• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Xing Xuefeng, Li Shanming, Jin Juwan, Lin Lanying, Zhou Yongdong, Fu Feng. Bending properties and damage evolution characteristics of high-intensity microwave treated radiata pine lumber[J]. Journal of Beijing Forestry University, 2022, 44(8): 107-116. DOI: 10.12171/j.1000-1522.20220095
Citation: Xing Xuefeng, Li Shanming, Jin Juwan, Lin Lanying, Zhou Yongdong, Fu Feng. Bending properties and damage evolution characteristics of high-intensity microwave treated radiata pine lumber[J]. Journal of Beijing Forestry University, 2022, 44(8): 107-116. DOI: 10.12171/j.1000-1522.20220095

Bending properties and damage evolution characteristics of high-intensity microwave treated radiata pine lumber

More Information
  • Received Date: March 10, 2022
  • Revised Date: July 12, 2022
  • Accepted Date: July 12, 2022
  • Available Online: July 17, 2022
  • Published Date: August 24, 2022
  •   Objective  The effects of high-intensity microwave treatment on the flexural modulus of elasticity, bending strength, bending plastic work were investigated, and the damage process and failure mode of treated lumber during static bending load were explored.
      Method  The radiata pine lumber with moisture contents ranging from 50% to 70% was treated by high-intensity microwave at three microwave energy density levels, i.e., 60, 80 and 100 kW·h/m3, respectively. Both the treated and untreated lumber specimens were tested for three-point bending modulus of elasticity, bending strength and bending plastic work under the real-time monitoring of the acoustic emission (AE) system, and the damage evolution characteristics of different loading stages were compared by analyzing the fracture failure section morphology and AE parameters.
      Result  The average values of modulus of elasticity and bending strength of untreated lumber specimens were 5 520 and 61.7 MPa, respectively. The treated lumber specimens presented less than 10% change in their average bending strength and modulus of elasticity compared with untreated ones. However, high-energy microwave treatment significantly increased the bending plastic work of wood. Compared with the untreated lumber specimens, the bending plastic work of wood treated at 60 and 100 kW·h/m3 increased by 12% and 16%, respectively. Lumber treated with the energy density of 80 kWh/m3 showed the highest bending plastic work value, which was 22% higher than that of the untreated lumber specimens. The parameter analysis of AE showed that, with the increase of microwave energy density, the first occurrence time of AE signal of the treated materials was gradually advanced, and the duration of the first stable damage growth stage, the cumulative ringing count growth rate, as well as amplitude and energy activity of the plastic deformation stage increased gradually. During the process of bending test, the treated lumber specimens presented a higher damage growth rate and stress recombination efficiency, which indicated that there were more buckles and collapse damage occurring in the cell wall, Therefore, the cracks in the treated lumber specimens expanded faster, which weakened the stress concentration effect and increased the bending plastic work of wood to a certain extent. The analysis on the tested specimens’ fracture morphology verified the AE test results: the cross-sectional morphology of the tensile region, neutral layer, and compression region of the treated materials were rougher than that of the untreated ones.
      Conclusion  Appropriate high-intensity microwave treatment could significantly increase the bending plastic work of wood while only slightly changing the modulus of elasticity and bending strength of wood. This suggests new potential applications of high-intensity microwave-treated lumber. The research methods and results can effectively show the damage evolution characteristics of high-intensity microwave-treated lumber, and will provide a reference to the related research on the damage evolution of wooden materials.
  • [1]
    Liu H H, Wang Q W, Yang L, et al. Modification of larch wood by intensive microwave irradiation[J]. Journal of Forestry Research, 2005, 16(3): 237−240. doi: 10.1007/BF02856823
    [2]
    Antti A L, Perré P. A microwave applicator for on line wood drying: temperature and moisture distribution in wood[J]. Wood Science and Technology, 1999, 33(2): 123−138. doi: 10.1007/s002260050104
    [3]
    宋魁彦, 李坚. 水热–微波处理对榆木软化和顺纹压缩及弯曲的影响[J]. 林业科学, 2009, 45(10): 120−125. doi: 10.11707/j.1001-7488.20091020

    Song K Y, Li J. Effect of hydrothermal-microwave treatment on softening and longitudinal compressing and bending elm wood[J]. Scientia Silvae Sinicae, 2009, 45(10): 120−125. doi: 10.11707/j.1001-7488.20091020
    [4]
    Peres M D, Delucis R D A, Gatto D A, et al. Mechanical behavior of wood species softened by microwave heating prior to bending[J]. European Journal of Wood & Wood Products, 2016, 74(2): 143−149.
    [5]
    何盛, 于辉, 吴再兴, 等. 微波处理对樟子松木材液体浸注性能影响[J]. 微波学报, 2016, 32(6): 90−96.

