• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Han Rong, Tian Qing, Sun Yimei, Li Juanxia, Zhu Zhu. Stoichiometric characteristics of carbon, nitrogen and phosphorus in the leaves of 42 woody landscape plants in Lanzhou City of northwestern China[J]. Journal of Beijing Forestry University, 2023, 45(7): 110-119. DOI: 10.12171/j.1000-1522.20220168
Citation: Han Rong, Tian Qing, Sun Yimei, Li Juanxia, Zhu Zhu. Stoichiometric characteristics of carbon, nitrogen and phosphorus in the leaves of 42 woody landscape plants in Lanzhou City of northwestern China[J]. Journal of Beijing Forestry University, 2023, 45(7): 110-119. DOI: 10.12171/j.1000-1522.20220168

Stoichiometric characteristics of carbon, nitrogen and phosphorus in the leaves of 42 woody landscape plants in Lanzhou City of northwestern China

More Information
  • Received Date: April 28, 2021
  • Revised Date: December 22, 2022
  • Accepted Date: February 27, 2023
  • Available Online: March 02, 2023
  • Published Date: July 24, 2023
  •   Objective  The contents and ratios of carbon (C), nitrogen (N) and phosphorus (P) in plant leaves are the results of long-term adaptation of plants to the environment. Study of leaf stoichiometry characteristics of woody landscape plants in arid areas of northwestern China can provide a data basis for the accurate planning and construction of large-scale models of planting in similar cities.
      Method  In this study, the C, N and P stoichiometric characteristics of 42 common woody landscape plants in the main urban district of Lanzhou City of northwestern China (Qilihe District, Anning District and Xigu District) were analyzed. The 42 plant species were classified into trees (26 species) and shrubs (16 species), evergreen (7 species) and deciduous (35 species), coniferous (5 species) and broadleaved (37 species). Variation characteristics of leaves’ contents of C, N, P, C∶N, C∶P and N∶P of different life types, and the relationship between the variation characteristics and specific leaf mass (LMA) were analyzed.
      Result  (1) The average contents of C, N and P of 42 woody landscape plants were 39.67%, 2.45% and 0.17%, respectively. The average C∶N, C∶P and N∶P were 17.17, 232.98 and 14.72, respectively. Compared with the global scale, the contents of C and P and C∶N in leaves of woody plants in Lanzhou City were relatively low, while the contents of N∶P in leaves were relatively high. (2) Stoichiometric characteristics varied among different plant life types. The C content, C∶N, C∶P and N:P of the leaves of trees were higher than those of shrubs, and the content of N and P was lower than that of shrubs. The leaf N and P content of deciduous tree species was higher than that of evergreen tree species. The leaves of broadleaved tree species had higher leaf N and P content than coniferous tree species. (3) The analysis of the correlations between plant leaf traits showed that leaf C content was positively correlated with C∶N and C∶P (P < 0.01). There was a synergistic relationship between LMA and leaf C content, but an opposite relationship between LMA and leaf N and P content.
      Conclusion  It is preliminarily indicated that the development of woody landscape plants in Lanzhou City is limited by N elements during the growing season, and it is suggested that nitrogenous fertilizer can be increased appropriately during the ecological environmental improvement in this area.
  • [1]
    杨明飞. 我国北方干旱至半湿润区分布的植物叶碳氮磷化学计量特征研究[D]. 兰州: 兰州大学, 2017

    Yang M F. Leaf carbon, nitrogen and phosphorus stoichiometry across plant species in the arid to semi-humid regions, north China[D]. Lanzhou: Lanzhou University, 2017.
    [2]
    刘超, 王洋, 王楠, 等. 陆地生态系统植被氮磷化学计量研究进展[J]. 植物生态学报, 2012, 36(11): 1205−1216.

    Liu C, Wang Y, Wang N, et al. Advances research in plant nitrogen, phosphorus and their stoichiometry in terrestrial eco-systems: a review[J]. Chinese Journal of Plant Ecology, 2012, 36(11): 1205−1216.
    [3]
    刘旻霞. 甘南高寒草甸植物元素含量与土壤因子对坡向梯度的响应[J]. 生态学报, 2017, 37(24): 8275−8284.

