• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yuan Zuoqiang, Wang Xing, Mao Zikun, Lin Fei, Ye Ji, Fang Shuai, Wang Xugao, Hao Zhanqing. Study on carbon sequestration rates of typical tree species in temperate forest[J]. Journal of Beijing Forestry University, 2022, 44(10): 43-51. DOI: 10.12171/j.1000-1522.20220256
Citation: Yuan Zuoqiang, Wang Xing, Mao Zikun, Lin Fei, Ye Ji, Fang Shuai, Wang Xugao, Hao Zhanqing. Study on carbon sequestration rates of typical tree species in temperate forest[J]. Journal of Beijing Forestry University, 2022, 44(10): 43-51. DOI: 10.12171/j.1000-1522.20220256

Study on carbon sequestration rates of typical tree species in temperate forest

More Information
  • Received Date: June 23, 2022
  • Revised Date: August 28, 2022
  • Available Online: September 25, 2022
  • Published Date: October 24, 2022
  •   Objective  How to improve the carbon sink role of forests under the background of carbon neutrality and continue to increase forest carbon storage has become a focus of attention of all parties. Reasonable tree species mixture is the basis for improving forest quality and carbon sink capacity.
      Method  Based on the 15 years (2004−2019) consecutive data of four forest inventories in a 25 hectare dynamic sample plot of broadleaved Korean pine forest in Changbai Mountain of northeastern China, we analyzed the contribution of different tree species to aboveground biomass carbon storage, and compared the differences in carbon sequestration rates of different tree species as well as their interspecific asynchrony.
      Result  (1) The aboveground biomass of broadleaved Korean pine forest in the latest inventory was about (282.5 ± 102.8) Mg/ha, and the annual mean net carbon sequestration rate of aboveground biomass was about 1.0 Mg/ha in the past 15 years. The carbon sequestration rates among the three periods (2004−2009, 2009−2014, 2014−2019) were 1.54, 0.73 and 0.76 Mg/(ha·year), respectively. (2) The aboveground biomass of the seven dominant tree species accounted for about 96.2% of the total aboveground biomass of the entire community, and the three most important tree species (i.e., Tilia amurensis, Fraxinus mandshurica and Quercus mongolica) contributed 73.6% of the total aboveground biomass. (3) The population number of five tree species, including Tilia amurensis, Fraxinus mandshurica, Quercus mongolica, Pinus koraiensis and Ulmus japonica, continued to decline, while their average DBH and aboveground biomass showed a directional increasing trend. (4) The aboveground biomass carbon sequestration rate of the seven dominant tree species ranged from −0.97% to 0.77%, and Fraxinus mandshurica with compound leaf character had the fastest aboveground biomass accumulation rate (0.77%), followed by Tilia amurensis (0.60%), Ulmus japonica (0.54%), Quercus mongolica (0.38%), Pinus koraiensis (0.09%), Acer mono (−0.46%), Populus ussuriensis (−0.97%). (5) The seven most important populations showed different growth dynamics during three monitoring periods, and the relationships between Tilia amurensis and Acer mono, Quercus mongolica and Pinus koraiensis, Fraxinus mandshurica and Ulmus japonica showed a relative higher positive correlation relationship, whereas a negative relationship existed between Populus ussuriensis and Ulmus japonica.
      Conclusion  The temporal asynchrony of carbon sequestration rates among tree species could provide a certain reference for tree species selection and configuration in afforestation practice in this area.
  • [1]
    FAO. Global forest resources assessment 2020: main report[M]. Rome: FAO Forestry Paper, 2020.
    [2]
    Wang J, Feng L, Palmer P I, et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data[J]. Nature, 2020, 586: 720−723. doi: 10.1038/s41586-020-2849-9
    [3]
    Ghosh P K, Mahanta S K, Mandal D, et al. Carbon management in tropical and sub-tropical terrestrial systems[M]. Singapore: Springer, 2020.
    [4]
    Friedlingstein P, O’sullivan M, Jones M W, et al. Global carbon budget 2020[J]. Earth System Science Data, 2020, 12(4): 3269−3340. doi: 10.5194/essd-12-3269-2020
    [5]
    Dixon R K, Solomon A, Brown S, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263: 185−190. doi: 10.1126/science.263.5144.185
    [6]
    Pan Y, Birdsey R A, Fang J, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333: 988−993. doi: 10.1126/science.1201609
    [7]
    Fang J, Yu G, Liu L, et al. Climate change, human impacts, and carbon sequestration in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16): 4015−4020. doi: 10.1073/pnas.1700304115
    [8]
    Tang X, Zhao X, Bai Y, et al. Carbon pools in China’s terrestrial ecosystems: new estimates based on an intensive field survey[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16): 4021−4026. doi: 10.1073/pnas.1700291115
    [9]
    Prentice I C, Farquhar G D, Fasham M J R, et al. The carbon cycle and atmospheric carbon dioxide[M]. Cambridge: Cambridge University Press, 2001: 183−237.
    [10]
    郑兴波, 于大炮, 王安志, 等. 长期监测与野外控制试验揭示温带典型森林结构, 功能及演变规律[J]. 中国科学院院刊, 2019, 34(8): 948−961.