    He S, Yu H, Wu Z X, et al. Effect of microwave treatment on liquid impregnate property of Pinus sylvestris L. var lumber[J]. Journal of Microwaves, 2016, 32(6): 90−96.
    [6]
    胡嘉裕, 刘元, 喻胜飞, 等. 微波预处理对杨木活性染料染色效果的影响[J]. 中南林业科技大学学报, 2015, 35(12): 123−126. doi: 10.14067/j.cnki.1673-923x.2015.12.022

    Hu J Y, Liu Y, Yu S F, et al. Effects of microwave pretreatment on poplar veneer dyeing with reactive dyes[J]. Journal of Central South University of Forestry & Technology, 2015, 35(12): 123−126. doi: 10.14067/j.cnki.1673-923x.2015.12.022
    [7]
    何盛, 傅峰, 林兰英, 等. 微波处理技术在木材功能化改性研究中的应用[J]. 世界林业研究, 2014, 27(1): 62−67. doi: 10.13348/j.cnki.sjlyyj.2014.01.011

    He S, Fu F, Lin L Y, et al. Research progress in functional modification of microwave treated wood[J]. World Forestry Research, 2014, 27(1): 62−67. doi: 10.13348/j.cnki.sjlyyj.2014.01.011
    [8]
    徐恩光, 林兰英, 李善明, 等. 木材微波处理技术与应用进展[J]. 木材工业, 2020, 34(1): 20−24, 29. doi: 10.19455/j.mcgy.20200105

    Xu E G, Lin L Y, Li S M, et al. Wood microwave treatment technology and its applications[J]. China Wood Industry, 2020, 34(1): 20−24, 29. doi: 10.19455/j.mcgy.20200105
    [9]
    方瑞, 陈金永, 师希望, 等. 五种木材顺纹抗弯性能试验研究[J]. 四川建筑科学研究, 2016, 42(6): 16−20. doi: 10.3969/j.issn.1008-1933.2016.06.004

    Fang R, Chen J Y, Shi X W, et al. Experimental study of bending properties parallel to grain of five wood species[J]. Sichuan Building Science, 2016, 42(6): 16−20. doi: 10.3969/j.issn.1008-1933.2016.06.004
    [10]
    Koman S, Feher S, Abraham J, et al. Effect of knots on the bending strength and the modulus of elasticity of wood[J]. Wood Research, 2013, 58(4): 617−626.
    [11]
    冯上环. 不同温度条件下白桦和水曲柳木材横纹弯曲及应力松弛性能研究[D]. 北京: 中国林业科学研究院, 2010.

    Feng S H. Bending properties perpendicular to grain and stress relaxation of birch and ash at different temperature conditions[D]. Beijing: Chinese Academy of Forestry, 2010.
    [12]
    高珊, 王立海, 王喜平. 温度及水分状态对美国红松弯曲弹性模量的影响[J]. 林业科技开发, 2014, 28(4): 38−42. doi: 10.13360/j.issn.1000-8101.2014.04.010

    Gao S, Wang L H, Wang X P. The influence of temperature and moisture contents on modulus of elasticity of Pinus koraicnsis wood[J]. China Forestry Science and Technology, 2014, 28(4): 38−42. doi: 10.13360/j.issn.1000-8101.2014.04.010
    [13]
    李珠, 蒋佳荔. 木材湿−热−力改性技术研究进展[J]. 世界林业研究, 2018, 31(6): 31−35.

