• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Wenjuan, Wang Tao, Zhao Fuze, Lin Jian. Variability of cell composition, morphology and cell wall structure in Chimonobambusa utilis[J]. Journal of Beijing Forestry University, 2022, 44(9): 146-157. DOI: 10.12171/j.1000-1522.20220197
Citation: Liu Wenjuan, Wang Tao, Zhao Fuze, Lin Jian. Variability of cell composition, morphology and cell wall structure in Chimonobambusa utilis[J]. Journal of Beijing Forestry University, 2022, 44(9): 146-157. DOI: 10.12171/j.1000-1522.20220197

Variability of cell composition, morphology and cell wall structure in Chimonobambusa utilis

More Information
  • Received Date: May 22, 2022
  • Revised Date: September 12, 2022
  • Available Online: September 13, 2022
  • Published Date: September 24, 2022
  •   Objective  In order to enrich the basic anatomical data and promote the high value-added utilization of culm resources of Chimonobambusa utilis, the composition and morphology of cell and structural characteristics of the cell wall were investigated, and the variation regularity with age and axial part of bamboo culm as well as the correlation with environmental and climatic factors were also revealed.
      Method  In this study, the natural plants of Chimonobambusa utilis were used as raw material to prepare the permanent transverse and longitudinal slices and isolated single fibers by the traditional slicing process and Franklin dissociation method. The tissue percentage, vascular bundles, fiber cells, parenchyma cells of basic tissues, and cell wall layer structure were characterized by stereo and bio-optical microscopy as well as field-emission scanning electron microscopy (FE-SEM).
      Result  The proportion of basic tissues was the largest in Chimonobambusa utilis, ranging from 56.16% to 65.92%, followed by the fibrous tissues with the proportion from 27.69% to 34.18%, while the conduction tissues showed the smallest proportion ranging from 6.40% to 9.85%. The types of vascular bundle belong to open and semi-open. The density and radial width as well as tangential width of vascular bundles varied significantly with age and axial part of bamboo culm. The radial-tangential ratios were almost the same, ranging from 1.2 to 1.3. The length of fiber cells ranged from 1.7 to 2.1 mm, and the length-width ratios were 110−133, which can be classified into long fiber. Various morphologies and their considerable variation in the radial direction existed in the parenchyma cells. The number of secondary wall layers of fiber cells was odd, with a maximum of 9 layers, showing the characteristics of alternating width and narrowness. The number of secondary wall layers of parenchyma long cells was also odd, with a maximum of 9 layers. The thickness of each layer was approximately equal, showing the alternative characteristics of loosening and tightening. There was variation in the number of cell wall layers at different locations in the bamboo wall, but the difference in the highest number of cell wall layers with age and axial part of the bamboo culm was not significant. The proportion of conduction tissues was significantly affected by average annual precipitation, which showed negatively correlation. Whereas the vascular bundle size and secondary wall thickening of parenchyma long cells were significantly affected by temperatures, which were negatively correlated with the former and positively correlated with the latter.
      Conclusion  The microstructure of Chimonobambusa utilis is different without obvious regularity as the changes in bamboo ages and axial part of bamboo culm, which are relatively stable for 3−4 years old bamboo. In addition, there are some correlations between environmental and climatic factors and the structural characteristics of Chimonobambusa utilis, and there are significant correlations with the proportion of conduction tissues, vascular bundle size, and secondary wall thickening of parenchyma cells.
  • [1]
    Zheng Y X, Guan F Y, Fan S H, et al. Biomass estimation, nutrient content, and decomposition rate of shoot sheath in Moso bamboo forest of Yixing Forest Farm[J]. Forests, 2021, 12(11): 1555−1567. doi: 10.3390/f12111555
    [2]
    Li Z H, Chen C J, Mi R Y, et al. A strong, tough, and scalable structural material from fast growing bamboo[J]. Advanced Materials, 2020, 32(10): 1−8.
    [3]
    Chen Q, Wei P L, Tang T, et al. Quantitative visualization of weak layers in bamboo at the cellular and subcellular levels[J]. ACS Applied Bio Materials, 2020, 3(10): 7087−7094. doi: 10.1021/acsabm.0c00921
    [4]
    Peng Z, Lu Y, Li L, et al. The draft genome of the fast-growing non-timber forest species Moso bamboo (Phyllostachys heterocycle)[J]. Nature Genetics, 2013, 45(4): 456−461. doi: 10.1038/ng.2569
    [5]
    李玉敏, 冯鹏飞. 基于第九次全国森林资源清查的中国竹资源分析[J]. 世界竹藤通讯, 2019, 17(6): 45−48.

