• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Jiaqi, Xu Guoqi, Qin Shaoshan. Preparation of nano-SiO2-IPBC microcapsule and its application in mildew resistance of Hevea brasiliensis[J]. Journal of Beijing Forestry University, 2022, 44(11): 122-131. DOI: 10.12171/j.1000-1522.20220229
Citation: Li Jiaqi, Xu Guoqi, Qin Shaoshan. Preparation of nano-SiO2-IPBC microcapsule and its application in mildew resistance of Hevea brasiliensis[J]. Journal of Beijing Forestry University, 2022, 44(11): 122-131. DOI: 10.12171/j.1000-1522.20220229

Preparation of nano-SiO2-IPBC microcapsule and its application in mildew resistance of Hevea brasiliensis

More Information
  • Received Date: June 09, 2022
  • Revised Date: October 04, 2022
  • Accepted Date: October 12, 2022
  • Available Online: October 16, 2022
  • Published Date: November 24, 2022
  •   Objective  This paper aims to prepare a new nano SiO2-IPBC microcapsule fungicide and study its characteristics, as well as improve the fixation and aging resistance of 3-iodo-2-propynyl-butyl-carbamate (IPBC) in wood, and expand its application in the field of wood mildew proof.
      Method  Nano SiO2-IPBC microcapsules were prepared by blending IPBC and nano SiO2 particles in a vacuum, nano SiO2 prepared by sol-gel method was the capsule wall, and IPBC was the capsule core. The microcapsules were characterized by Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), UV-aging resistance, and slow-release performance. Taking Hevea brasiliensis as the research object, Botryodiplodia theobromae, Aspergillus niger, Trichoderma viride, and Penicillium citrinum as the tested strains. The comprehensive indicators were obtained from different mass fraction microcapsule-ethanol impregnated rubber wood treatments.
      Result  Nano SiO2-IPBC microcapsules were regular spherical, with particle size distribution between 20–100 nm and coating rate of 46.33%. The temperature of the weight loss of microcapsules was 120–280 ℃. Only slight yellowing occurred after 60-min UV aging; in 20% ethanol aqueous solution, the release rate of microcapsules was fast in the first 60 min, gradually slowed down in the next 180 min, and its release rate reached 50% in 240 min. FTIR analysis showed that there were Si−OH bonds in the microcapsules. SEM showed that microcapsules were not only distributed in wood vessels, but also deposited in wood pits. The results of mildew proof experiment showed that with the increase of the mass fraction of the microcapsule fungicide, the control effect against 4 fungi had gradually improved. When the mass fraction of microcapsule fungicide increased to 1.25%, the control effect against Botryodiplodia theobromae, Aspergillus niger, Trichoderma viride and Penicillium citrinum reached the highest level, which were 78.125%, 75.000%, 68.750% and 62.750%, respectively. The order of control effect (from strong to weak) was as follows: Botryodiplodia theobromae > Penicillium citrinum > Trichoderma viride > Aspergillus niger.
      Conclusion  The nano SiO2-IPBC microcapsules prepared in this study improve the UV aging resistance of IPBC, as well as has a slow-release effect. The microcapsule fungicide has an excellent inhibitory effect on the 4 common mildews of rubber wood and has the best control effect on Botryodiplodia theobromae.
  • [1]
    李玉栋. 预防橡胶木蓝变和霉变的研究[J]. 林业科学, 2003, 39(4): 98−103. doi: 10.3321/j.issn:1001-7488.2003.04.016

    Li Y D. Study on prevention of rubber wood against sapstain and mold infection[J]. Scientia Silvae Sinicae, 2003, 39(4): 98−103. doi: 10.3321/j.issn:1001-7488.2003.04.016
    [2]
    Nair S, Pandey K K, Giridhar B N, et al. Decay resistance of rubberwood (Hevea brasiliensis) impregnated with ZnO and CuO nanoparticles dispersed in propylene glycol[J]. International Biodeterioration & Biodegradation, 2017, 122(1): 100−106.
    [3]
    常璐璐, 孙墨珑, 徐国祺, 等. 樟树叶提取物对木材霉菌的防治效果及防霉机理研究[J]. 北京林业大学学报, 2017, 39(1): 99−106.