    Zheng X B, Yu D P, Wang A Z, et al. Long-term monitoring and field control experiments reveal the structure, function and evolution of typical temperate forests[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(8): 948−961.
    [11]
    王清奎, 田鹏, 孙兆林, 等. 森林土壤有机质研究的现状与挑战[J]. 生态学杂志, 2020, 39(11): 3829−3843. doi: 10.13292/j.1000-4890.202011.033

    Wang Q K, Tian P, Sun Z L, et al. Research on soil organic matter in forest ecosystems: Status and challenge[J]. Chinese Journal of Ecology, 2020, 39(11): 3829−3843. doi: 10.13292/j.1000-4890.202011.033
    [12]
    马学威, 熊康宁, 张俞, 等. 森林生态系统碳储量研究进展与展望[J]. 西北林学院学报, 2019, 34(5): 62−72. doi: 10.3969/j.issn.1001-7461.2019.05.10

    Ma X W, Xiong K N, Zhang Y, et al. Research progresses and prospects of carbon storage in forest ecosystems[J]. Journal of Northwest Forestry University, 2019, 34(5): 62−72. doi: 10.3969/j.issn.1001-7461.2019.05.10
    [13]
    杨元合, 石岳, 孙文娟, 等. 中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献[J]. 中国科学:生命科学, 2022, 52(4): 1−41.

    Yang Y H, Shi Y, Sun W J, et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality[J]. Science China Life Sciences, 2022, 52(4): 1−41.
    [14]
    张颖, 李晓格, 温亚利. 碳达峰碳中和背景下中国森林碳汇潜力分析研究[J]. 北京林业大学学报, 2022, 44(1): 38−47. doi: 10.12171/j.1000-1522.20210143

    Zhang Y, Li X G, Wen Y L. Forest carbon sequestration potential in China under the background of carbon emission peak and carbon neutralization[J]. Journal of Beijing Forestry University, 2022, 44(1): 38−47. doi: 10.12171/j.1000-1522.20210143
    [15]
    Lutz J A, Furniss T J, Johnson D J, et al. Global importance of large-diameter trees[J]. Global Ecology and Biogeography, 2018, 27(7): 849−864. doi: 10.1111/geb.12747
    [16]
    Ali A, Lin S L, He J K, et al. Big-sized trees overrule remaining trees’ attributes and species richness as determinants of aboveground biomass in tropical forests[J]. Global Change and Biology, 2019, 25(8): 2810−2824. doi: 10.1111/gcb.14707
    [17]
    Yuan Z, Ali A, Sanaei A, et al. Few large trees, rather than plant diversity and composition, drive the above-ground biomass stock and dynamics of temperate forests in northeast China[J/OL]. Forest Ecology and Management, 2021, 481: 118698[2022−02−01]. https://doi.org/10.1016/j.foreco.2020.118698.
    [18]
    韩大校, 金光泽. 地形和竞争对典型阔叶红松林不同生长阶段树木胸径生长的影响[J]. 北京林业大学学报, 2017, 39(1): 9−19. doi: 10.13332/j.1000-1522.20160218

    Han D X, Jin G Z. Influences of topography and competition on DBH growth in different growth stages in a typical mixed broadleaved-Korean pine forest, northeastern China[J]. Journal of Beijing Forestry University, 2017, 39(1): 9−19. doi: 10.13332/j.1000-1522.20160218
    [19]
    刘世荣. 提升林草碳汇潜力, 助力碳达峰碳中和目标实现[J]. 经济管理文摘, 2021(22): 3−6.