    Liu M X. Response of plant element content and soil factors to the slope gradient of alpine meadows in Gannan[J]. Acta Ecologica Sinica, 2017, 37(24): 8275−8284.
    [4]
    Reiners W A. Complementary models for ecosystems[J]. The American Naturalist, 1986, 127(1): 59−73. doi: 10.1086/284467
    [5]
    贺金生, 韩兴国. 生态化学计量学: 探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010, 34(1): 2−6. doi: 10.3773/j.issn.1005-264x.2010.01.002

    He J S, Han X G. Ecological stoichiometry: searching for unifying principles from individuals to ecosystems[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 2−6. doi: 10.3773/j.issn.1005-264x.2010.01.002
    [6]
    曾德慧, 陈广生. 生态化学计量学: 复杂生命系统奥秘的探索[J]. 植物生态学报, 2005, 29(6): 141−153.

    Zeng D H, Chen G S. Ecological stoichiometry: a science to explore the complexity of living systems[J]. Chinese Journal of Plant Ecology, 2005, 29(6): 141−153.
    [7]
    Reich P B, Jacek O. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences, 2004, 101(30): 11001−11006. doi: 10.1073/pnas.0403588101
    [8]
    Han W X, Fang J Y, Guo D L, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168(2): 377−385. doi: 10.1111/j.1469-8137.2005.01530.x
    [9]
    任书杰, 于贵瑞, 陶波, 等. 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J]. 环境科学, 2007, 28(12): 2665−2673. doi: 10.3321/j.issn:0250-3301.2007.12.001

    Ren S J, Yu G R, Tao B, et al. Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC[J]. Environmental Science, 2007, 28(12): 2665−2673. doi: 10.3321/j.issn:0250-3301.2007.12.001
    [10]
    Sabine G. N∶P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164(2): 243−266. doi: 10.1111/j.1469-8137.2004.01192.x
    [11]
    白晓珂. 氮添加、增温和降雨增加对黄土高原紫花苜蓿叶片化学计量学特征的影响[D]. 兰州: 兰州大学, 2019.

    Bai X K. Effects of nitrogen addition, warming and rainfall increase on stoichiometry of alfalfa leaves in the Loess Plateau of China[D]. Lanzhou: Lanzhou University, 2019.
    [12]
    洪江涛, 吴建波, 王小丹. 全球气候变化对陆地植物碳氮磷生态化学计量学特征的影响[J]. 应用生态学报, 2013, 24(9): 2658−2665.

    Hong J T, Wu J B, Wang X D. Effects of global climate change on the C, N and P stoichiometry of terrestrial plants[J]. Chinese Journal of Applied Ecology, 2013, 24(9): 2658−2665.
    [13]
    Wilson P J, Thompson K, Hodgson J G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies[J]. New Phytologist, 2010, 143(1): 155−162.
    [14]
    Wright I J, Reich P B, Westoby M. The worldwide leaf economics spectrum[J]. Nature, 2004, 428: 821−827. doi: 10.1038/nature02403
    [15]
    李玉霖, 毛伟, 赵学勇, 等. 北方典型荒漠及荒漠化地区植物叶片氮磷化学计量特征研究[J]. 环境科学, 2010, 31(8): 1716−1725.

    Li Y L, Mao W, Zhao X Y, et al. Leaf nitrogen and phosphorus stoichiometry in typical desert and desertified regions, north China[J]. Environmental Science, 2010, 31(8): 1716−1725.
    [16]
    王雪薇. 城市森林在城镇化人居环境中的作用和建设理念[J]. 安徽农学通报, 2011, 17(7): 147−148. doi: 10.3969/j.issn.1007-7731.2011.07.073

    Wang X W. The function and construction idea of urban forest in urbanization human settlement environment[J]. Anhui Agricultural Science Bulletin, 2011, 17(7): 147−148. doi: 10.3969/j.issn.1007-7731.2011.07.073
    [17]
    武利玉, 苏世平, 王蕙. 兰州南北两山绿化区植物与植被类型初查[J]. 中国沙漠, 2006, 26(4): 564−568. doi: 10.3321/j.issn:1000-694X.2006.04.011

    Wu L Y, Su S P, Wang H. Preliminary investigation into plant and vegetation types in afforestation region in southern and northern mountains of Lanzhou City[J]. Journal of Desert Research, 2006, 26(4): 564−568. doi: 10.3321/j.issn:1000-694X.2006.04.011
    [18]
    杜鹃. 兰州主要绿化植物物候学与合理配植研究[D]. 兰州: 兰州大学, 2008.

    Du J. Study on garden afforestation phenology and its optimal application in Lanzhou City[D]. Lanzhou: Lanzhou University, 2008.
    [19]
    刘立程. 兰州市生态系统服务供需关系研究[D]. 兰州: 西北师范大学, 2020.