    Chang L L, Sun M L, Xu G Q, et al. Control efficiency and action mechanisms of camphor leaf extractives on mold resistance of wood[J]. Journal of Beijing Forestry University, 2017, 39(1): 99−106.
    [4]
    梁哨, 潘昌仁, 岑晓倩, 等. 涂饰处理对毛竹和炭化毛竹表面视觉性质及防腐性能的影响[J]. 森林工程, 2022, 38(1): 52−57. doi: 10.3969/j.issn.1006-8023.2022.01.007

    Liang S, Pan C R, Cen X Q, et al. Assessment of the color difference and decay resistance performance of moso bamboo and carbonized moso bambootreatments with different painting[J]. Forest Engineering, 2022, 38(1): 52−57. doi: 10.3969/j.issn.1006-8023.2022.01.007
    [5]
    翟炜, 何深远, 崔爱玲, 等. 碘代丙炔基氨基甲酸酯的防腐性能评价[J]. 木材工业, 2014, 28(2): 22−25. doi: 10.19455/j.mcgy.2014.02.006

    Zhai W, He S Y, Cui A L, et al. Decay resistance of iodopropargyl carbamate derivative[J]. China Wood Industry, 2014, 28(2): 22−25. doi: 10.19455/j.mcgy.2014.02.006
    [6]
    李晓文, 李家宁, 李民, 等. 碘代丙炔基丁基氨基甲酸酯复配制剂用于橡胶木防霉防蓝变效果检测[J]. 木材工业, 2015, 29(2): 42−45.

    Li X W, Li J N, Li M, et al. Effects of iodopropargyl carbamate (IPBC) on blue stain and mould in rubber wood[J]. China Wood Industry, 2015, 29(2): 42−45.
    [7]
    肖忠平, 卢晓宁, 陆继圣. IPBC对木质材料的防腐处理工艺研究[J]. 西北林学院学报, 2009, 24(5): 140−143, 151.

    Xiao Z P, Lu X N, Lu J S. Preservative treatment of wood and wood-based composites with IPBC[J]. Journal of Northwest Forestry University, 2009, 24(5): 140−143, 151.
    [8]
    Zhang R, Li Y, He Y, et al. Preparation of iodopropynyl butycarbamate loaded halloysite and its anti-mildew activity[J]. Journal of Materials Research and Technology, 2020, 9(5): 10148−10156. doi: 10.1016/j.jmrt.2020.07.019
    [9]
    张明刚, 瞿欣, Winkowski Karen. 一种新型水分散型IPBC杀菌剂及其性能[J]. 精细与专用化学品, 2008, 16(9): 15−17, 2. doi: 10.3969/j.issn.1008-1100.2008.09.012

    Zhang M G, Qu X, Karen W. A new water dispersed IPBC bactericide and its properties[J]. Fine and Specialty Chemicals, 2008, 16(9): 15−17, 2. doi: 10.3969/j.issn.1008-1100.2008.09.012
    [10]
    肖忠平, 张苏俊, 陆继圣. 戊唑醇和IPBC防腐处理材的FTIR分析[J]. 木材加工机械, 2009, 20(2): 15−16, 30. doi: 10.3969/j.issn.1001-036X.2009.02.004

    Xiao Z P, Zhang S J, Lu J S. FTIR analysis of wood treated with tebuconazole or IPBC preservation FTIR analysis of wood treated with tebuconazole or IPBC preservation[J]. Wood Processing Machinery, 2009, 20(2): 15−16, 30. doi: 10.3969/j.issn.1001-036X.2009.02.004
    [11]
    Duan H, Qiu T, Guo L, et al. The microcapsule-type formaldehyde scavenger: the preparation and the application in urea-formaldehyde adhesives[J]. Journal of Hazardous Materials, 2015, 293(15): 46−53.
    [12]
    Liu Y, Yan L, Heiden P, et al. Use of nanoparticles for controlled release of biocides in solid wood[J]. Journal of Applied Polymer Science, 2001, 79(3): 458−465. doi: 10.1002/1097-4628(20010118)79:3<458::AID-APP80>3.0.CO;2-H
    [13]
    Chang L L, Xu G Q, Wang L H. Preparation and antifungal activities of microcapsules of neem extract used in Populus tomentosa deteriorated by three mold fungi[J]. BioResources, 2018, 13(4): 8373−8384.
    [14]
    Wanyika H, Gatebe E, Kioni P, et al. Mesoporous silica nanoparticles carrier for urea: potential applications in agrochemical delivery systems[J]. Journal of Nanoscience and Nanotechnolgy, 2012, 12(3): 2221−2228. doi: 10.1166/jnn.2012.5801
    [15]
    Zhao P, Cao L, Ma D, et al. Synthesis of pyrimethanil-loaded mesoporous silica nanoparticles and its distribution and dissipation in cucumber plants[J]. Molecules, 2017, 22(5): 817−830. doi: 10.3390/molecules22050817
    [16]
    Ambrogio M W, Thomas C R, Zhao Y L, et al. Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine[J]. Accounts of Chemical Research, 2011, 44(10): 903−913. doi: 10.1021/ar200018x
    [17]
    Fan L, Wen L X, Li Z Z, et al. Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide[J]. Materials Research Bulletin, 2006, 41(12): 2268−2275. doi: 10.1016/j.materresbull.2006.04.014
    [18]
    Li Z Z, Xu S A, Wen L X, et al. Controlled release of avermectin from porous hollow silica nanoparticles: influence of shell thickness on loading efficiency, UV-shielding property and release[J]. Journal of Controlled Release, 2006, 111(1−2): 81−88.
    [19]
    Vallet-Regi M, A Rámila, Real R, et al. A new property of MCM-41: drug delivery system[J]. Chemistry of Materials, 2000, 13(2): 308−311.
    [20]
    中国人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 防霉剂对木材霉菌及变色菌防治效力的试验方法: GB/T 18261—2013[S]. 北京: 中国标准出版社, 2013.

