• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Wenjuan, Wang Tao, Zhao Fuze, Lin Jian. Variability of cell composition, morphology and cell wall structure in Chimonobambusa utilis[J]. Journal of Beijing Forestry University, 2022, 44(9): 146-157. DOI: 10.12171/j.1000-1522.20220197
Citation: Liu Wenjuan, Wang Tao, Zhao Fuze, Lin Jian. Variability of cell composition, morphology and cell wall structure in Chimonobambusa utilis[J]. Journal of Beijing Forestry University, 2022, 44(9): 146-157. DOI: 10.12171/j.1000-1522.20220197

Variability of cell composition, morphology and cell wall structure in Chimonobambusa utilis

More Information
  • Received Date: May 22, 2022
  • Revised Date: September 12, 2022
  • Available Online: September 13, 2022
  • Published Date: September 24, 2022
  •   Objective  In order to enrich the basic anatomical data and promote the high value-added utilization of culm resources of Chimonobambusa utilis, the composition and morphology of cell and structural characteristics of the cell wall were investigated, and the variation regularity with age and axial part of bamboo culm as well as the correlation with environmental and climatic factors were also revealed.
      Method  In this study, the natural plants of Chimonobambusa utilis were used as raw material to prepare the permanent transverse and longitudinal slices and isolated single fibers by the traditional slicing process and Franklin dissociation method. The tissue percentage, vascular bundles, fiber cells, parenchyma cells of basic tissues, and cell wall layer structure were characterized by stereo and bio-optical microscopy as well as field-emission scanning electron microscopy (FE-SEM).
      Result  The proportion of basic tissues was the largest in Chimonobambusa utilis, ranging from 56.16% to 65.92%, followed by the fibrous tissues with the proportion from 27.69% to 34.18%, while the conduction tissues showed the smallest proportion ranging from 6.40% to 9.85%. The types of vascular bundle belong to open and semi-open. The density and radial width as well as tangential width of vascular bundles varied significantly with age and axial part of bamboo culm. The radial-tangential ratios were almost the same, ranging from 1.2 to 1.3. The length of fiber cells ranged from 1.7 to 2.1 mm, and the length-width ratios were 110−133, which can be classified into long fiber. Various morphologies and their considerable variation in the radial direction existed in the parenchyma cells. The number of secondary wall layers of fiber cells was odd, with a maximum of 9 layers, showing the characteristics of alternating width and narrowness. The number of secondary wall layers of parenchyma long cells was also odd, with a maximum of 9 layers. The thickness of each layer was approximately equal, showing the alternative characteristics of loosening and tightening. There was variation in the number of cell wall layers at different locations in the bamboo wall, but the difference in the highest number of cell wall layers with age and axial part of the bamboo culm was not significant. The proportion of conduction tissues was significantly affected by average annual precipitation, which showed negatively correlation. Whereas the vascular bundle size and secondary wall thickening of parenchyma long cells were significantly affected by temperatures, which were negatively correlated with the former and positively correlated with the latter.
      Conclusion  The microstructure of Chimonobambusa utilis is different without obvious regularity as the changes in bamboo ages and axial part of bamboo culm, which are relatively stable for 3−4 years old bamboo. In addition, there are some correlations between environmental and climatic factors and the structural characteristics of Chimonobambusa utilis, and there are significant correlations with the proportion of conduction tissues, vascular bundle size, and secondary wall thickening of parenchyma cells.
  • [1]
    Zheng Y X, Guan F Y, Fan S H, et al. Biomass estimation, nutrient content, and decomposition rate of shoot sheath in Moso bamboo forest of Yixing Forest Farm[J]. Forests, 2021, 12(11): 1555−1567. doi: 10.3390/f12111555
    [2]
    Li Z H, Chen C J, Mi R Y, et al. A strong, tough, and scalable structural material from fast growing bamboo[J]. Advanced Materials, 2020, 32(10): 1−8.
    [3]
    Chen Q, Wei P L, Tang T, et al. Quantitative visualization of weak layers in bamboo at the cellular and subcellular levels[J]. ACS Applied Bio Materials, 2020, 3(10): 7087−7094. doi: 10.1021/acsabm.0c00921
    [4]
    Peng Z, Lu Y, Li L, et al. The draft genome of the fast-growing non-timber forest species Moso bamboo (Phyllostachys heterocycle)[J]. Nature Genetics, 2013, 45(4): 456−461. doi: 10.1038/ng.2569
    [5]
    李玉敏, 冯鹏飞. 基于第九次全国森林资源清查的中国竹资源分析[J]. 世界竹藤通讯, 2019, 17(6): 45−48.