    Liu L C. Study on the relationship between supply and demand of ecosystem services in Lanzhou[D]. Lanzhou: Northwest Normal University, 2020.
    [20]
    李栋梁, 刘德祥. 甘肃气候[M]. 北京: 气象出版社, 2000.

    Li D L, Liu D X. Gansu climate[M]. Beijing: Meteorological Press, 2000.
    [21]
    孙兰东, 刘德祥. 西北地区热量资源对气候变化的响应特征[J]. 干旱气象, 2008, 26(1): 8−12. doi: 10.3969/j.issn.1006-7639.2008.01.002

    Sun L D, Liu D X. Characteristics of heat resources in response to climate change in northwest China[J]. Journal of Arid Meteorology, 2008, 26(1): 8−12. doi: 10.3969/j.issn.1006-7639.2008.01.002
    [22]
    Cornelissen J H C, Lavorel S, Garnier E. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2003, 51(4): 335−380. doi: 10.1071/BT02124
    [23]
    高阳, 高凯, 王琳, 等. 科尔沁沙地两个菊芋品种叶片C、N、P化学计量特征[J]. 草原与草坪, 2019, 39(4): 72−77. doi: 10.3969/j.issn.1009-5500.2019.04.012

    Gao Y, Gao K, Wang L, et al. Stoichiometry traits of C, N and P of two jerusalem artichoke leaves in Horqin Sandy Land[J]. Grasslands and Turf, 2019, 39(4): 72−77. doi: 10.3969/j.issn.1009-5500.2019.04.012
    [24]
    何桂萍, 田青, 李宗杰, 等. 摩天岭北坡森林木本植物叶性状在物种和群落水平沿海拔梯度的变化[J]. 西北植物学报, 2018, 38(3): 553−563. doi: 10.7606/j.issn.1000-4025.2018.03.0553

    He G P, Tian Q, Li Z J, et al. Change in leaf functional traits of woody plants along altitudinal gradients at species and community levels on the Motianling northern slope[J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(3): 553−563. doi: 10.7606/j.issn.1000-4025.2018.03.0553
    [25]
    孙一梅, 田青, 吕朋, 等. 极端干旱与氮添加对半干旱沙质草地物种多样性、叶性状和生产力的影响[J]. 干旱区研究, 2020, 37(6): 1569−1579.

    Sun Y M, Tian Q, Lü P, et al. Effects of extreme drought and nitrogen addition on species diversity, leaf trait, and productivity in a semiarid sandy grassland[J]. Arid Zone Research, 2020, 37(6): 1569−1579.
    [26]
    Elser J J, Fagan W F, Denno R F, et al. Nutritional constraints in terrestrial and freshwater food webs[J]. Nature, 2000, 408: 578−580. doi: 10.1038/35046058
    [27]
    郑淑霞, 上官周平. 黄土高原地区植物叶片养分组成的空间分布格局[J]. 自然科学进展, 2006(8): 965−973. doi: 10.3321/j.issn:1002-008X.2006.08.008

    Zheng S X, Shangguan Z P. Spatial distribution pattern of plant leaf nutrient composition in the Loess Plateau[J]. Progress in Natural Science, 2006(8): 965−973. doi: 10.3321/j.issn:1002-008X.2006.08.008
    [28]
    阎恩荣, 王希华, 郭明, 等. 浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C∶N∶P化学计量特征[J]. 植物生态学报, 2010, 34(1): 48−57. doi: 10.3773/j.issn.1005-264x.2010.01.008

    Yan E R, Wang X H, Guo M, et al. C∶N∶P stoichiometry across evergreen broad-leaved forests, evergreen coniferous forests anddeciduous broad-leaved forests in the Tiantong Region, Zhejiang Province, eastern China[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 48−57. doi: 10.3773/j.issn.1005-264x.2010.01.008
    [29]
    汪涛, 杨元合, 马文红. 中国土壤磷库的大小、分布及其影响因素[J]. 北京大学学报(自然科学版), 2008, 44(6): 945−952.