    General Administration of Quality Supervision, Inspection and Quarantin of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Test method for anti-mildew agents in controlling wood mould and stain fungi: GB/T 18261−2013[S]. Beijing: Standards Press of China, 2013.
    [21]
    Sun J H, Shan Z, Maschmeyer T, et al. Synthesis of bimodal nanostructured silicas with independently controlled small and large mesopore sizes[J]. Langmuir, 2003, 19(20): 8395−8402. doi: 10.1021/la0351156
    [22]
    刘冬梅, 李理, 杨晓泉, 等. 用牛津杯法测定益生菌的抑菌活力[J]. 食品研究与开发, 2006, 27(3): 110−111. doi: 10.3969/j.issn.1005-6521.2006.03.044

    Liu D M, Li L, Yang X Q, et al. Determination of the antimicrobial activity of probiotic by Oxford plate assay system[J]. Food Research and Development, 2006, 27(3): 110−111. doi: 10.3969/j.issn.1005-6521.2006.03.044
    [23]
    蔡佳文, 李跃, 吴春春, 等. 缓蚀剂负载中空SiO2微球的制备及性能[J]. 硅酸盐学报, 2020, 48(4): 584−591.

    Cai J W, Li Y, Wu C C, et al. Preparation and properties of corrosion inhibitor-loaded hollow silica microspheres[J]. Journal of the Chinese Ceramic Society, 2020, 48(4): 584−591.
    [24]
    Huang Y, Gram A, Fang P. UV-degradation of IPBC in natural water sample[M]. Roskilde: Roskilde University, 2008: 11−16.
    [25]
    Jin X, Zhang R, Su M, et al. Functionalization of halloysite nanotubes by enlargement and layer-by-layer assembly for controlled release of the fungicide iodopropynyl butylcarbamate[J]. RSC Advances, 2019, 9: 42062−42070. doi: 10.1039/C9RA07593C
    [26]
    靳肖贝. 纳米埃洛石负载IPBC竹材防霉剂的制备与性能研究[D]. 北京: 中国林业科学研究院, 2018.

    Jin X B. Preparation and performance of IPBC bamboo preservatives supported on nano-sized halloysite[D]. Beijing: Chinese Academy of Forestry, 2018.
    [27]
    Popat A, Liu J, Lu G Q M, et al. A pH-responsive drug delivery system based on chitosan coated mesoporous silica nanoparticles[J]. Journal of Materials Chemistry, 2012, 22(22): 11173−11178. doi: 10.1039/c2jm30501a
    [28]
    Wanyika H. Sustained release of fungicide metalaxyl by mesoporous silica nanospheres[M]//Nanotechnology for sustainable development. Cham: Springer, 2013: 321−329.
    [29]
    黄晓琳, 倪佳馨, 韩有奇, 等. 中空介孔二氧化硅微球的制备及表征分析[J]. 林产化学与工业, 2022, 42(1): 64−70. doi: 10.3969/j.issn.0253-2417.2022.01.009

    Huang X L, Ni J X, Han Y Q, et al. Preparation and characterization of hollow mesoporous silica microspheres[J]. Chemistry and Industry of Forest Products, 2022, 42(1): 64−70. doi: 10.3969/j.issn.0253-2417.2022.01.009
    [30]
    Kositchaiyong A, Rosarpitak V, Hamada H, et al. Anti-fungal performance and mechanical-morphological properties of PVC and wood/PVC composites under UV-weathering aging and soil-burial exposure[J]. International Biodeterioration & Biodegradation, 2014, 91: 128−137.
    [31]
    赵鹏炜, 徐国祺, 杨鸿. 纳米CuO/硅溶胶制剂处理杨木性能的研究[J]. 北京林业大学学报, 2021, 43(11): 109−117. doi: 10.12171/j.1000-1522.20210299

    Zhao P W, Xu G Q, Yang H. Research on the performance of poplar wood treated by nano-CuO/silica sol formulations[J]. Journal of Beijing Forestry University, 2021, 43(11): 109−117. doi: 10.12171/j.1000-1522.20210299
    [32]
    石江涛, 李坚. 东北常见树种木材形成早期组织波谱特征差异分析[J]. 林业科学, 2016, 52(6): 115−121.