    Li Y M, Feng P F. Bamboo resources in China based on the Ninth National Forest Inventory Data[J]. World Bamboo and Rattan, 2019, 17(6): 45−48.
    [6]
    江泽慧. 世界竹藤[M]. 沈阳: 辽宁科学技术出版社, 2002.

    Jiang Z H. World bamboo and rattan[M]. Shenyang: Liaoning Science and Technology Press, 2002.
    [7]
    费本华, 漆良华. 实施我国国家竹材储备战略计划的思考[J]. 世界林业研究, 2020, 33(3): 38−42. doi: 10.13348/j.cnki.sjlyyj.2020.0038.y

    Fei B H, Qi L H. Thoughts on the strategic planning of implementing national bamboo reserve[J]. World Forestry Research, 2020, 33(3): 38−42. doi: 10.13348/j.cnki.sjlyyj.2020.0038.y
    [8]
    邓珺杭, 包善飞, 丁显平, 等. 中国方竹种质资源库建设探讨[J]. 防护林科技, 2020, 38(10): 81−83. doi: 10.13601/j.issn.1005-5215.2020.10.025

    Deng J H, Bao S F, Ding X P, et al. Construction of Chinese Chimonobambusa utilis germplasm resource bank[J]. Protected Forest Technology, 2020, 38(10): 81−83. doi: 10.13601/j.issn.1005-5215.2020.10.025
    [9]
    赵树丛. 桐梓方竹发展记[J]. 中国林业产业, 2020, 17(11): 73−77.

    Zhao S C. The development of Tongzi square bamboo[J]. China Forestry Industry, 2020, 17(11): 73−77.
    [10]
    娄义龙. 金佛山方竹适生土壤特性及其形态多样性调查[J]. 世界竹藤通讯, 2021, 19(2): 48−52.

    Lou Y L. Investigation of workable soil characteristics and morphological diversity of Chimonobambusa utilis[J]. World Bamboo and Rattan, 2021, 19(2): 48−52.
    [11]
    娄义龙, 陈荣喜, 张果, 等. 金佛山方竹在黔中竹海森林公园不同类型林地上的造林效果[J]. 世界竹藤通讯, 2021, 19(6): 61−64.

    Lou Y L, Chen R X, Zhang G, et al. Afforestation effect of Chimonobambusa utilis at forestland of different types in bamboo forest park in central Guizhou Province[J]. World Bamboo and Rattan, 2021, 19(6): 61−64.
    [12]
    娄义龙. 大娄山区金佛山方竹种子营养成分与播种育苗[J]. 世界竹藤通讯, 2021, 19(5): 25−33.

    Lou Y L. Seed nutrients and seedling breeding of Chimonobambusa utilis in Daloushan Mountains[J]. World Bamboo and Rattan, 2021, 19(5): 25−33.
    [13]
    娄义龙. 金佛山方竹垂直分布及低海拔异地引种后笋产量和品质[J]. 世界竹藤通讯, 2021, 19(1): 24−33.

    Lou Y L. Vertical distribution of Chimonobambusa utilis and its shoot yield and quality after introduced to different places at low elevation[J]. World Bamboo and Rattan, 2021, 19(1): 24−33.
    [14]
    任春春,贾玉龙,娄义龙,等. 贵州金佛山方竹笋营养及功能成分剖析展[J]. 食品与发酵工业, 2021, 47(10): 214−221.