    Wang T, Yang Y H, Ma W H. Storage, patterns and environmental controls of soil phosphorus in China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2008, 44(6): 945−952.
    [30]
    熊星烁, 蔡宏宇, 李耀琪, 等. 内蒙古典型草原植物叶片碳氮磷化学计量特征的季节动态[J]. 植物生态学报, 2020, 44(11): 1138−1153. doi: 10.17521/cjpe.2020.0105

    Xiong X S, Cai H Y, Li Y Q, et al. Seasonal dynamics of leaf C, N and P stoichiometry in plants of typical steppe in Nei Mongol, China[J]. Chinese Journal of Plant Ecology, 2020, 44(11): 1138−1153. doi: 10.17521/cjpe.2020.0105
    [31]
    Liu D, Zhang J, Biswas A, et al. Seasonal dynamics of leaf stoichiometry of Phragmites australis: a case study from Yangguan Wetland, Dunhuang, China[J]. Plants, 2020, 9(10): 1323. doi: 10.3390/plants9101323
    [32]
    Castellanos A E, Llano-Sotelo J M, Machado-Encinas L I, et al. Foliar C, N and P stoichiometry characterize successful plant ecological strategies in the Sonoran Desert[J]. Plant Ecology, 2018, 219(7): 775−788. doi: 10.1007/s11258-018-0833-3
    [33]
    Koerseman W, Meuleman A F M. The vegetation N∶P ratio: a new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33: 1441−1450. doi: 10.2307/2404783
    [34]
    南富森, 李宗省, 张小平, 等. 黄河北岸兰州段丘陵区土壤生态化学计量与空间变异[J]. 中国沙漠, 2022, 42(5): 167−176.

    Nan F S, Li Z S, Zhang X P, et al. Spatial variation of ecological stoichiometry characteristics of hilly soil in Lanzhou section of Yellow River north shore[J]. Journal of Desert Research, 2022, 42(5): 167−176.
    [35]
    何靖, 田青, 宋玲玲. 岷山北坡高海拔区草本植物群落特征及主要植物功能群C、N、P含量分析[J]. 生态环境学报, 2020, 29(3): 489−497.

    He J, Tian Q, Song L L. Community characteristics of herbaceous plants and analysis of C, N and P contents of main plant functional groups in high altitude area on the northern slope of Minshan Mountains[J]. Ecology and Environmental Sciences, 2020, 29(3): 489−497.
    [36]
    Onoda Y, Hikosaka K, Hirose T. Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency[J]. Functional Ecology, 2004, 18(3): 419−425. doi: 10.1111/j.0269-8463.2004.00847.x
    [37]
    孙一梅, 田青, 郭爱霞, 等. 放牧和氮添加对半干旱沙质草地优势种糙隐子草及群落功能性状的影响[J]. 草地学报, 2021, 29(3): 563−571.

    Sun Y M, Tian Q, Guo A X, et al. Effects of grazing and nitrogen addition on functional traits of dominant species Cleistogenes squarrosa and community in semi-arid sandy grassland[J]. Acta Agrestia Sinica, 2021, 29(3): 563−571.
    [38]
    Megan E M, Tanguy D, Lars O H. Scaling of C∶N∶P stoichiometry in forests worldwide: implications of treestrial redfield-type ratios[J]. Ecology, 2004, 85(9): 2390−2401. doi: 10.1890/03-0351
    [39]
    张蕾蕾, 钟全林, 程栋梁, 等. 刨花楠不同相对生长速率下林木叶片碳氮磷的适应特征[J]. 生态学报, 2016, 36(9): 2607−2613.

    Zhang L L, Zhong Q L, Cheng D L, et al. Biomass relative growth rate of Machilus pauhoi in relation to leaf carbon, nitrogen, and phosphorus stoichiometry properties[J]. Acta Ecologica Sinica, 2016, 36(9): 2607−2613.
    [40]
    张鹏, 沈艳, 张小菊, 等. 宁夏荒漠草原优势植物叶片C、N、P生态化学计量特征及群落稳定性研究[J]. 中国草地学报, 2022, 44(6): 18−26. doi: 10.16742/j.zgcdxb.20210259