    Li Y M, Feng P F. Bamboo resources in China based on the Ninth National Forest Inventory Data[J]. World Bamboo and Rattan, 2019, 17(6): 45−48.
    [6]
    江泽慧. 世界竹藤[M]. 沈阳: 辽宁科学技术出版社, 2002.

    Jiang Z H. World bamboo and rattan[M]. Shenyang: Liaoning Science and Technology Press, 2002.
    [7]
    费本华, 漆良华. 实施我国国家竹材储备战略计划的思考[J]. 世界林业研究, 2020, 33(3): 38−42. doi: 10.13348/j.cnki.sjlyyj.2020.0038.y

    Fei B H, Qi L H. Thoughts on the strategic planning of implementing national bamboo reserve[J]. World Forestry Research, 2020, 33(3): 38−42. doi: 10.13348/j.cnki.sjlyyj.2020.0038.y
    [8]
    邓珺杭, 包善飞, 丁显平, 等. 中国方竹种质资源库建设探讨[J]. 防护林科技, 2020, 38(10): 81−83. doi: 10.13601/j.issn.1005-5215.2020.10.025

    Deng J H, Bao S F, Ding X P, et al. Construction of Chinese Chimonobambusa utilis germplasm resource bank[J]. Protected Forest Technology, 2020, 38(10): 81−83. doi: 10.13601/j.issn.1005-5215.2020.10.025
    [9]
    赵树丛. 桐梓方竹发展记[J]. 中国林业产业, 2020, 17(11): 73−77.

    Zhao S C. The development of Tongzi square bamboo[J]. China Forestry Industry, 2020, 17(11): 73−77.
    [10]
    娄义龙. 金佛山方竹适生土壤特性及其形态多样性调查[J]. 世界竹藤通讯, 2021, 19(2): 48−52.

    Lou Y L. Investigation of workable soil characteristics and morphological diversity of Chimonobambusa utilis[J]. World Bamboo and Rattan, 2021, 19(2): 48−52.
    [11]
    娄义龙, 陈荣喜, 张果, 等. 金佛山方竹在黔中竹海森林公园不同类型林地上的造林效果[J]. 世界竹藤通讯, 2021, 19(6): 61−64.

    Lou Y L, Chen R X, Zhang G, et al. Afforestation effect of Chimonobambusa utilis at forestland of different types in bamboo forest park in central Guizhou Province[J]. World Bamboo and Rattan, 2021, 19(6): 61−64.
    [12]
    娄义龙. 大娄山区金佛山方竹种子营养成分与播种育苗[J]. 世界竹藤通讯, 2021, 19(5): 25−33.

    Lou Y L. Seed nutrients and seedling breeding of Chimonobambusa utilis in Daloushan Mountains[J]. World Bamboo and Rattan, 2021, 19(5): 25−33.
    [13]
    娄义龙. 金佛山方竹垂直分布及低海拔异地引种后笋产量和品质[J]. 世界竹藤通讯, 2021, 19(1): 24−33.

    Lou Y L. Vertical distribution of Chimonobambusa utilis and its shoot yield and quality after introduced to different places at low elevation[J]. World Bamboo and Rattan, 2021, 19(1): 24−33.
    [14]
    任春春,贾玉龙,娄义龙,等. 贵州金佛山方竹笋营养及功能成分剖析展[J]. 食品与发酵工业, 2021, 47(10): 214−221.

    Ren C C, Jia Y L, Lou Y L, et al. Analysis of nutritional and functional components of bamboo shoots in Chimonobambusa utilis, Guizhou[J]. Food and Fermentation Industries, 2021, 47(10): 214−221.
    [15]
    Porterfield W M. Variation in the rate of growth of bamboo about temperature[J]. Chinese Journal, 1927, 7: 191−205.
    [16]
    Porterfield W M. A study of the grand period of growth in bamboo[J]. Bulletin of the Torrey Botany Club, 1928, 55(7): 327−405. doi: 10.2307/2480698
    [17]
    Liese W, Köhl M. Bamboo: the plant and its uses[M]. Heidelberg: Springer, 2015.
    [18]
    Shi J Y, Zhang X Y, Zhou Q D, et al. A review of bamboo cultivar from Chimonobambusa in the world[J]. World Bamboo and Rattan, 2017, 15(6): 41−48.
    [19]
    李正理, 靳紫宸. 几种国产竹材的比较解剖观察[J]. 植物学报, 1960, 9(1): 76−97.