    Liu S R. Enhance the carbon sequestration potential of forest and grass, and help achieve the goal of carbon peak and carbon neutralization[J]. Economic Management Abstracts, 2021(22): 3−6.
    [20]
    郝占庆, 郭水良, 曹同. 长白山植物多样性及其格局[M]. 沈阳: 辽宁科学技术出版社, 2002.

    Hao Z Q, Guo S L, Cao T. Plant diversity and distribution patterns in Changbai Mountain[M]. Shenyang: Liaoning Science and Technology Publishing House, 2002.
    [21]
    Yang H. Distribution patterns of dominant tree species on northern slope of Changbai Mountain[J]. Research of Forest Ecosystem, 1985, 5: 1−14.
    [22]
    姜萍, 叶吉, 吴钢. 长白山阔叶红松林大样地木本植物组成及主要树种的生物量[J]. 北京林业大学学报, 2005, 27(增刊2): 112−115. doi: 10.13332/j.1000-1522.2005.s2.029

    Jiang P, Ye J, Wu G. Woody species composition and biomass of main tree species in a 25 ha plot of broad-leaved and Korean pine mixed forests of Changbai Mountain, northeast China[J]. Journal of Beijing Forestry University, 2005, 27(Suppl.2): 112−115. doi: 10.13332/j.1000-1522.2005.s2.029
    [23]
    郝占庆, 赵士洞, 陶大立, 等. 长白山北坡椴树红松林高等植物物种多样性[J]. 生态学杂志, 1993, 12(6): 1−5. doi: 10.3321/j.issn:1000-4890.1993.06.001

    Hao Z Q, Zhao S D, Tao D L, et al. Species diversity of higher plants in lime Korean pine forest on northern slope of Changbai Mountain[J]. Chinese Journal of Ecology, 1993, 12(6): 1−5. doi: 10.3321/j.issn:1000-4890.1993.06.001
    [24]
    Condit R. Tropical forest census plots: methods and results from Barro Colorado Island, Panama and a comparison with other plots[M]. Berlin: Springer Science & Business Media, 1998.
    [25]
    郝占庆, 李步杭, 张健, 等. 长白山阔叶红松林样地 (CBS): 群落组成与结构[J]. 植物生态学报, 2008, 32(2): 238−250. doi: 10.3773/j.issn.1005-264x.2008.02.002

    Hao Z Q, Li B H, Zhang J, et al. Broad-leaved Korean pine (Pinus koraiensis) mixed forest plot in Changbaishan (CBS) of China: community composition and structure[J]. Chinese Journal of Plant Ecology, 2008, 32(2): 238−250. doi: 10.3773/j.issn.1005-264x.2008.02.002
    [26]
    王利伟, 李步杭, 叶吉, 等. 长白山阔叶红松林树木短期死亡动态[J]. 生物多样性, 2011, 19(2): 260−270. doi: 10.3724/SP.J.1003.2011.11279

    Wang L W, Li B H, Ye J, et al. Dynamics of short-term tree mortality in broad-leaved Korean pine (Pinus koraiensis) mixed forest in the Changbai Mountains[J]. Biodiversity Science, 2011, 19(2): 260−270. doi: 10.3724/SP.J.1003.2011.11279
    [27]
    Brown S. Measuring carbon in forests: current status and future challenges[J]. Environmental Pollution, 2002, 116(3): 363−372. doi: 10.1016/S0269-7491(01)00212-3
    [28]
    李晓娜, 国庆喜, 王兴昌, 等. 东北天然次生林下木树种生物量的相对生长[J]. 林业科学, 2010, 46(8): 22−32. doi: 10.11707/j.1001-7488.20100804

    Li X N, Guo Q X, Wang X C, et al. Allometry of understory tree species in a natural secondary forest in northeast China[J]. Scientia Silvae Sinicae, 2010, 46(8): 22−32. doi: 10.11707/j.1001-7488.20100804
    [29]
    Wang C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Forest Ecology and Management, 2006, 222(1−3): 9−16. doi: 10.1016/j.foreco.2005.10.074
    [30]
    刘文慧. 长白山阔叶红松林不同演替阶段灌木层在群落生产力中的地位及其与更新的关系[D]. 北京: 北京林业大学, 2012.