    Zhang P, Shen Y, Zhang X J, et al. Study on leaf carbon, nitrogen and phosphorus eco-stoichiometric characteristics and community stability of dominant plants in Ningxia Desert Steppe[J]. Chinese Journal of Grassland, 2022, 44(6): 18−26. doi: 10.16742/j.zgcdxb.20210259
    [41]
    Sayer E J, Banin L F. Tree nutrient status and nutrient cycling in tropical forest-lessons from fertilization experiments[J]. Tree Physiology, 2016, 6: 275−297.
    [42]
    Hedin L O. Global organization of terrestrial plant-nutrient interactions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 10849−10850. doi: 10.1073/pnas.0404222101
    [43]
    Hendricks J J, Aber J D, Nadelhoffer K J, et al. Nitrogen controlson fine root substrate quality in temperate forest ecosystems[J]. Ecosystems, 2003, 3(1): 57−69.
    [44]
    Vitousek P M, Howarth R W. Nitrogen limitation on land and in the sea: how can it occur?[J]. Biogeochemistry, 1991, 13(2): 87−115.
    [45]
    Nimemets Ü. Colal-scale elimaic contmols of leaf dry mass per area, density, and thickness in trees and shrubs[J]. Ecology, 201, 82(2): 453−469.
    [46]
    Wilson T D. Modlels in information behaviour research[J]. Jourmal of Documentation, 1999, 55(3): 249−270. doi: 10.1108/EUM0000000007145
    [47]
    Long W X, Zang R G, Schamp B S, et al. Within- and among-species variation in specific leaf area drive community assembly in a tropical cloud forest[J]. Oecologia, 2011, 167(4): 1103−1113. doi: 10.1007/s00442-011-2050-9
    [48]
    Wight l J, Wesatdy M, Reich P B. Covergence towarls higher leaf mass per ara in dry and nutrient-poor habitats has different consequences for leaf life span[J]. Journal of Ecology, 2002, 90(3): 534−543. doi: 10.1046/j.1365-2745.2002.00689.x
    [49]
    Takashima T, Hikosake K, Hirose T. Photosynthesis or persistence nitnogen allcation in leaves of evergreen and deciduous Querus species[J]. Plant Cell and Environment, 2004, 27: 1047−1054. doi: 10.1111/j.1365-3040.2004.01209.x
    [50]
    刘广全, 赵士洞, 王浩, 等. 锐齿栎林个体光合器官生长与营养季节动态[J]. 生态学报, 2001, 21(6): 883−889. doi: 10.3321/j.issn:1000-0933.2001.06.004

    Liu G Q, Zhao S D, Wang H, et al. Seasonal variation of growth and nutrient contents for photosynthetic organ of the sharptooth oak stands[J]. Acta Ecologica Sinica, 2001, 21(6): 883−889. doi: 10.3321/j.issn:1000-0933.2001.06.004
    [51]
    Sterner R W, Elser J J. Ecological stoichiometry: the biology of elements from molecules to the biosphere[M]. Princeton: Princeton University Press, 2017.
    [52]
    Schindler D E. Review: ecological stoichiometry: the biology of elements from molecules to the biosphere[J]. The Quarterly Review of Biology, 2003, 78(4): 501.
  • Related Articles

    [1]Li Yang, Zhang Jianjun, Yu Yang, Hu Yawei, Zhao Yuhui, Ma Xinyi. Experimental study on the variation characteristics of runoff sediment concentration with slope length in the loess region of western Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2023, 45(8): 148-155. DOI: 10.12171/j.1000-1522.20220454
    [2]Wang Hengxing, Zhang Jianjun, Sun Ruoxiu, Zhang Jianan. Effects of different vegetation slope patterns on infiltration and characteristics of runoff and sediment production in the loess area of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2021, 43(3): 85-95. DOI: 10.12171/j.1000-1522.20190231
    [3]Wen Wenjie, Zhang Jianjun, Li Yixuan, Huang Xiaoqing, He Pei. A simple method for estimating runoff sediment concentration[J]. Journal of Beijing Forestry University, 2019, 41(11): 155-162. DOI: 10.13332/j.1000-1522.20180246
    [4]Zhang Shuai, Ding Guo-dong, Gao Guang-lei, Zhao Yuan-yuan, Yu Ming-han, Bao Yan-feng, Wang Chun-yuan. Study on new highway guardrail for anti-sediment in sand area[J]. Journal of Beijing Forestry University, 2018, 40(2): 90-97. DOI: 10.13332/j.1000-1522.20170353
    [5]AI Ning, WEI Tian-xing, ZHU Qing-ke, GEGENBATU, QIN Wei, ZHAO Xing-kai, ZHAO Wei-jun, MA Huan, YANG Yuan-jun. Factors affecting slope runoff and sediment yield in northern Shaanxi Province based on path analysis[J]. Journal of Beijing Forestry University, 2015, 37(6): 77-84. DOI: 10.13332/j.1000-1522.20140428
    [6]ZHU Yao-jun, GUO Ju-lan, WU Gao-jie, LIN Guang-xuan, WU Xiao-dong. Spatial distribution of physicochemical properties and metal concentration in mangrove sediments from Gaoqiao in Zhanjiang, Guangdong of Southern China.[J]. Journal of Beijing Forestry University, 2014, 36(2): 1-9.
    [7]WANG Jian-xun, , ZHENG Fen-li, JIANG Zhong-shan, ZHANG Xun-chang. Hillslope soil erosion prediction based on WEPP model under different slope lengths in hillygully region of the loess area[J]. Journal of Beijing Forestry University, 2008, 30(2): 151-156.
    [8]ZHANG Xiao-ming, YU Xin-xiao, WU Si-hong, WANG Yun-qi, ZHANG Man-liang. Effects of landuse-landcover change on sediment production of runoff in typical watershed in the loess gully-hilly region of China[J]. Journal of Beijing Forestry University, 2007, 29(6): 115-122. DOI: 10.13332/j.1000-1522.2007.06.033
    [9]WU Shu-fang, WU Pu-te, FENG Hao, LI Min. Effects of forage grass on the reduction of runoff and sediment and the hydrodynamic characteristic mechanism of slope runoff in the standard slope plot[J]. Journal of Beijing Forestry University, 2007, 29(3): 99-104. DOI: 10.13332/j.1000-1522.2007.03.016
    [10]ZHANG Jian-jun, NA Lei, FANG Jia-qiang. Manning roughness of sloping ground in the loess area of west Shanxi Province[J]. Journal of Beijing Forestry University, 2007, 29(1): 108-113. DOI: 10.13332/j.1000-1522.2007.01.019
  • Cited by

