• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wu Yijing, Zhao Tianyi, Wang Lu, Zhang Yiming, Cai Ming, Li Yunyuan, Liu Yan, Zhang Qixiang. Analysis on flower color of common garden plants in Beijing parks based on bees visual system[J]. Journal of Beijing Forestry University, 2022, 44(11): 100-110. DOI: 10.12171/j.1000-1522.20220054
Citation: Wu Yijing, Zhao Tianyi, Wang Lu, Zhang Yiming, Cai Ming, Li Yunyuan, Liu Yan, Zhang Qixiang. Analysis on flower color of common garden plants in Beijing parks based on bees visual system[J]. Journal of Beijing Forestry University, 2022, 44(11): 100-110. DOI: 10.12171/j.1000-1522.20220054

Analysis on flower color of common garden plants in Beijing parks based on bees visual system

More Information
  • Received Date: February 08, 2022
  • Revised Date: September 08, 2022
  • Available Online: October 25, 2022
  • Published Date: November 24, 2022
  •   Objective  Bees, the main species of urban pollinators, have significant ecological service function. However, human activities and urbanization had led to a decline in the number and diversity of pollinators. Based on the bees vision model, we assessed the influence of floral color characteristics on the bees-attracted ability. The results could be useful for establishing a selecting indicator system for bees-friendly landscape plants and lay a foundation for maintaining the stability of urban ecosystem.
      Method  Taking the commonly used landscape plants in six green spaces of Beijing as the research objects, we used the floral reflectance spectrum measured by a spectrometer and bees vision model to analyze the floral characteristics, including color diversity and contrast against the background of flowering plants in spring and summer-autumn.
      Result  There were significant differences in the floral characteristics of flowering plants of different seasons and color systems. The mean absolute deviation and minimum absolute deviation (400 nm) of spring blooming plants were significantly lower than those of summer-autumn blooming plants, indicating that the spring blooming plants were easier to be perceived, while the floral color diversity of the spring blooming plants was lower. Moreover, comparing the flower color characteristics of white, yellow, red, pink, and blue-purple flower plants, we observed that the floral color diversity was high for yellow flower plants and low for the red ones. The values of mean absolute deviation and minimum absolute deviation indicated that yellow, white and pink flower plants were easy to be perceived, whereas it was hard for bees to perceive red flower plants.
      Conclusion  The deviation value of floral color spectral marker-points, achromatic contrast against background and chromatic contrast against background could be used as indicators for selecting bees-friendly landscape plants.
  • [1]
    袁嘉, 杜春兰. 城市植物景观与关键种的协同共生设计框架: 以野花草甸与传粉昆虫为例[J]. 风景园林, 2020, 27(4): 50−55.

    Yuan J, Du C L. Design framework of collaborative symbiosis between urban plant landscape and keystone species: taking wildflower meadows and pollinators as a case study[J]. Landscape Architecture, 2020, 27(4): 50−55.
    [2]
    Jeff O. Pollinator diversity: Distribution, ecological function and conservation[J]. Annual Review of Ecology, Evolution, and Systematics, 2017, 48: 353−376. doi: 10.1146/annurev-ecolsys-110316-022919
    [3]
    Potts S G, Imperatriz-Fonseca V, Ngo H T, et al. Safeguarding pollinators and their values to human well-being[J]. Nature, 2016, 540: 220−229. doi: 10.1038/nature20588
    [4]
    伍盘龙, 宋潇, 夏博辉, 等. 北京昌平区农业景观野生蜂多样性的时空动态分布[J]. 中国生态农业学报, 2018, 26(3): 357−366.