    Li Z L, Jin Z C. Anatomical studies of some Chinese bamboos[J]. Acta Botanica Sinnica, 1960, 9(1): 76−97.
    [20]
    林金国, 林应钦, 赖根明, 等. 方竹材纤维形态变异规律的研究[J]. 江西农业大学学报, 2004, 26(1): 56−58. doi: 10.3969/j.issn.1000-2286.2004.01.012

    Lin J G, Lin Y Q, Lai G M, et al. A study on the law of variation in fiber morphology of Chimonobambusa quadrangulavis culm-wood[J]. Acta Agriculturae Universitis Jiangxiensis, 2004, 26(1): 56−58. doi: 10.3969/j.issn.1000-2286.2004.01.012
    [21]
    林金国, 赖根明, 郑国丰, 等. 方竹材基本密度和干缩性变异规律的研究[J]. 西北林学院学报(自然科学), 2004, 19(2): 112−115.

    Lin J G, Lai G M, Zheng G F, et al. Variation law of basic density and shrinkage of Chimonobambusa quadrangularis[J]. Journal of Northwest Forestry University (Natural Science), 2004, 19(2): 112−115.
    [22]
    Jiang Q Q, Ding Z C, Lu C Q, et al. Anatomical characterization of Chimonobambusa quadrangularis based on circumferential and radial variation patterns in cross-sections[J]. IAWA Journal, 2021, 43(1): 1−12.
    [23]
    刘文芳, 章亮, 张文标, 等. 金佛山方竹材的热解及产物性能研究[J]. 竹子学报, 2018, 37(3): 85−92. doi: 10.3969/j.issn.1000-6567.2018.03.014

    Liu W F, Zhang L, Zhang W B, et al. Pyrolysis of Chimonobabusa utilis (Keng) Keng f. and characteristics of its carbonization products[J]. Journal of Bamboo Research, 2018, 37(3): 85−92. doi: 10.3969/j.issn.1000-6567.2018.03.014
    [24]
    张雨, 徐佳佳, 张文标, 等. 烘焙预处理对方竹热解产物特性的影响[J]. 浙江农林大学学报, 2019, 36(5): 981−989.

    Zhang Y, Xu J J, Zhang W B, et al. Pretreatment on characteristics of pyrolysis products for small diameter sympodial bamboo with torrefaction[J]. Journal of Zhejiang Agriculture and Forestry University, 2019, 36(5): 981−989.
    [25]
    邱坚, 郭梦麟. 木材显微技术[M]. 北京: 中国质检出版社, 2016.

    Qiu J, Guo M L. Wood microscopy technology[M]. Beijing: China Quality Inspection Publishing House, 2016.
    [26]
    Long H R, Ning W, Xu Y P. The influence of growth stage and plant sex on the fiber morphology of industrial hemp[J]. Journal of Cellulose Science and Technology, 2014, 22(4): 65−69.
    [27]
    张卫丽. 基于SPSS的试剂中氯元素含量的单因素方差分析[J]. 工业控制计算机, 2017, 30(6): 34−35. doi: 10.3969/j.issn.1001-182X.2017.06.014

    Zhang W L. One-way ANOVA of elemental chlorine content in reagents based on SPSS[J]. Industrial Control Computer, 2017, 30(6): 34−35. doi: 10.3969/j.issn.1001-182X.2017.06.014
    [28]
    Grosser D, Liese W. On the anatomy of asian bamboos, with special reference to their vascular bundles[J]. Wood Science and Technology, 1971, 5(2): 290−312.
    [29]
    温太辉, 周文伟. 中国竹类维管束解剖形态的研究初报(之一)[J]. 竹子研究汇刊, 1984, 3(1): 1−21.

    Wen T H, Zhou W W. A report on the anatomy of the vascular bundle of bamboos from China (Ⅰ)[J]. Journal of Bamboo Research, 1984, 3(1): 1−21.
    [30]
    温太辉, 周文伟. 中国竹类维管束解剖形态的研究初报(之二)[J]. 竹子研究汇刊, 1985, 4(1): 28−43.

    Wen T H, Zhou W W. A report on the anatomy of the vascular bundle of bamboos from China (Ⅱ)[J]. Journal of Bamboo Research, 1985, 4(1): 28−43.
    [31]
    江泽慧. 竹材解剖学研究进展[J]. 世界林业研究, 2020, 33(3): 1−6.

