Citation: | Cao Lihua, Liu Heman, Yang Hong, Lian Yuzhen. Response of soil CO2 concentration at different depths of Abies georgei var. smithii forest to soil temperature and water content on Sejila Mountain, Tibet of southwestern China[J]. Journal of Beijing Forestry University, 2023, 45(2): 1-10. DOI: 10.12171/j.1000-1522.20220222 |
[1] |
Law B E, Kelliher F M, Baldocchi D D, et al. Spatial and temporal variation in respiration in a young ponderosa pine forest during a summer drought[J]. Agricultural and Forest Meteorology, 2001, 110: 27−43. doi: 10.1016/S0168-1923(01)00279-9
|
[2] |
Bond-Lambert Y B, Thomson A. Temperature-associated increases in the global soil respiration record[J]. Nature, 2010, 464: 579−582. doi: 10.1038/nature08930
|
[3] |
Oertel C, Matschullat J, Zurba K, et al. Greenhouse gas emissions from soils: a review[J]. Geochemistry, 2016, 76(3): 327−352. doi: 10.1016/j.chemer.2016.04.002
|
[4] |
Schimel D S, House J I, Hibbard K A, et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems[J]. Nature, 2001, 414: 169−172. doi: 10.1038/35102500
|
[5] |
Raich J W, Potter C S. Global patterns of carbon dioxide emissions from soils[J]. Global Biogeochemical Cycles, 1995, 9(1): 23−36. doi: 10.1029/94GB02723
|
[6] |
Hashimoto S, Carvalhais N, Ito A, et al. Global spatiotemporal distribution of soil respiration modeled using a global database[J]. Biogeosciences Discussions, 2015, 12(13): 4121−4132. doi: 10.5194/bg-12-4121-2015
|
[7] |
Wang X, Liu L L, Piao S L, et al. Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration[J]. Global Change Biology, 2014, 20(10): 3229−3237. doi: 10.1111/gcb.12620
|
[8] |
Wang C K, Yang J Y, Zhang Q Z. Soil respiration in six temperate forests in China[J]. Global Change Biology, 2006, 12: 2103−2114. doi: 10.1111/j.1365-2486.2006.01234.x
|
[9] |
Wang B, Zha T S, Jia X, et al. Soil moisture modifies the response of soil respiration to temperature in a desert shrub ecosystem[J]. Biogeosciences, 2014, 11: 259−268. doi: 10.5194/bg-11-259-2014
|
[10] |
Schindlbacher A, Wunderlich S, Borken W, et al. Soil respiration under climate change: prolonged summer drought offsets soil warming effects[J]. Global Change Biology, 2012, 18(7): 2270−2279. doi: 10.1111/j.1365-2486.2012.02696.x
|
[11] |
刘合满, 曹丽花, 李江荣, 等. 色季拉山急尖长苞冷杉林不同层次土壤CO2浓度对短时降雨的响应[J]. 生态学报, 2020, 40(22): 8354−8363.
Liu H M, Cao L H, Li J R, et al. Response of soil CO2 concentration at different depth of Abies georgei var. smithii forest to short-time rainfall on Sejila Mountain, southeastern Tibet[J]. Acta Ecologica Sinica, 2020, 40(22): 8354−8363.
|
[12] |
Min K, Berhe A A, Khoi C M, et al. Differential effects of wetting and drying on soil CO2 concentration and flux in near-surface vs. deep soil layers[J]. Biogeochemistry, 2020, 148: 255−269. doi: 10.1007/s10533-020-00658-7
|
[13] |
Goulden M L, Wofsy S C, Harden J W, et al. Sensitivity of boreal forest carbon balance to soil thaw[J]. Science, 1998, 279: 214−217. doi: 10.1126/science.279.5348.214
|
[14] |
Risk D, Kellman L, Beltrami H. Carbon dioxide in soil profiles: production and temperature dependence[J/OL]. Geophysical Research Letters, 2002, 29(6): 11-1−11-4[2022−01−25]. https://doi.org/10.1029/2001GL014002.
|
[15] |
曹丽花, 尹为玲, 刘合满, 等. 西藏东南部色季拉山主要类型森林叶片和枯落物养分含量特征[J]. 生态学报, 2019, 39(11): 4029−4038.