    Wu P L, Song X, Xia B H, et al. Temporal-spatial dynamics of wild bee diversity in agricultural landscapes in Changping District, Beijing[J]. Chinese Journal of Eco-Agriculture, 2018, 26(3): 357−366.
    [5]
    van der Kooi C J, Dyer A, Kevan P G, et al. Functional significance of the optical properties of flowers for visual signalling[J]. Annals of Botany, 2019, 123(2): 263−276. doi: 10.1093/aob/mcy119
    [6]
    Fenster C B, Armbruster W S, Wilson P, et al. Pollination syndromes and floral specialization[J]. Annual Review of Ecology, Evolution, and Systematics, 2004, 35(1): 375−403. doi: 10.1146/annurev.ecolsys.34.011802.132347
    [7]
    Raguso R A. Flowers as sensory billboards: progress towards an integrated understanding of floral[J]. Current Opinion in Plant Biology, 2004, 7(4): 434−440. doi: 10.1016/j.pbi.2004.05.010
    [8]
    Schäffler I, Steiner K E, Haid M, et al. Diacetin, a reliable cue and private communication channel in a specialized pollination system[J/OL]. Scientific Reports, 2015, 5: 12779[2022−01−18]. https://www.nature.com/articles/srep12779.
    [9]
    Raguso R A. Wake up and smell the roses: the ecology and evolution of floral scent[J]. Annual Review of Ecology, Evolution, and Systematics, 2008, 39(1): 549−569. doi: 10.1146/annurev.ecolsys.38.091206.095601
    [10]
    Yoshida M, Itoh Y, Ômura H, et al. Plant scents modify innate colour preference in foraging swallowtail butterflies[J/OL]. Biology Letters, 2015, 11(7): 20150390[2022−01−18]. https://royalsocietypublishing.org/doi/10.1098/rsbl.2015.0390.
    [11]
    Woodcock T S, Larson B M H, Kevan P G, et al. Flies and flowers Ⅱ: floral attractants and rewards[J]. Journal of Pollination Ecology, 2014, 12: 63−94. doi: 10.26786/1920-7603(2014)5
    [12]
    Lázaro A, Hegland S J, Totland Ø. The relationships between floral traits and specificity of pollination systems in three Scandinavian plant communities[J]. Oecologia, 2008, 157(2): 249−257. doi: 10.1007/s00442-008-1066-2
    [13]
    Arnold S E J, Chittka L. Flower colour diversity seen through the eyes of pollinators. A commentary on: ‘floral colour structure in two Australian herbaceous communities: it depends on who is looking’[J]. Annals of Botany, 2019, 124(2): 8−9.
    [14]
    Ohashi K, Makino T T, Arikawa K. Floral colour change in the eyes of pollinators: testing possible constraints and correlated evolution[J]. Functional Ecology, 2015, 29(9): 1144−1155. doi: 10.1111/1365-2435.12420
    [15]
    Dyer A G, Boyd-Gerny S, Shrestha M, et al. Innate colour preferences of the Australian native stingless bee Tetragonula carbonaria Sm.[J]. Journal of Comparative Physiology A, 2016, 202: 603−613. doi: 10.1007/s00359-016-1101-4
    [16]
    Erickson E, Adam S, Russo L, et al. More than meets the eye? The role of annual ornamental flowers in supporting pollinators[J]. Environmental Entomology, 2020, 49(1): 178−188. doi: 10.1093/ee/nvz133
    [17]
    Kinoshita M, Takahashi Y, Arikawa K. Simultaneous brightness contrast of foraging Papilio butterflies[J]. Proceedings of the Royal Society B: Biological Sciences, 2012, 279: 1911−1918. doi: 10.1098/rspb.2011.2396
    [18]
    Lunau K, Maier E J. Innate colour preferences of flower visitors[J]. Journal of Comparative Physiology A, 1995, 177(1): 1−19.
    [19]
    Dyer A G, Boyd-Gerny S, Shrestha M, et al. Colour preferences of Tetragonula carbonaria Sm. stingless bees for colour morphs of the Australian native orchid Caladenia carnea[J]. Journal of Comparative Physiology A, 2019, 205(3): 347−361. doi: 10.1007/s00359-019-01346-0
    [20]
    Waser N M, Price M V. Pollinator behaviour and natural selection for flower colour in Delphinium nelsonii[J]. Nature, 1983, 302: 422−424. doi: 10.1038/302422a0
    [21]
    Shrestha M, Dyer A G, Bhattarai P, et al. Flower colour and phylogeny along an altitudinal gradient in the Himalayas of Nepal[J]. Journal of Ecology, 2014, 102(1): 126−135. doi: 10.1111/1365-2745.12185
    [22]
    de Jager M L, Dreyer L L, Ellis A G. Do pollinators influence the assembly of flower colours within plant communities?[J]. Oecologia, 2011, 166(2): 543−553. doi: 10.1007/s00442-010-1879-7
    [23]
    Shrestha M, Garcia J E, Martin B, et al. Australian native flower colours: does nectar reward drive bee pollinator flower preferences?[J/OL]. PLoS ONE, 2020, 15(6): e226469[2021−01−11]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226469.
    [24]
    Lunau K, Papiorek S, Eltz T, et al. Avoidance of achromatic colours by bees provides a private niche for hummingbirds[J]. Journal of Experimental Biology, 2011, 214(9): 1607−1612. doi: 10.1242/jeb.052688
    [25]
    杨丽莉. 青藏高原高寒草地植物群落花色多样性及影响因素[D]. 兰州: 兰州大学, 2020.