    Li Z, Jiang J L. Research progress in thermo-hydro-mechanical processing of wood[J]. World Forestry Research, 2018, 31(6): 31−35.
    [14]
    Bi W Z, Li H T, Hui D, et al. Effects of chemical modification and nanotechnology on wood properties[J]. Nanotechnology Reviews, 2021, 10(1): 978−1008. doi: 10.1515/ntrev-2021-0065
    [15]
    徐恩光, 林兰英, 李善明, 等. 微波处理对樟子松木材化学组分含量影响[J]. 木材工业, 2020, 34(4): 31−37. doi: 10.19455/j.mcgy.20200408

    Xu E G, Lin L Y, Li S M, et al. Effect of microwave treatment on chemical composition of Mongolian scotch pine (Pinus sylvestris var. mongolica Litv.)[J]. China Wood Industry, 2020, 34(4): 31−37. doi: 10.19455/j.mcgy.20200408
    [16]
    李善明, 邢雪峰, 林兰英, 等. 高能微波预处理辐射松木材的弯曲性能研究[J]. 木材工业, 2020, 34(5): 1−6. doi: 10.19455/j.mcgy.20200501

    Li S M, Xing X F, Lin L Y, et al. Effect of high energy density microwave pretreatment on bendability of radiata pine (Pinus radiate) wood[J]. China Wood Industry, 2020, 34(5): 1−6. doi: 10.19455/j.mcgy.20200501
    [17]
    Lamy F, Takarli M, Angellier N, et al. Acoustic emission technique for fracture analysis in wood materials[J]. International Journal of Fracture, 2015, 192(1): 57−70. doi: 10.1007/s10704-014-9985-x
    [18]
    涂郡成, 赵东, 赵健. 含LT型裂纹木梁起裂载荷确定方法的试验研究[J]. 林业工程学报, 2020, 5(3): 149−154.

    Tu J C, Zhao D, Zhao J. Experimental study for determining method of cracking load of wooden beams with LT crack[J]. Journal of Forestry Engineering, 2020, 5(3): 149−154.
    [19]
    Zhang M, Zhang Q, Li J, et al. Classification of acoustic emission signals in wood damage and fracture process based on empirical mode decomposition, discrete wavelet transform methods, and selected features[J]. Journal of Wood Science, 2021, 67(1): 1−13. doi: 10.1186/s10086-021-01990-8
    [20]
    Wang T, Wang Z, Yang Y, et al. Acoustic emission characteristics of different bamboo and wood materials in bending failure process[J]. Journal of Renewable Materials, 2022, 10(2): 527. doi: 10.32604/jrm.2022.017955
    [21]
    赵亓. 出水木质文物损伤演化声发射特征与失稳预测方法及装置研究[D]. 北京: 北京林业大学, 2020.

    Zhao Q. Study on the evolution characteristics and prediction methods of acoustic emission of waterlogged archaeological wooden relic and equipment development[D]. Beijing: Beijing Forestry University, 2020.
    [22]
    Gaff M, Babiak M. Methods for determining the plastic work in bending and impact of selected factors on its value[J]. Composite Structures, 2018, 202: 66−76. doi: 10.1016/j.compstruct.2017.11.036
    [23]
    Torgovnikov G, Vinden P. High-intensity microwave wood modification for increasing permeability[J]. Forest Products Journal, 2009, 59(4): 84.
    [24]
    Chen Z, Gabbitas B, Hunt D. Monitoring the fracture of wood in torsion using acoustic emission[J]. Journal of Materials Science, 2006, 41(12): 3645−3655. doi: 10.1007/s10853-006-6292-6
    [25]
    涂郡成, 赵东, 赵健. 应用AE和DIC原位监测含横纹裂纹木构件的裂纹演化规律试验研究[J]. 北京林业大学学报, 2020, 42(1): 142−148. doi: 10.12171/j.1000-1522.20190276

    Tu J C, Zhao D, Zhao J. Experimental study on in situ monitoring of the evolution law of cracks in wood components with transverse cracks based on acoustic emission and image correlation[J]. Journal of Beijing Forestry University, 2020, 42(1): 142−148. doi: 10.12171/j.1000-1522.20190276
    [26]
    Baensch F, Sause M G R, Brunner A J, et al. Damage evolution in wood–pattern recognition based on acoustic emission (AE) frequency spectra[J]. Holzforschung, 2015, 69(3): 357−365. doi: 10.1515/hf-2014-0072
    [27]
    Diakhate M, Bastidas-Arteaga E, Moutou P R, et al. Cluster analysis of acoustic emission activity within wood material: towards a real-time monitoring of crack tip propagation[J]. Engineering Fracture Mechanics, 2017, 180: 254−267. doi: 10.1016/j.engfracmech.2017.06.006
    [28]
    Varner D, Černý M, Varner M, et al. Possible sources of acoustic emission during static bending test of wood specimens[J]. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 2013, 60(3): 199−206. doi: 10.11118/actaun201260030199
    [29]
    Luimes R A, Suiker A S J, Verhoosel C V, et al. Fracture behaviour of historic and new oak wood[J]. Wood Science and Technology, 2018, 52(5): 1243−1269. doi: 10.1007/s00226-018-1038-6
    [30]
    Rescalvo F J, Morillas L, Valverde-Palacios I, et al. Acoustic emission in I-214 poplar wood under compressive loading[J]. European Journal of Wood and Wood Products, 2020, 78(1): 723−732.
    [31]
    Wang D, Lin L, Fu F, et al. The softwood fracture mechanisms at the scales of the growth ring and cell wall under bend loading[J]. Wood Science and Technology, 2019, 53(6): 1295−1310. doi: 10.1007/s00226-019-01132-w
    [32]
    Liu M, Li C, Wang Q. Microstructural characteristics of larch wood treated by high-intensity microwave[J]. BioResources, 2019, 14(1): 1174−1184.
    [33]
    翁翔. 微波处理对杉木干燥特性的影响机制研究[D]. 北京: 中国林业科学研究院, 2020.