    Ren C C, Jia Y L, Lou Y L, et al. Analysis of nutritional and functional components of bamboo shoots in Chimonobambusa utilis, Guizhou[J]. Food and Fermentation Industries, 2021, 47(10): 214−221.
    [15]
    Porterfield W M. Variation in the rate of growth of bamboo about temperature[J]. Chinese Journal, 1927, 7: 191−205.
    [16]
    Porterfield W M. A study of the grand period of growth in bamboo[J]. Bulletin of the Torrey Botany Club, 1928, 55(7): 327−405. doi: 10.2307/2480698
    [17]
    Liese W, Köhl M. Bamboo: the plant and its uses[M]. Heidelberg: Springer, 2015.
    [18]
    Shi J Y, Zhang X Y, Zhou Q D, et al. A review of bamboo cultivar from Chimonobambusa in the world[J]. World Bamboo and Rattan, 2017, 15(6): 41−48.
    [19]
    李正理, 靳紫宸. 几种国产竹材的比较解剖观察[J]. 植物学报, 1960, 9(1): 76−97.

    Li Z L, Jin Z C. Anatomical studies of some Chinese bamboos[J]. Acta Botanica Sinnica, 1960, 9(1): 76−97.
    [20]
    林金国, 林应钦, 赖根明, 等. 方竹材纤维形态变异规律的研究[J]. 江西农业大学学报, 2004, 26(1): 56−58. doi: 10.3969/j.issn.1000-2286.2004.01.012

    Lin J G, Lin Y Q, Lai G M, et al. A study on the law of variation in fiber morphology of Chimonobambusa quadrangulavis culm-wood[J]. Acta Agriculturae Universitis Jiangxiensis, 2004, 26(1): 56−58. doi: 10.3969/j.issn.1000-2286.2004.01.012
    [21]
    林金国, 赖根明, 郑国丰, 等. 方竹材基本密度和干缩性变异规律的研究[J]. 西北林学院学报(自然科学), 2004, 19(2): 112−115.

    Lin J G, Lai G M, Zheng G F, et al. Variation law of basic density and shrinkage of Chimonobambusa quadrangularis[J]. Journal of Northwest Forestry University (Natural Science), 2004, 19(2): 112−115.
    [22]
    Jiang Q Q, Ding Z C, Lu C Q, et al. Anatomical characterization of Chimonobambusa quadrangularis based on circumferential and radial variation patterns in cross-sections[J]. IAWA Journal, 2021, 43(1): 1−12.
    [23]
    刘文芳, 章亮, 张文标, 等. 金佛山方竹材的热解及产物性能研究[J]. 竹子学报, 2018, 37(3): 85−92. doi: 10.3969/j.issn.1000-6567.2018.03.014

    Liu W F, Zhang L, Zhang W B, et al. Pyrolysis of Chimonobabusa utilis (Keng) Keng f. and characteristics of its carbonization products[J]. Journal of Bamboo Research, 2018, 37(3): 85−92. doi: 10.3969/j.issn.1000-6567.2018.03.014
    [24]
    张雨, 徐佳佳, 张文标, 等. 烘焙预处理对方竹热解产物特性的影响[J]. 浙江农林大学学报, 2019, 36(5): 981−989.

    Zhang Y, Xu J J, Zhang W B, et al. Pretreatment on characteristics of pyrolysis products for small diameter sympodial bamboo with torrefaction[J]. Journal of Zhejiang Agriculture and Forestry University, 2019, 36(5): 981−989.
    [25]
    邱坚, 郭梦麟. 木材显微技术[M]. 北京: 中国质检出版社, 2016.