    Yang L L. Flower color diversity and influencing factors in alpine meadow community of Qinghai-Tibet Plateau[D]. Lanzhou: Lanzhou University, 2020.
    [26]
    Gray M, Stansberry M J, Lynn J S, et al. Consistent shifts in pollinator-relevant floral coloration along Rocky Mountain elevation gradients[J]. Journal of Ecology, 2018, 106(5): 1910−1924. doi: 10.1111/1365-2745.12948
    [27]
    Chittka L. The colour hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency[J]. Journal of Comparative Physiology A, 1992, 170(5): 533−543.
    [28]
    李庆良, 马晓开, 程瑾, 等. 花颜色和花气味的量化研究方法[J]. 生物多样性, 2012, 20(3): 308−316.

    Li Q L, Ma X K, Cheng J, et al. Quantitative studies of floral color and floral scent[J]. Biodiversity Science, 2012, 20(3): 308−316.
    [29]
    Shrestha M, Dyer A G, Burda M. Evaluating the spectral discrimination capabilities of different pollinators and their effect on the evolution of flower colors[J/OL]. Communicative & Integrative Biology, 2013, 6(3): e24000−1−4[2021−04−23]. https://www.tandfonline.com/action/showCitFormats?doi=10.4161%2Fcib.24000.
    [30]
    Tai K C, Shrestha M, Dyer A G, et al. Floral color diversity: how are signals shaped by elevational gradient on the tropical-subtropical mountainous island of Taiwan?[J/OL]. Frontiers in Plant Science, 2020, 11: 582784[2021−02−10]. https://www.frontiersin.org/articles/10.3389/fpls.2020.582784/full.
    [31]
    Shrestha M, Dyer A G, Boyd G S, et al. Shades of red: bird-pollinated flowers target the specific colour discrimination abilities of avian vision[J]. The New phytologist, 2013, 198(1): 301−310. doi: 10.1111/nph.12135
    [32]
    Dyer A G, Boyd-Gerny S, McLoughlin S, et al. Parallel evolution of angiosperm colour signals: common evolutionary pressures linked to hymenopteran vision[J]. Proceedings of the Royal Society B:Biological Sciences, 2012, 279(1742): 3606−3615. doi: 10.1098/rspb.2012.0827
    [33]
    Camargo M G G, Cazetta E, Schaefer H M, et al. Fruit color and contrast in seasonal habitats: a case study from a cerrado savanna[J]. Oikos, 2013, 122(9): 1335−1342. doi: 10.1111/j.1600-0706.2013.00328.x
    [34]
    Camargo M G G, Lunau K, Batalha M A, et al. How flower colour signals allure bees and hummingbirds: a community-level test of the bee avoidance hypothesis[J]. The New phytologist, 2019, 222(2): 1112−1122. doi: 10.1111/nph.15594
    [35]
    Shrestha M, Lunau K, Dorin A, et al. Floral colours in a world without birds and bees: the plants of Macquarie Island[J]. Plant Biology (Stuttgart, Germany), 2016, 18(5): 842−850. doi: 10.1111/plb.12456
    [36]
    Tunes P, Camargo M G G, Guimarães E. Floral UV features of plant species from a neotropical savanna[J/OL]. Frontiers in Plant Science, 2021, 12: 618028[2022−01−10]. https://www.frontiersin.org/articles/10.3389/fpls.2021.618028/full.
    [37]
    Dorin A, Shrestha M, Herrmann M, et al. Automated calculation of spectral-reflectance marker-points to enable analysis of plant colour-signalling to pollinators[J/OL]. MethodsX, 2020, 7: 100827[2021−03−21]. https://www.sciencedirect.com/science/article/pii/S2215016120300479?via%3Dihub.