Cao L H, Yin W L, Liu H M, et al. Stoichiometric characteristics of leaves and litter in typical forest types on Sejila Mountain, southeastern Tibet[J]. Acta Ecologica Sinica, 2019, 39(11): 4029−4038.
|
[16] |
Zhou Y, Webste R R, Rossel R A V, et al. Baseline map of soil organic carbon in Tibet and its uncertainty in the 1980s[J]. Geoderma, 2019, 334: 124−133. doi: 10.1016/j.geoderma.2018.07.037
|
[17] |
孙亚荣, 王亚娟, 赵敏, 等. 黄土丘陵区柠条人工林不同深度土壤呼吸速率对土壤温湿度的响应[J]. 环境科学, 2022, 43(10): 4648−4657. doi: 10.13227/j.hjkx.202112253
Sun Y R, Wang Y J, Zhao M, et al. Response of soil respiration rates to soil temperature and moisture at different soil depths of Caragana korshinskii plantation in the loess-hilly region[J]. Environmental Science, 2022, 43(10): 4648−4657. doi: 10.13227/j.hjkx.202112253
|
[18] |
Drewitt G B, Black T A, Jassal R S. Using measurements of soil CO2 efflux and concentrations to infer the depth distribution of CO2 production in a forest soil[J]. Canadian Journal of Soil Science, 2005, 85(2): 213−221. doi: 10.4141/S04-041
|
[19] |
刘芳, 刘丛强, 王仕禄, 等. 喀斯特地区土壤剖面CO2、CH4和N2O浓度的相关关系[J]. 生态学杂志, 2010, 29(4): 717−723.
Liu F, Liu C Q, Wang S L, et al. Correlations among CO2, CH4 and N2O concentrations in soil profiles in central Guizhou karst area[J]. Chinese Journal of Ecology, 2010, 29(4): 717−723.
|
[20] |
李晋波, 姚楠, 李秀, 等. 内蒙古典型草原季节性冻土区土壤剖面CO2、N2O特征[J]. 环境科学, 2018, 39(5): 2330−2338.
Li J B, Yao N, Li X, et al. Dynamics of CO2 and N2O in seasonal frozen soil profiles for a typical steppe in Inner Mongolia[J]. Environmental Science, 2018, 39(5): 2330−2338.
|
[21] |
辛福梅, 刘济铭, 杨小林, 等. 色季拉山急尖长苞冷杉叶片及细根性状随海拔的变异特征[J]. 生态学报, 2017, 37(8): 2719−2728.
Xin F M, Liu J M, Yang X L, et al. Variation in leaf and fine root traits with altitude in Abies georgei var. smithii in Mt. Shergyla[J]. Acta Ecologica Sinica, 2017, 37(8): 2719−2728.
|
[22] |
杨红, 柳文杰, 刘合满, 等. 高寒森林植物叶片−枯落物−土壤养分含量及化学计量特征[J]. 浙江大学学报(农业与生命科学版), 2021, 47(5): 607−618.
Yang H, Liu W J, Liu H M, et al. Nutrient contents and stoichiometric characteristics of plant leaf-litter-soil in alpine forest[J]. Journal of Zhengjiang University (Agriculture and Life Sciences), 2021, 47(5): 607−618.
|
[23] |
韦玮, 丁贵杰, 陈伟, 等. 一、二代马尾松林土壤微生物数量及酶活性垂直分布特征[J]. 重庆师范大学学报(自然科学版), 2017, 34(3): 114−120.