    Periodical cited type(15)

    1. 冯旭环,周璐,熊伟,宗桦. 大渡河干热河谷区本土优势灌草植物根系的抗拉力学特性及其影响因素研究. 干旱区资源与环境. 2023(07): 159-169 .
    2. 李宏斌,张旭,姚晨,杜峰. 陕北黄土区不同植物根系抗拉力学特性研究. 水土保持研究. 2023(04): 122-129 .
    3. 李金波,伍红燕,赵斌,陈济丁,宋桂龙. 模拟边坡条件下常见护坡植物苗期根系构型特征. 生态学报. 2023(24): 10131-10141 .
    4. 赵佳愉,伍红燕,史蔚林,宋桂龙. 聚丙烯酰胺添加浓度对种基盘特性的影响. 草原与草坪. 2021(05): 16-21 .
    5. 黄炎和,李思诗,岳辉,彭绍云,谢炎敏,林根根,周曼,吴俣,蔡学智. 崩岗区四种草本植物根系抗拉特性及其与化学成分的关系. 亚热带水土保持. 2021(04): 9-15 .
    6. 李义强,伍红燕,宋桂龙,赵斌,李一为,夏宇,孙盛年,梁燕宁. 岩石边坡坡度对胡枝子和紫穗槐根系形态特征影响. 草原与草坪. 2020(02): 23-29 .
    7. 曹磊,马海天才. 不同草本植物根系力动力学及抗压力特征研究. 干旱区资源与环境. 2019(01): 164-170 .
    8. 李淑霞,刘亚斌,余冬梅,胡夏嵩,祁兆鑫. 寒旱环境盐胁迫条件下两种草本植物的根系力学特性研究. 盐湖研究. 2019(01): 116-131 .
    9. 李瑞燊,刘静,王博,张欣,胡晶华,苏慧敏,白潞翼,王多民. 反复施加拉剪组合力对小叶锦鸡儿直根材料力学特性的影响. 水土保持学报. 2019(05): 121-125 .
    10. 马海天才. 不同草本植物根系的抗压动力学特征. 北方园艺. 2018(19): 71-77 .
    11. 王博,刘静,王晨嘉,张欣,刘嘉伟,李强,张强. 半干旱矿区3种灌木侧根分支处折力损伤后的自修复特性. 应用生态学报. 2018(11): 3541-3549 .
    12. 韦杰,李进林,史炳林. 紫色土耕地埂坎2种典型根——土复合体抗剪强度特征. 应用基础与工程科学学报. 2018(03): 483-492 .
    13. 刘昌义,胡夏嵩,赵玉娇,窦增宁. 寒旱环境草本与灌木植物单根拉伸试验强度特征研究. 工程地质学报. 2017(01): 1-10 .
    14. 谷利茶,王国梁. 氮添加对油松幼苗不同径级细根碳水化合物含量的影响. 生态学杂志. 2017(08): 2184-2190 .
    15. 杨闻达,王桂尧,常婧美,张永杰. 主直根系拉拔力的室内试验研究. 中国水土保持科学. 2017(04): 111-116 .

    Other cited types(25)

Catalog

    Article views (744) PDF downloads (104) Cited by(40)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return