    [38]
    Papiorek S, Junker R R, Alves-Dos-Santos I, et al. Bees, birds and yellow flowers: pollinator-dependent convergent evolution of UV patterns[J]. Plant Biology, 2016, 18(1): 46−55. doi: 10.1111/plb.12322
    [39]
    Giurfa M, Núnez J, Chittka L, et al. Colour preferences of flower-naive honeybees[J]. Journal of Comparative Physiology A, 1995, 177(3): 247−259.
    [40]
    Koethe S, Bossems J, Dyer A G, et al. Colour is more than hue: preferences for compiled colour traits in the stingless bees Melipona mondury and M. quadrifasciata[J]. Journal of Comparative Physiology A, 2016, 202(9−10): 615−627. doi: 10.1007/s00359-016-1115-y
    [41]
    Aguiar J M R B, Maciel A A, Santana P C, et al. Intrafloral color modularity in a bee-pollinated orchid[J/OL]. Frontiers in Plant Science, 2020, 11: 589300[2021−01−11]. https://www.frontiersin.org/articles/10.3389/fpls.2020.589300/full.
    [42]
    Dalrymple R L, Kemp D J, Flores-Moreno H, et al. Macroecological patterns in flower colour are shaped by both biotic and abiotic factors[J]. New Phytologist, 2020, 228(6): 1972−1985. doi: 10.1111/nph.16737
    [43]
    Streinzer M, Neumayer J, Spaethe J. Flower color as predictor for nectar reward quantity in an alpine flower community[J/OL]. Frontiers in Ecology and Evolution, 2021, 9: 721241[2022−01−05]. https://www.frontiersin.org/articles/10.3389/fevo.2021.721241/full.
    [44]
    Bergamo P J, Telles F J, Arnold S E J, et al. Flower colour within communities shifts from over dispersed to clustered along an alpine altitudinal gradient[J]. Oecologia, 2018, 188(1): 223−235. doi: 10.1007/s00442-018-4204-5
    [45]
    Bukovac Z, Shrestha M, Garcia J E, et al. Why background colour matters to bees and flowers[J]. Journal of Comparative Physiology A, 2017, 203(5): 369−380. doi: 10.1007/s00359-017-1175-7
    [46]
    Martins A E, Arista M, Morellato L P C, et al. Color signals of bee-pollinated flowers: the significance of natural leaf background[J]. American Journal of Botany, 2021, 108(5): 788−797. doi: 10.1002/ajb2.1656
    [47]
    Proctor M C F, Yeo P, Lack A. The natural history of pollination[M]. London: Harper Collins Publishers, 1996.
    [48]
    Chittka L, Waser N M. Why red flowers are not invisible to bees[J]. Israel Journal of Plant Sciences, 1997, 45(2−3): 169−183. doi: 10.1080/07929978.1997.10676682
    [49]
    Forrest J, Thomson J D. Background complexity affects colour preference in bumblebees[J]. Naturwissenschaften, 2009, 96(8): 921−925. doi: 10.1007/s00114-009-0549-2
    [50]
    Giurfa M, Vorobyev M, Kevan P, et al. Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts[J]. Journal of Comparative Physiology A, 1996, 178(5): 699−709.
    [51]
    Spaethe J, Tautz J, Chittka L. Visual constraints in foraging bumblebees: flower size and color affect search time and flight behavior[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(7): 3898−3903. doi: 10.1073/pnas.071053098
    [52]
    黄家兴. 华北地区熊蜂属(Hymenoptera: Apidae)系统发育的初步研究[D]. 北京: 中国农业科学院, 2006.