Wei W, Ding G J, Chen W, et al. Vertical distribution characteristics of microorganism quantity and enzyme activity in soil of first- and second-generation of Pinus massoniana forest[J]. Journal of Chongqing Normal University (Natural Science), 2017, 34(3): 114−120.
|
[24] |
施福军, 黄则月, 李婷, 等. 望天树天然林土壤微生物生物量碳氮垂直分布及相关性分析[J]. 林业与环境科学, 2018, 34(6): 72−76. doi: 10.3969/j.issn.1006-4427.2018.06.012
Shi F J, Huang Z Y, Li T, et al. Vertical changes of the soil microbial biomass and the correlation analysis in Parashorea chinensis natural forest[J]. Forestry and Environmental Science, 2018, 34(6): 72−76. doi: 10.3969/j.issn.1006-4427.2018.06.012
|
[25] |
Riveros-Iregui D A, Emanuel R E, Muth D J, et al. Diurnal hysteresis between soil CO2 and soil temperature is controlled by soil water content[J/OL]. Geophysical Research Letters, 2007, 34: L17404[2022−01−02]. https://doi.org/10.1029/2007GL030938.
|
[26] |
刘合满, 曹丽花, 马和平. 土壤呼吸日动态特征及其与大气温度、湿度的响应[J]. 水土保持学报, 2013, 27(1): 193−196, 202.
Liu H M, Cao L H, Ma H P. Diurnal dynamics of soil respiration and response to atmospheric temperature, humidity in Linzhi Farmland[J]. Journal of Soil and Water Conservation, 2013, 27(1): 193−196, 202.
|
[27] |
Spohn M, Holzheu S. Temperature controls diel oscillation of the CO2 concentration in a desert soil[J]. Biogeochemistry, 2021, 156: 279−292. doi: 10.1007/s10533-021-00845-0
|
[28] |
Boone R D, Nadelhoffer K J, Canary J D, et al. Roots exert a strong influence on the temperature sensitivity of soil respiration[J]. Nature, 1998, 396: 570−572. doi: 10.1038/25119
|
[29] |
于雷, 王玉杰, 王云琦, 等. 缙云山针阔混交林土壤各组分呼吸速率区分及其与环境因子的关系[J]. 环境科学研究, 2014, 27(8): 865−872.
Yu L, Wang Y J, Wang Y Q, et al. Partition of soil respiration components and corresponding relationships with environmental factors in mixed forest at Jinyun Mountain, Chongqing[J]. Research of Environmental Sciences, 2014, 27(8): 865−872.
|
[30] |
Maier M, Schack-Kirchner H, Hildebrand E E, et al. Pore-space CO2 dynamics in a deep, well-aerated soil[J]. European Journal of Soil Science, 2010, 61(6): 877−887. doi: 10.1111/j.1365-2389.2010.01287.x
|
[31] |
Jassal R, Black A, Novak M, et al. Relationship between soil CO2 concentrations and forest-floor CO2 effluxes[J]. Agricultural and Forest Meteorology, 2005, 130: 176−192. doi: 10.1016/j.agrformet.2005.03.005
|
[32] |
Tang J W, Baldocchi D D, Qi Y, et al. Assessing soil CO2 efflux using continuous measurements of CO2 profiles in soils with small solid-state sensors[J]. Agricultural and Forest Meteorology, 2003, 118: 207−220. doi: 10.1016/S0168-1923(03)00112-6
|
[33] |
郑鹏飞, 余新晓, 贾国栋, 等. 北京山区不同植被类型的土壤呼吸特征及其温度敏感性[J]. 应用生态学报, 2019, 30(5): 1726−1734.
Zheng P F, Yu X X, Jia G D, et al. Soil respiration and its temperature sensitivity among different vegetation types in Beijing mountain area, China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1726−1734.