    Qiu J, Guo M L. Wood microscopy technology[M]. Beijing: China Quality Inspection Publishing House, 2016.
    [26]
    Long H R, Ning W, Xu Y P. The influence of growth stage and plant sex on the fiber morphology of industrial hemp[J]. Journal of Cellulose Science and Technology, 2014, 22(4): 65−69.
    [27]
    张卫丽. 基于SPSS的试剂中氯元素含量的单因素方差分析[J]. 工业控制计算机, 2017, 30(6): 34−35. doi: 10.3969/j.issn.1001-182X.2017.06.014

    Zhang W L. One-way ANOVA of elemental chlorine content in reagents based on SPSS[J]. Industrial Control Computer, 2017, 30(6): 34−35. doi: 10.3969/j.issn.1001-182X.2017.06.014
    [28]
    Grosser D, Liese W. On the anatomy of asian bamboos, with special reference to their vascular bundles[J]. Wood Science and Technology, 1971, 5(2): 290−312.
    [29]
    温太辉, 周文伟. 中国竹类维管束解剖形态的研究初报(之一)[J]. 竹子研究汇刊, 1984, 3(1): 1−21.

    Wen T H, Zhou W W. A report on the anatomy of the vascular bundle of bamboos from China (Ⅰ)[J]. Journal of Bamboo Research, 1984, 3(1): 1−21.
    [30]
    温太辉, 周文伟. 中国竹类维管束解剖形态的研究初报(之二)[J]. 竹子研究汇刊, 1985, 4(1): 28−43.

    Wen T H, Zhou W W. A report on the anatomy of the vascular bundle of bamboos from China (Ⅱ)[J]. Journal of Bamboo Research, 1985, 4(1): 28−43.
    [31]
    江泽慧. 竹材解剖学研究进展[J]. 世界林业研究, 2020, 33(3): 1−6.

    Jiang Z H. Research advances in bamboo anatomy[J]. World Forestry Research, 2020, 33(3): 1−6.
    [32]
    马灵飞, 马乃训. 毛竹材材性变异的研究[J]. 林业科学, 1997, 33(4): 356−364.

    Ma L F, Ma N X. Study on variation in bamboo wood properties of Phyllostachys heterocycle var. pubescens[J]. Scientia Silvae Sinicae, 1997, 33(4): 356−364.
    [33]
    陈红, 吴智慧, 费本华. 利用原子力显微镜表征竹纤维细胞壁横截面结构[J]. 南京林业大学学报(自然科学版), 2016, 40(2): 139−143.

    Chen H, Wu Z H, Fei B H. The cross section structure characteristics of bamboo cell wall with an atomic force microscope[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2016, 40(2): 139−143.
    [34]
    Ren D, Wang H, Yu Z, et al. Mechanical imaging of bamboo fiber cell walls and their composites by means of peakforce quantitative nanomechanics (PQNM) technique[J]. Holzforschung, 2015, 69(8): 975−984. doi: 10.1515/hf-2014-0237
    [35]
    Liese W. The anatomy of bamboo culm[M]. Paderborn: Brill Publishers , 2002.
    [36]
    普晓兰, 杜凡. 巨龙竹竹材结构及其变异的解剖学研究[J]. 西南林业大学学报(自然科学), 2003, 23(1): 1−5.

    Pu X L, Du F. Anatomical studies on the culm and variation of Dendrocalamus sinicus[J]. Journal of Southwest Forestry University (Natural Science), 2003, 23(1): 1−5.
    [37]
    Sanchis G C, Gunnar K, Murphy R J. Developmental changes in cell wall structure of phloem fibers of the bamboo Dendrocalamus asper[J]. Annals of Botany, 2004, 94(4): 497−505. doi: 10.1093/aob/mch169
    [38]
    刘波. 毛竹发育过程中细胞壁形成的研究[D]. 北京: 中国林业科学研究院, 2008.