    Shi J T, Li J. Comparative analysis of spectroscopy features of early-stage wood forming tissue in common tree species in Northeast, China[J]. Scientia Silvae Sinicae, 2016, 52(6): 115−121.
    [33]
    平丽娟, 柴宇博, 刘君良, 等. 硅溶胶与GU/GMU树脂复合改性橡胶木的性能[J]. 林业科学, 2021, 57(10): 111−119. doi: 10.11707/j.1001-7488.20211011

    Ping L J, Chai Y B, Liu J L, et al. Performance of modified Rubber wood by silica sol in combination with GU/GMU resin[J]. Scientia Silvae Sinicae, 2021, 57(10): 111−119. doi: 10.11707/j.1001-7488.20211011
    [34]
    李坚. 木材波谱学[M]. 北京: 科学出版社, 2003: 105−110.

    Li J. Wood spectroscopy[M]. Beijing: Science Press, 2003: 105−110.
    [35]
    刘明光, 刘宇, 赵茹. 异噻唑啉酮微胶囊的制备表征及释放行为[J]. 高分子材料科学与工程, 2021, 37(2): 49−53, 60. doi: 10.16865/j.cnki.1000-7555.2021.0068

    Liu M G, Liu Y, Zhao R. Preparation, characterization and release behavior of isothiazolinone microcapsules[J]. Polymer Materials Science & Engineering, 2021, 37(2): 49−53, 60. doi: 10.16865/j.cnki.1000-7555.2021.0068
  • Related Articles

    [1]Gao Qi, Huang Yuxiang, Yu Wenji. Anti-mildew and anti-corrosion performance of wood scrimber based on minimally invasive pretreatment[J]. Journal of Beijing Forestry University, 2024, 46(6): 127-136. DOI: 10.12171/j.1000-1522.20240087
    [2]Sun Yingchun, Liu Ru, Long Ling, Chen Minggui. Low gloss and anti-fingerprint properties of self-wrinkling UV cured polyurethane acrylate wood coatings[J]. Journal of Beijing Forestry University, 2024, 46(4): 149-157. DOI: 10.12171/j.1000-1522.20230351
    [3]Zhao Boshi, Yu Zhiming, Zhang Yang, Qi Chusheng, Tang Ruilin, Liu Yuansong, Wang Haowei, Han Yiyun. Growth of Lasiodiplodia theobromae and its dyeing effect on the surface properties of rubber wood[J]. Journal of Beijing Forestry University, 2020, 42(3): 160-167. DOI: 10.12171/j.1000-1522.20190382
    [4]Peng Yao, Wang Wen, Cao Jinzhen. Photodegradation and anti-weathering effects of montmorillonite on WF/PP composites[J]. Journal of Beijing Forestry University, 2018, 40(8): 116-122. DOI: 10.13332/j.1000-1522.20180032
    [5]Xu Jiaqi, Shen Haiying, Cao Jinzhen. Synergistic effect of TiO2 and PDMS on improving anti-weathering properties of surface thermally-modified wood[J]. Journal of Beijing Forestry University, 2018, 40(4): 109-116. DOI: 10.13332/j.1000-1522.20180053
    [6]CHANG Lu-lu, SUN Mo-long, XU Guo-qi, LIU Ze-xu, WANG Li-hai. Control efficiency and action mechanisms of camphor leaf extractives on mold resistance of wood[J]. Journal of Beijing Forestry University, 2017, 39(1): 99-106. DOI: 10.13332/j.1000-1522.20160255
    [7]SONG Ye, YU Yan, WANG Ge, TIAN Gen-lin, CHENG Hai-tao, WU Yi-qiang. ZnO nano film’s selfassembly on the surface of bamboo wood and its antilight discoloration properties[J]. Journal of Beijing Forestry University, 2010, 32(1): 92-96.
    [8]DUAN Qiong-fen, , MA Li-yi, YU Jian-xing, ZHANG Zhong-quan, WANG You-qiong, AN Xin-nan. Anti-oxidation stability of moringa oil.[J]. Journal of Beijing Forestry University, 2009, 31(6): 112-115.
    [9]Anti-microbial functions of apple polyphenols.[J]. Journal of Beijing Forestry University, 2008, 30(4): 150-152.
    [10]LI Shao-cai, SUN Hai-long, YANG Zhi-rong, HE Lei, CUI Bao-shan. Effect of grass sowing by spraying for rock slope protection on anti-erosion[J]. Journal of Beijing Forestry University, 2006, 28(1): 43-47.

Catalog

    Article views (579) PDF downloads (84) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return