|
[1] | Fan Shuxin, Li Kun, Zhang Mengyuan, Xie Yafen, Dong Li. Effects of micro scale underlying surface type and pattern of urban residential area on microclimate: taking Beijing as a case study[J]. Journal of Beijing Forestry University, 2021, 43(10): 100-109. DOI: 10.12171/j.1000-1522.20200256 |
[2] | Geng Hongkai, Wei Xiao, Zhang Mingjuan, Li Qingwei. Influence of vegetation and architecture on microclimate based on Envi-met: a case study of Nanjing Agricultural University[J]. Journal of Beijing Forestry University, 2020, 42(12): 115-124. DOI: 10.12171/j.1000-1522.20190418 |
[3] | WEN Yi-bo, CHANG Ying, FAN Wen-yi. Algorithm for leaf area index inversion in the Great Xing'an Mountains using MISR data and spatial scaling for the validation[J]. Journal of Beijing Forestry University, 2016, 38(5): 1-10. DOI: 10.13332/j.1000-1522.20150204 |
[4] | WANG Hui, HE Kang-ning, XU Te, LIU Yu-juan, LIU Ying, ZHANG Xue. Characteristics and simulation of the canopy conductance of Hippophae rhamnoides in Qaidam Region of northwestern China[J]. Journal of Beijing Forestry University, 2015, 37(8): 1-7. DOI: 10.13332/j.1000-1522.20140457 |
[5] | ZHAN Hui-juan, XIE Wei-jia, SUN Hao, HUANG Hua-guo. ENVI-met model; sensitivity analysis; three-dimensional temperature field of vegetated scenes[J]. Journal of Beijing Forestry University, 2014, 36(4): 64-74. |
[6] | LI Zi-wei, HUAI Yong-jian, FU Hui.. Virtual plant growth simulation based on illumination model.[J]. Journal of Beijing Forestry University, 2013, 35(4): 81-86. |
[7] | SONG Fu-qiang, KANG Mu-yi, YANG Peng, CHEN Ya-ru, LIU Yang, XING Kai-xiong.. Comparison and validation of GIMMS, SPOT-VGT and MODIS global NDVI products in the Loess Plateau of northern Shaanxi Province, northwestern China[J]. Journal of Beijing Forestry University, 2010, 32(4): 72-80. |
[8] | SUN Qing-yan, YU Xin-xiao, HU Shu-ping, XIAO Yang. SWAT model-based runoff simulation in Banchengzi Reservoir Catchment,Beijing[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 148-154. |
[9] | ZHOU Rui, GE Jian-ping, YU Bo, LIU Li-juan, WU Ji-gui. Simulation of forest dynamics at Songshan Mountain, Beijing[J]. Journal of Beijing Forestry University, 2007, 29(1): 19-25. DOI: 10.13332/j.1000-1522.2007.01.004 |
[10] | XU Xiang-zhou, LIU Da-qing, ZHANG Hong-wu, DONG Zhan-di, ZHU Ming-dong. Laboratory rainfall simulation with controlled rainfall intensity and drainage[J]. Journal of Beijing Forestry University, 2006, 28(5): 52-58. |
1. |
蔡志勇,孙龙,孙家宝. 大兴安岭森林可燃物燃烧危险性评估. 东北林业大学学报. 2025(01): 73-78 .
![]() | |
2. |
李维伟,杨雪清,张一鸣,冯昕,王博,杜建华,陈锋,刘晓东. 基于小班尺度的北京市密云区森林火灾危险性评价. 北京林业大学学报. 2024(02): 75-86 .
![]() | |
3. |
莫凡,郭慧,裴顺祥,吴迪,吴莎,辛学兵. 野外-城市界域森林火险时空演变趋势及火险等级划分. 生态学报. 2024(14): 6232-6242 .
![]() | |
4. |
鲜明睿,马敏杰,杨志林,彭永俊,李继品. 云南红河州森林火灾风险评估研究. 森林防火. 2024(04): 26-30 .
![]() | |
5. |
刘嘉雷,田晓瑞,宗学政,彭玉娴,赵文太. 大兴安岭森林火灾风险评估. 陆地生态系统与保护学报. 2023(03): 77-88 .
![]() | |
6. |
刘金龙,岳彩荣,汤明华,阳丽. 基于昭通市森林火灾风险普查数据的阔叶林可燃物载量分析. 消防界(电子版). 2023(05): 150-152 .
![]() | |
7. |
韩喜越,王晓迪,崔晨曦,单延龙,于渤,尹赛男,曹丽丽. 内蒙古大兴安岭根河林业局主要可燃物类型地表细小可燃物特征及其影响因素. 中南林业科技大学学报. 2023(12): 94-103 .
![]() |