Luyssaert S, Schulze E D, Börner A, et al. Old-growth forests as global carbon sinks[J]. Nature, 2008, 455: 213−215. doi: 10.1038/nature07276
    [46]
    Yue J W, Guan J H, Yan M J, et al. Biomass carbon density in natural oak forests with different climate conditions and stand ages in northwest China[J]. Journal of Forest Research, 2018, 23(6): 354−362. doi: 10.1080/13416979.2018.1536313
    [47]
    Post W M, Kwon K C. Soil carbon sequestration and land-use change: processes and potential[J]. Global Change Biology, 2010, 6(3): 317−327.
    [48]
    周广胜, 张新时. 全球气候变化的中国自然植被的净第一性生产力研究[J]. 植物生态学报, 1996, 20(1): 11−19.

    Zhou G S, Zhang X S. Study on NPP of natural vegetation in China under global climate change[J]. Chinese Journal of Plant Ecology, 1996, 20(1): 11−19.
    [49]
    毛德华, 王宗明, 罗玲, 等. 1982—2009年东北多年冻土区植被净初级生产力动态及其对全球变化的响应[J]. 应用生态学报, 2012, 23(6): 1511−1519.

    Mao D H, Wang Z M, Luo L, et al. Dynamic changes of vegetation net primary productivity in permafrost zone of Northeast China in 1982−2009 in response to global change[J]. Chinese Journal of Applied Ecology, 2012, 23(6): 1511−1519.
    [50]
    何浩, 潘耀忠, 朱文泉, 等. 中国陆地生态系统服务价值测量[J]. 应用生态学报, 2005, 16(6): 1122−1127.

    He H, Pan Y Z, Zhu W Q, et al. Measurement of terrestrial ecosystem service value in China[J]. Chinese Journal of Applied Ecology, 2005, 16(6): 1122−1127.
    [51]
    李银鹏, 季劲钧. 全球陆地生态系统与大气之间碳交换的模拟研究[J]. 地理学报, 2001, 56(4): 379−389. doi: 10.11821/xb200104001

    Li Y P, Ji J J. Simulations of carbon exchange between global terrestrial ecosystem and the atmosphere[J]. Acta Geographica Sinica, 2001, 56(4): 379−389. doi: 10.11821/xb200104001
    [52]
    Peralta L A, Ludmer S, Matthews W J, et al. Bacterial community response to changes in soil redox potential along a moisture gradient in restored wetlands[J]. Ecological Engineering, 2014, 73: 246−253. doi: 10.1016/j.ecoleng.2014.09.047
    [53]
    Yin S, Bai J H, Wang W, et al. Effects of soil moisture on carbon mineralization in floodplain wetlands with different flooding frequencies[J]. Journal of Hydrology, 2019, 574: 1074−1084. doi: 10.1016/j.jhydrol.2019.05.007
    [54]
    Zhang C C, Wang Y Q, Jia X X, et al. Estimates and determinants of soil organic carbon and total nitrogen stocks up to 5 m depth across a long transect on the Loess Plateau of China[J]. Journal of Soils and Sediments, 2021, 21(2): 748−765. doi: 10.1007/s11368-020-02861-3
    [55]
    Tian H Q, Wang S Q, Liu J Y, et al. Patterns of soil nitrogen storage in China[J]. Global Biogeochemical Cycles, 2006, 20(1): 1−9.
    [56]
    Gärdenäs I A, Ågren I G, Bird A J, et al. Knowledge gaps in soil carbon and nitrogen interactions: from molecular to global scale[J]. Soil Biology & Biochemistry, 2011, 43(4): 702−717.
    [57]
    Bai J H, Ouyang H, Deng W, et al. Spatial distribution characteristics of organic matter and total nitrogen of marsh soils in river marginal wetlands[J]. Geoderma, 2005, 124(1−2): 181−192.
    [58]
    Richter D D, Markewitz D, Trumbore S E, et al. Rapid accumulation and turnover of soil carbon in a re-establishing forest[J]. Nature, 1999, 400: 56−58. doi: 10.1038/21867
  • Cited by

    Periodical cited type(6)

    1. 莫崇杏,董明亮,李荣生,余纽,郑显澄,杨锦昌. 米老排杂交子代苗期生长性状遗传变异及选择. 森林与环境学报. 2023(05): 555-560 .
    2. Shuchun Li,Jiaqi Li,Yanyan Pan,Xiange Hu,Xuesong Nan,Dan Liu,Yue Li. Variation analyses of controlled pollinated families and parental combining ability of Pinus koraiensis. Journal of Forestry Research. 2021(03): 1005-1011 .
    3. 潘艳艳,许贵友,董利虎,王成录,梁德洋,赵曦阳. 日本落叶松全同胞家系苗期生长性状遗传变异. 南京林业大学学报(自然科学版). 2019(02): 14-22 .
    4. 秦光华,宋玉民,乔玉玲,于振旭,彭琳. 旱柳苗高年生长与气象因子的灰色关联度. 东北林业大学学报. 2019(05): 42-45+51 .
    5. 李峰卿,陈焕伟,周志春,楚秀丽,徐肇友,肖纪军. 红豆树优树种子和幼苗性状的变异分析及优良家系的初选. 植物资源与环境学报. 2018(02): 57-65 .
    6. 张素芳,张磊,赵佳丽,张莉,张含国. 长白落叶松小RNA测序和其靶基因预测. 北京林业大学学报. 2016(12): 64-72 . 本站查看

    Other cited types(6)

Catalog

    Article views (373) PDF downloads (88) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return