    Liu W H. The status of shrub in community productivity and the relevance with regeneration of broad-leaved Korean pine forest in Changbai Mountains at its different succession stages[D]. Beijing: Beijing Forestry University, 2012.
    [31]
    Loreau M, de Mazancourt C. Species synchrony and its drivers: neutral and nonneutral community dynamics in fluctuating environments[J]. American Naturalist, 2008, 172(2): E48−E66. doi: 10.1086/589746
    [32]
    Chave J, Réjou-Méchain M, Búrquez A, et al. Improved allometric models to estimate the aboveground biomass of tropical trees[J]. Global Change Biology, 2014, 20(10): 3177−3190. doi: 10.1111/gcb.12629
    [33]
    Anderson-Teixeira K J, Davies S J, Bennett A C, et al. CTFS-Forest GEO: a worldwide network monitoring forests in an era of global change[J]. Global Change Biology, 2015, 21(2): 528−549. doi: 10.1111/gcb.12712
    [34]
    马克平, 徐学红. 中国森林生物多样性监测网络有力支撑生物群落维持机制研究[J]. 中国科学:生命科学, 2020, 50(4): 359−361.

    Ma K P, Xu X H. Chinese forest biodiversity monitoring network well developed for community assembly studies[J]. Science China Life Sciences, 2020, 50(4): 359−361.
    [35]
    徐远杰, 林敦梅, 米湘成, 等. 古田山不同干扰程度森林的群落恢复动态[J]. 生物多样性, 2014, 22(3): 358−365. doi: 10.3724/SP.J.1003.2014.13202

    Xu Y J, Lin D M, Mi X C, et al. Recovery dynamics of secondary forests with different disturbance intensity in the Gutianshan National Nature Reserve[J]. Biodiversity Science, 2014, 22(3): 358−365. doi: 10.3724/SP.J.1003.2014.13202
    [36]
    林豹雨. 广东省黑石顶亚热带森林地上生物量分布和变异的研究[D]. 广州: 中山大学, 2017.