    Liu B. Formation of cell wall in developmental culms of Phyllostachys pubescens [D]. Beijing: Chinese Academy of Forestry, 2008.
    [39]
    Hu K, Huang Y, Fei B, et al. Investigation of the multilayered structure and microfibril angle of different types of bamboo cell walls at the micro/nano level using a LC-PolScope imaging system[J]. Cellulose, 2017, 24(1): 4611−4625.
    [40]
    Chen M L, Wang C G, Fei B H, et al. Corrugating medium made from solid waste of bamboo paper sludge[J]. Bioresources, 2017, 12(2): 3133−3142.
    [41]
    Parameswaran N, Liese W. On the poly lamellate structure of parenchyma wall in Phyllostachys edulis[J]. IAWA Bulletin, 1975, 6(4): 57−58.
    [42]
    Lian C P, Liu R, Zhang S, et al. Ultrastructure of parenchyma cell wall in bamboo (Phyllostachys edulis) culms[J]. Cellulose, 2020, 27(13): 7321−7329. doi: 10.1007/s10570-020-03265-9
    [43]
    张雨峰, 代丽, 谢寅峰, 等. 不同海拔金佛山方竹出笋及幼竹生长特性[J]. 南京林业大学学报(自然科学版), 2019, 43(5): 199−203.

    Zhang Y F, Dai L, Xie Y F, et al. Study on growth characteristics of young bamboo and shooting of Chimonobambusa utilis at different altitudes[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2019, 43(5): 199−203.
    [44]
    文静, 王春涛, 杨永平. 植物木质部次生细胞壁加厚调控的研究进展[J]. 西南林业大学学报(自然科学), 2021, 41(2): 182−188.

    Wen J, Wang C T, Yang Y P. Advances in the regulation of xylem secondary cell wall thickening in plants[J]. Journal of Southwest Forestry University (Natural Science), 2021, 41(2): 182−188.
    [45]
    郑艳,董文渊,付建生,等. 金佛山方竹无性系种群生长规律的研究[J]. 世界竹藤通讯, 2007, 5(1): 27−30. doi: 10.3969/j.issn.1006-4958.2019.11.017

    Zheng Y, Dong W Y, Fu J S, et al. Study on the rhythm of Chimonobambusa utilis clone population[J]. World Bamboo and Rattan, 2007, 5(1): 27−30. doi: 10.3969/j.issn.1006-4958.2019.11.017
    [46]
    Mitsuda N, Seki M, Shinozaki K, et al. The NAC transcription factors NST1 and NST2 of Arabidopsis regul- ate secondary wall thickenings and are required for another dehiscence[J]. The Plant Cell, 2005, 17(11): 2993−3006. doi: 10.1105/tpc.105.036004
    [47]
    朱晓博, 张贵粉, 陈鹏. 植物次生细胞壁加厚过程的转录调控[J]. 植物生理学报, 2017, 53(9): 1598−1608. doi: 10.13592/j.cnki.ppj.2017.0203

    Zhu X B, Zhang G F, Chen P. Research progress in the transcriptional regulation of secondary cell wall thickening[J]. Plant Physiology Journal, 2017, 53(9): 1598−1608. doi: 10.13592/j.cnki.ppj.2017.0203
  • Related Articles