    Jiang Z H. Research advances in bamboo anatomy[J]. World Forestry Research, 2020, 33(3): 1−6.
    [32]
    马灵飞, 马乃训. 毛竹材材性变异的研究[J]. 林业科学, 1997, 33(4): 356−364.

    Ma L F, Ma N X. Study on variation in bamboo wood properties of Phyllostachys heterocycle var. pubescens[J]. Scientia Silvae Sinicae, 1997, 33(4): 356−364.
    [33]
    陈红, 吴智慧, 费本华. 利用原子力显微镜表征竹纤维细胞壁横截面结构[J]. 南京林业大学学报(自然科学版), 2016, 40(2): 139−143.

    Chen H, Wu Z H, Fei B H. The cross section structure characteristics of bamboo cell wall with an atomic force microscope[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2016, 40(2): 139−143.
    [34]
    Ren D, Wang H, Yu Z, et al. Mechanical imaging of bamboo fiber cell walls and their composites by means of peakforce quantitative nanomechanics (PQNM) technique[J]. Holzforschung, 2015, 69(8): 975−984. doi: 10.1515/hf-2014-0237
    [35]
    Liese W. The anatomy of bamboo culm[M]. Paderborn: Brill Publishers , 2002.
    [36]
    普晓兰, 杜凡. 巨龙竹竹材结构及其变异的解剖学研究[J]. 西南林业大学学报(自然科学), 2003, 23(1): 1−5.

    Pu X L, Du F. Anatomical studies on the culm and variation of Dendrocalamus sinicus[J]. Journal of Southwest Forestry University (Natural Science), 2003, 23(1): 1−5.
    [37]
    Sanchis G C, Gunnar K, Murphy R J. Developmental changes in cell wall structure of phloem fibers of the bamboo Dendrocalamus asper[J]. Annals of Botany, 2004, 94(4): 497−505. doi: 10.1093/aob/mch169
    [38]
    刘波. 毛竹发育过程中细胞壁形成的研究[D]. 北京: 中国林业科学研究院, 2008.

    Liu B. Formation of cell wall in developmental culms of Phyllostachys pubescens [D]. Beijing: Chinese Academy of Forestry, 2008.
    [39]
    Hu K, Huang Y, Fei B, et al. Investigation of the multilayered structure and microfibril angle of different types of bamboo cell walls at the micro/nano level using a LC-PolScope imaging system[J]. Cellulose, 2017, 24(1): 4611−4625.
    [40]
    Chen M L, Wang C G, Fei B H, et al. Corrugating medium made from solid waste of bamboo paper sludge[J]. Bioresources, 2017, 12(2): 3133−3142.
    [41]
    Parameswaran N, Liese W. On the poly lamellate structure of parenchyma wall in Phyllostachys edulis[J]. IAWA Bulletin, 1975, 6(4): 57−58.
    [42]
    Lian C P, Liu R, Zhang S, et al. Ultrastructure of parenchyma cell wall in bamboo (Phyllostachys edulis) culms[J]. Cellulose, 2020, 27(13): 7321−7329. doi: 10.1007/s10570-020-03265-9
    [43]
    张雨峰, 代丽, 谢寅峰, 等. 不同海拔金佛山方竹出笋及幼竹生长特性[J]. 南京林业大学学报(自然科学版), 2019, 43(5): 199−203.

    Zhang Y F, Dai L, Xie Y F, et al. Study on growth characteristics of young bamboo and shooting of Chimonobambusa utilis at different altitudes[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2019, 43(5): 199−203.
    [44]
    文静, 王春涛, 杨永平. 植物木质部次生细胞壁加厚调控的研究进展[J]. 西南林业大学学报(自然科学), 2021, 41(2): 182−188.