    Lin B Y. Aboveground biomass distribution and variation in a subtropical forest of China [D]. Guangzhou: Sun Yat-sen University, 2017.
    [37]
    Bastin J F, Rutishauser E, Kellner J R, et al. Pan-tropical prediction of forest structure from the largest trees[J]. Global Ecology and Biogeography, 2018, 27(11): 1366−1383. doi: 10.1111/geb.12803
    [38]
    Phillips O L, Brienen R J J C B. Carbon uptake by mature Amazon forests has mitigated Amazon nations’ carbon emissions[J]. Carbon Balance and Management, 2017, 12(1): 1−9. doi: 10.1186/s13021-016-0069-2
    [39]
    Feeley K J, Joseph W S, Nur S M N, et al. Decelerating growth in tropical forest trees[J]. Ecology Letters, 2007, 10(6): 461−469. doi: 10.1111/j.1461-0248.2007.01033.x
    [40]
    Pregitzer K S, Euskirchen E S. Carbon cycling and storage in world forests: biome patterns related to forest age[J]. Global Change Biology, 2004, 10(12): 2052−2077. doi: 10.1111/j.1365-2486.2004.00866.x
    [41]
    Chave J, Condit R, Lao S, et al. Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama[J]. Journal of Ecology, 2003, 91(2): 240−252. doi: 10.1046/j.1365-2745.2003.00757.x
    [42]
    van der Heijden M G, Streitwolf-Engel R, Riedl R, et al. The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland[J]. New Phytologist, 2006, 172(4): 739−752. doi: 10.1111/j.1469-8137.2006.01862.x
    [43]
    Smith S E, Read D J. Mycorrhizal symbiosis[M]. New York: Academic Press, 2010.
    [44]
    Lebauer D S, Treseder K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed[J]. Ecology, 2008, 89(2): 371−379. doi: 10.1890/06-2057.1
    [45]
    Lilleskov E A, Kuyper T W, Bidartondo M I, et al. Atmospheric nitrogen deposition impacts on the structure and function of forest mycorrhizal communities: a review[J]. Environmental Pollution, 2019, 246: 148−162. doi: 10.1016/j.envpol.2018.11.074
    [46]
    Shi L, Wang J, Liu B, et al. Ectomycorrhizal fungi reduce the light compensation point and promote carbon fixation of Pinus thunbergii seedlings to adapt to shade environments[J]. Mycorrhiza, 2017, 27(8): 823−830. doi: 10.1007/s00572-017-0795-7
    [47]
    Niinemets Ü, Bilger W, Kull O, et al. Acclimation to high irradiance in temperate deciduous trees in the field: changes in xanthophyll cycle pool size and in photosynthetic capacity along a canopy light gradient[J]. Plant, Cell and Environment, 1998, 21(12): 1205−1218. doi: 10.1046/j.1365-3040.1998.00364.x
    [48]
    Malhado A C, Whittaker R J, Malhi Y, et al. Are compound leaves an adaptation to seasonal drought or to rapid growth? Evidence from the Amazon rain forest[J]. Global Ecology and Biogeography, 2010, 19(6): 852−862. doi: 10.1111/j.1466-8238.2010.00567.x
    [49]
    Yang D, Zhang Y J, Song J, et al. Compound leaves are associated with high hydraulic conductance and photosynthetic capacity: evidence from trees in Northeast China[J]. Tree Physiology, 2019, 39(5): 729−739. doi: 10.1093/treephys/tpy147
    [50]
    Song J, Trueba S, Yin X H, et al. Hydraulic vulnerability segmentation in compound-leaved trees: evidence from an embolism visualization technique[J]. Plant Physiology, 2022, 189(1): 204−214. doi: 10.1093/plphys/kiac034
    [51]
    Wilson R, Anchukaitis K, Briffa K R, et al. Last millennium northern hemisphere summer temperatures from tree rings (Part I): the long term context[J]. Quaternary Science Reviews, 2016, 134: 1−18. doi: 10.1016/j.quascirev.2015.12.005
    [52]
    Fritts H. Tree rings and climate [M]. New York: Academic Press, 1976.
    [53]
    Yu D, Liu J, Zhou L, et al. Spatial variation and temporal instability in the climate-growth relationship of Korean pine in the Changbai Mountain region of Northeast China[J]. Forest Ecology and Management, 2013, 300: 96−105. doi: 10.1016/j.foreco.2012.06.032
    [54]
    于健. 长白山阔叶红松林主要树种径向生长对气候变化响应及温度重建[D]. 北京: 北京林业大学, 2019.

    Yu J. Rosponse of radial growth of main tree species of broadleaved Korean pine forest to climate change in Changbai Mountain and temperature reconstruction[D]. Beijing: Beijing Forestry University, 2019.
    [55]
    朱良军. 4 个温带硬阔导管特征与径向生长对气候变化的响应[D]. 哈尔滨: 东北林业大学, 2019.

    Zhu L J. Response to climtate change of vessel features and radial growth of four hardwood spcies from temperate forests of Northeast China [D]. Harbin: Northeast Forestry University, 2019.
    [56]
    蔡礼蓉, 匡旭, 房帅, 等. 长白山阔叶红松林 3 个常见树种径向生长的影响因素[J]. 应用生态学报, 2017, 28(5): 1407−1413.

    Cai L R, Kuang X, Fang S, et al. Factors influencing tree radial growth of three common species in broad-leaved Korean pine mixed forests in Changbai Mountains, China[J]. Chinese Journal of Applied Ecology, 2017, 28(5): 1407−1413.
    [57]
    韩艳刚, 周旺明, 齐麟, 等. 长白山树木径向生长对气候因子的响应[J]. 应用生态学报, 2019, 30(5): 1513−1520.

    Han Y G, Zhou W M, Qi L, et al. Tree radial growth-climate relationship in Changbai Mountain, Northeast China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1513−1520.
    [58]
    Sherry R A, Zhou X, Gu S, et al. Divergence of reproductive phenology under climate warming[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(1): 198−202. doi: 10.1073/pnas.0605642104
    [59]
    Loreau M, de Mazancourt C. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms[J]. Ecology Letters, 2013, 16: 106−115. doi: 10.1111/ele.12073
    [60]
    Yuan Z, Ali A, Wang S, et al. Temporal stability of aboveground biomass is governed by species asynchrony in temperate forests[J/OL]. Ecological Indicators, 2019, 107: 105661[2021−11−21]. https://doi.org/10.1016/j.ecolind.2019.105661.
    [61]
    Qiao X, Geng Y, Zhang C, et al. Spatial asynchrony matters more than alpha stability in stabilizing ecosystem productivity in a large temperate forest region[J]. Global Ecology and Biogeography, 2022, 31(6): 1133−1146.
    [62]
    于贵瑞, 郝天象, 朱剑兴. 中国碳达峰, 碳中和行动方略之探讨[J]. 中国科学院院刊, 2022, 37(4): 423−434.