    Weng X. Study on the influence mechanism of microwave treatment on drying characteristics of Chinese fir wood [D]. Beijing: Chinese Academy of Forestry, 2020.
  • Cited by

    Periodical cited type(15)

    1. 隆吉辉,田银芳,汪超群. 湘西杉木人工林树高-胸径混合效应模型构建. 湖南林业科技. 2024(02): 25-32 .
    2. 王帆,贾炜玮,唐依人,李丹丹. 基于TLS的红松树冠半径提取及其外轮廓模型构建. 南京林业大学学报(自然科学版). 2023(01): 13-22 .
    3. 单华平,冯骏,翟丕斌,侯义梅,陈东升,朱红军. 鄂西山区日本落叶松树高曲线的研究. 湖北林业科技. 2023(04): 1-4+10 .
    4. 孙天旭,张勇,郑燕凤,高莉,李庆,陈雪,林倩倩,张宜雪,王成德. 鲁中山区主要针叶树种树干削度方程研究——以侧柏、赤松、黑松为例. 山东农业大学学报(自然科学版). 2023(04): 613-619 .
    5. 聂璐毅,董利虎,李凤日,苗铮,谢龙飞. 基于两水平非线性混合效应模型的长白落叶松削度方程构建. 南京林业大学学报(自然科学版). 2022(03): 194-202 .
    6. 刘家腾,赵雪晗,刘伟韬,李建荣,蒋丽娟,周宇航,高慧淋,顾巍. 基于边际回归的沈阳市绿化树种人工油松冠形模拟. 应用生态学报. 2022(11): 2915-2922 .
    7. 刘金义. 辽东山区人工红松树高曲线研究. 辽宁林业科技. 2021(04): 9-11+31 .
    8. 吴丹子,王成德,李倞,刘敏. 福建杉木树冠外轮廓和树冠体积相容性模型. 浙江农林大学学报. 2020(01): 114-121 .
    9. 高慧淋,董利虎,李凤日. 基于修正Kozak方程的人工樟子松树冠轮廓预估模型. 林业科学. 2019(08): 84-94 .
    10. 全迎,李明泽,甄贞,郝元朔. 运用无人机激光雷达数据提取落叶松树冠特征因子及树冠轮廓模拟. 东北林业大学学报. 2019(11): 52-58 .
    11. 耿林,李明泽,范文义,王斌. 基于机载LiDAR的单木结构参数及林分有效冠的提取. 林业科学. 2018(07): 62-72 .
    12. 马载阳,张怀清,李永亮,杨廷栋,陈中良,李思佳. 基于空间结构的杉木树冠生长可视化模拟. 林业科学研究. 2018(04): 150-157 .
    13. 高慧淋,董利虎,李凤日. 黑龙江省红松和长白落叶松人工林树冠外部轮廓模拟. 南京林业大学学报(自然科学版). 2018(03): 10-18 .
    14. 马载阳,张怀清,李永亮,杨廷栋,彭文娥,李思佳. 林木多样性模型及生长模拟. 地球信息科学学报. 2018(10): 1422-1431 .
    15. 高慧淋,董利虎,李凤日. 基于混合效应的人工落叶松树冠轮廓模型. 林业科学. 2017(03): 84-93 .

    Other cited types(11)

Catalog

    Article views (871) PDF downloads (73) Cited by(26)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return