    Huang J X. The phylogeny of genus Bombus (Hymenopera: Apidae) in North China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2006.
    [53]
    彭文君, 黄家兴, 吴杰, 等. 华北地区六种熊蜂的地理分布及生态习性[J]. 昆虫知识, 2009, 46(1): 115−120.

    Peng W J, Huang J X, Wu J, et al. Geographic distribution and bionomics of six bumblebee species in North China[J]. Chinese Bulletin of Entomology, 2009, 46(1): 115−120.
    [54]
    de Ibarra N H, Vorobyev M, Menzel R, et al. Mechanisms, functions and ecology of colour vision in the honeybee[J]. Journal of Comparative Physiology A, 2014, 200(6): 411−433. doi: 10.1007/s00359-014-0915-1
    [55]
    Marquardt M, Kienbaum L, Losert D, et al. Comparison of floral traits in Calibrachoa cultivars and assessment of their impacts on attractiveness to flower-visiting insects[J]. Arthropod-Plant Interactions, 2021, 15(4): 517−534. doi: 10.1007/s11829-021-09844-2
  • Cited by

    Periodical cited type(11)

    1. 高荧荧,王雯琦,符昌昊,许秀英. 基于UAV平台的农作物数据采集与处理方法研究. 现代化农业. 2025(02): 52-54 .
    2. 陈树新,刘炳杰,王海熠,苏勇,艾遒一,田昕. 结合可见光植被指数和分水岭算法的单木树冠信息提取. 遥感技术与应用. 2024(01): 34-44 .
    3. 钟磊,苏杰. 三维激光扫描技术在建筑物立面测绘中的精度分析. 科学技术创新. 2024(15): 131-134 .
    4. 赵亚凯,邓青春. 反距离加权插值参数对细沟DEM精度的影响. 西华师范大学学报(自然科学版). 2023(05): 496-504 .
    5. 莫嬃,易烜,边更战,陈书杭. 基于第一着枝角度的罗田垂枝杉树冠表面积预估模型研究. 湖南林业科技. 2023(06): 37-43+50 .
    6. 王玉堂,王佳,牛利伟,常书萍,孙露. 基于无人机倾斜摄影测量的树冠体积及表面积提取算法对比分析. 林业工程学报. 2022(03): 166-173 .
    7. 王补 ,谭伟 ,王贵林 ,蒲秀青 . 基于无人机多光谱影像的松材线虫病单木尺度监测. 林业资源管理. 2022(05): 107-117 .
    8. 杜意鸿,尹田,周雪梅,张晓丽. 倾斜摄影测量技术提取油松单木信息. 北京林业大学学报. 2021(04): 77-86 . 本站查看
    9. 宋晓鹏,张岩,王志强,邓家勇,王佳希. 无人机摄影测量提取黄土高原切沟参数精度分析. 北京师范大学学报(自然科学版). 2021(05): 606-612 .
    10. 杨全月,董泽宇,马振宇,吴悠,崔琪,卢昊. 基于SfM的针叶林无人机影像树冠分割算法. 农业机械学报. 2020(06): 181-190 .
    11. 冯正茂,陈桃红,苏玉峰,伍浩如. 倾斜摄影测量技术在纸浆厂木片资产管理中的应用. 中国造纸. 2020(06): 64-68 .

    Other cited types(8)

Catalog

    Article views (560) PDF downloads (84) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return