    Wen J, Wang C T, Yang Y P. Advances in the regulation of xylem secondary cell wall thickening in plants[J]. Journal of Southwest Forestry University (Natural Science), 2021, 41(2): 182−188.
    [45]
    郑艳,董文渊,付建生,等. 金佛山方竹无性系种群生长规律的研究[J]. 世界竹藤通讯, 2007, 5(1): 27−30. doi: 10.3969/j.issn.1006-4958.2019.11.017

    Zheng Y, Dong W Y, Fu J S, et al. Study on the rhythm of Chimonobambusa utilis clone population[J]. World Bamboo and Rattan, 2007, 5(1): 27−30. doi: 10.3969/j.issn.1006-4958.2019.11.017
    [46]
    Mitsuda N, Seki M, Shinozaki K, et al. The NAC transcription factors NST1 and NST2 of Arabidopsis regul- ate secondary wall thickenings and are required for another dehiscence[J]. The Plant Cell, 2005, 17(11): 2993−3006. doi: 10.1105/tpc.105.036004
    [47]
    朱晓博, 张贵粉, 陈鹏. 植物次生细胞壁加厚过程的转录调控[J]. 植物生理学报, 2017, 53(9): 1598−1608. doi: 10.13592/j.cnki.ppj.2017.0203

    Zhu X B, Zhang G F, Chen P. Research progress in the transcriptional regulation of secondary cell wall thickening[J]. Plant Physiology Journal, 2017, 53(9): 1598−1608. doi: 10.13592/j.cnki.ppj.2017.0203
  • Related Articles

    [1]Li Xin, Zhong Tuhua, Chen Hong, Li Jingjing. Chemical composition and thermal stability of cells in different structures of Phyllostachys edulis[J]. Journal of Beijing Forestry University, 2023, 45(8): 156-162. DOI: 10.12171/j.1000-1522.20230104
    [2]Jin Zhi, Chen Qian, Dai Linxin, Ma Jianfeng. Research progress in macromolecular orientation of lignocellulosic cell wall[J]. Journal of Beijing Forestry University, 2022, 44(12): 153-160. DOI: 10.12171/j.1000-1522.20220215
    [3]Li Yunke, Li Zhenxin, Zhang Yutong, Yi Qirui, Ma Erni. Water-induced effects of matrix in wood cell wall on cellulose crystalline structure[J]. Journal of Beijing Forestry University, 2022, 44(12): 121-131. DOI: 10.12171/j.1000-1522.20220150
    [4]Wang Fuli, Wang Xianke, Zhou Jiashuo, Xie Hao, Xu Feiyang, Shao Zhuoping. Tensile properties and its variation pattern of bamboo parenchyma[J]. Journal of Beijing Forestry University, 2020, 42(11): 130-137. DOI: 10.12171/j.1000-1522.20200203
    [5]SUN Yuan-ling, DENG Shu-rong, DENG Jia-yin, ZHANG Hui-long, YAO Jun, ZHAO Rui, CHEN Shao-liang.. Effect of eATP on vesicular trafficking in Populus euphratica cells.[J]. Journal of Beijing Forestry University, 2016, 38(7): 33-39. DOI: 10.13332/j.1000-1522.20160071
    [6]WANG Cai-yun, DING You-fang, WENG Hui, SHI Ling-ling, YAN Lin-lin, LIU Yu-jun.. Callus particles and cell suspension cultures of Rhodiola crenulata[J]. Journal of Beijing Forestry University, 2011, 33(6): 186-190.
    [7]WANG Ge, CHEN Hong, YU Yan, CHENG Hai-tao, TIAN Gen-lin, CHEN Xiao-meng. Fine characterization techniques of physical and mechanical properties of bamboo fiber in cell level.[J]. Journal of Beijing Forestry University, 2011, 33(4): 143-148.
    [8]SONG Sha-sha, ZHAO Guang-jie.. Psychological and emotional expression of macroscopic cellpiled structure patterns of wood.[J]. Journal of Beijing Forestry University, 2011, 33(3): 122-126.
    [9]CUI Bin-bin, LI Yun, JIN Xiao-jie, FENG Hui. Cytological mechanism of cytoplasmic inheritance in section Leuce:Ⅰ. Cytoplasmic DNA within generative cell and sperm cell[J]. Journal of Beijing Forestry University, 2010, 32(5): 54-62.
    [10]OUYANG Jie, WU Yan-wen, WANG Xiao-dong, ZHAO Bing, WANG Yu-chun. Kinetics of Cistanche deserticola cells in suspension culture[J]. Journal of Beijing Forestry University, 2007, 29(5): 132-136. DOI: 10.13332/j.1000-1522.2007.05.024
  • Cited by

    Periodical cited type(1)

    1. 吴雨蹊,唐克,王蕊,张莉莉,房磊,李鹏举,侯帅,宋明明. 黑龙江省农业科学院沙棘优良品种特性分析. 黑龙江农业科学. 2025(03): 33-38 .

    Other cited types(1)

Catalog

    Article views (692) PDF downloads (86) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return