    [1]Ma Erni, Wang Yuyao, Li Jingyu, Zhong Xiang. Research progress on the effect of water on pore structure of wood cell wall[J]. Journal of Beijing Forestry University, 2024, 46(2): 1-8. DOI: 10.12171/j.1000-1522.20230243
    [2]Wang Kaiqing, Zhou Ziyi, Ma Erni. Effects of cell wall pore changes on water of wood modified by furfuryl alcohol[J]. Journal of Beijing Forestry University, 2023, 45(9): 127-136. DOI: 10.12171/j.1000-1522.20230156
    [3]Wu Haiyan, Zhao Yuanyuan, Du Linfang, Chi Wenfeng, Ding Guodong, Gao Guanglei. Effects of land use/cover changes on water retention services in the Beijing-Tianjin Sandstorm Source Control Project Area[J]. Journal of Beijing Forestry University, 2023, 45(4): 88-100. DOI: 10.12171/j.1000-1522.20220245
    [4]Meng Chen, Niu Jianzhi, Yu Hailong, Du Lingtong, Yin Zhengcong. Research progress in influencing factors and measuring methods of three-dimensional characteristics of soil macropores[J]. Journal of Beijing Forestry University, 2020, 42(11): 9-16. DOI: 10.12171/j.1000-1522.20190158
    [5]Lü Jiao, Mustaq Shah, Cui Yi, Xu Chengyang. Effects of soil compactness and litter covering on soil water holding capacity and water infiltration ability in urban forest[J]. Journal of Beijing Forestry University, 2020, 42(8): 102-111. DOI: 10.12171/j.1000-1522.20190476
    [6]Liu Junting, Zhang Jianjun, Sun Ruoxiu, Li Liang. Effects of the conversion time of cropland into forestry on soil physical properties in loess area of western Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2020, 42(1): 94-103. DOI: 10.12171/j.1000-1522.20180376
    [7]Ma Yuan-yuan, Dai Xian-qing, Peng Shao-hao, Yang Guang, Ji Xiao-dong. Effects of natural zeolite on physical and chemical properties and water retention capacity of chernozem in Songnen Plain of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(2): 51-57. DOI: 10.13332/j.1000-1522.20170218
    [8]XIA Xiang-you, WANG En-heng, YANG Xiao-yan, CHEN Xiang-wei. Pore characteristics of mollisol argillic horizon under simulated freeze-thaw cycles[J]. Journal of Beijing Forestry University, 2015, 37(6): 70-76. DOI: 10.13332/j.1000-1522.20140474
    [9]CHEN Shi-chao, LIN Jian-hui, SUN Yu-rui, Peter Schulze Lammers. Predicting topsoil porosity using soil surface roughness under rainfall influence.[J]. Journal of Beijing Forestry University, 2013, 35(2): 69-74.
    [10]FANG Wei-dong, KANG Xin-gang, ZHAO Hao-yan, HUANG Xin-feng, GONG Zhi-wen, GAO Yan, FENG Qi-xiang. Soil characteristics and water conservation of different forest types in Changbai Mountain[J]. Journal of Beijing Forestry University, 2011, 33(4): 40-47.
  • Cited by

    Periodical cited type(8)

    1. 陈志琪,张海娜,刘佳丽,鲁向晖,杨宝城. 氮添加对稀土尾砂地猴樟幼苗根系生长、生物量分配及非结构性碳水化合物的影响. 植物研究. 2024(01): 86-95 .
    2. 王志保,路兴慧,张演义,王宏骄,谢宪,江洪,韩婧雅,王艺合,梁晶. 氮磷添加对滨海新围垦区大叶女贞细根形态特征和生物量的影响. 广西植物. 2024(08): 1438-1447 .
    3. 孙薇,王斌,楚秀丽,王秀花,张东北,吴小林,周志春. 马尾松容器苗生长和养分性状对磷添加和接种菌根菌的响应及关联. 南京林业大学学报(自然科学版). 2023(01): 226-233 .
    4. 吴莹. 生物炭和氮肥配施对榉树幼苗生长的影响. 绿色科技. 2023(05): 101-103+108 .
    5. 何至杭,刘丽,彭钟通,陈轶群,王艺颖,刘悦,曾曙才,莫其锋. 水氮耦合对辣木幼苗根系形态特征的影响. 广西植物. 2023(05): 936-946 .
    6. 赵玉红. 樟子松种植技术要点. 中国林副特产. 2022(03): 59-61 .
    7. 高文礼 ,陈晓楠 ,伊力努尔·艾力 ,马晓东 . 干旱及复水条件下接种AMF和根瘤菌对疏叶骆驼刺根系生长的影响. 西北植物学报. 2022(07): 1189-1197 .
    8. 郝龙飞,小红,邵东华,刘婷岩,许吉康,张之月,于凡舒. 接种菌根真菌和氮添加处理对樟子松苗木根际微生态环境的影响. 西北林学院学报. 2022(05): 135-140+154 .

    Other cited types(8)

Catalog

    Article views (711) PDF downloads (92) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return