    Yu G R, Hao T X, Zhu J X. Discussion on action strategies of China’s carbon peak and carbon neutrality[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 423−434.
  • Related Articles

    [1]Chen Xiaomeng, Wang Yuechen, Chai Xuying, Li Aining, Wang Yonglin. Deletion mutations and its phenotypic analysis of two-component genes in Lonsdalea populi[J]. Journal of Beijing Forestry University, 2021, 43(9): 25-37. DOI: 10.12171/j.1000-1522.20210007
    [2]Zhang Ping, Li Chaoyang, Zhao Qingquan, Wang Lihai, Ma Ling. Inhibition effects of biocontrol bacteria strains on the pathogen of Camellia oleifera anthracnose[J]. Journal of Beijing Forestry University, 2020, 42(10): 107-116. DOI: 10.12171/j.1000-1522.20190409
    [3]GAN Lu, SU Hao-tian, LING Xin-wen, YIN Shu-xia. Rust pathogen identification and mechanism of disease-resistance research on Kentucky bluegrass dwarf mutant[J]. Journal of Beijing Forestry University, 2017, 39(3): 87-92. DOI: 10.13332/j.1000-1522.20160315
    [4]LIU Jian-feng, ZHANG Yu-chu, LIU Ting, Celal Tuncer, CHENG Yun-qing. Screening of a highly pathogenic strain against hazelnut weevil and microscopic observation on its infection process[J]. Journal of Beijing Forestry University, 2017, 39(3): 32-37. DOI: 10.13332/j.1000-1522.20160322
    [5]CAO Feng, YANG Ling, GONG Shu-rong, ZHANG Lin, NIU Qiu-hong. Relationships between pathogenic bacterium and the endophytic bacteria isolated from Bursaphelenchus xylophilus.[J]. Journal of Beijing Forestry University, 2016, 38(9): 25-33. DOI: 10.13332/j.1000-1522.20160082
    [6]BEN Ai-ling, ZENG Fei-li, QIAO Xue-juan, ZHENG Jing-rong, HAN Zheng-min. Colonization and pathogenicity for American and Chinese bacterial strains carried by pine wood nematodes.[J]. Journal of Beijing Forestry University, 2013, 35(1): 83-87.
    [7]HU Ching-yu, CHEN Jan-chang, WEI Chun-hung, CHEN Chaur-tzuhn. Using MODIS image data to estimate the terrestrial net primary productivity (NPP) of ecological zone in Taiwan.[J]. Journal of Beijing Forestry University, 2011, 33(4): 33-39.
    [8]WANG Meng-chang, FAN Jun-feng, LIANG Jun, ZHOU Yong-xue, WANG Lei. Effects of canker pathogen on four antioxidase activities of poplar callus[J]. Journal of Beijing Forestry University, 2010, 32(2): 118-122.
    [9]SUN Dong-mei, YANG Qian, SONG Jin-zhu. Study on inhibition pathogen of Cytospora chrysosperma by Trichoderma aureoviride metabolite[J]. Journal of Beijing Forestry University, 2006, 28(1): 76-79.
    [10]ZHAO Bo-guang, LIANG Bo, ZHAO Lin-guo, XU Mei. Influence of pine wood nematode on production of phytotoxins of an accompanying pathogenic bacterial strain[J]. Journal of Beijing Forestry University, 2005, 27(6): 71-75.
  • Cited by

    Periodical cited type(21)

    1. 彭小静,黄海山,严芝银,邹星晨,贺康宁,程唱,王作枭,李睿,刘婧雯,石正阳,刘仟仟. 祁连山东部地区不同林分密度白桦天然林土壤理化性质特征. 生态学报. 2025(02): 743-756 .
    2. 张佳凝,张建军,赖宗锐,赵炯昌,胡亚伟,李阳,卫朝阳. 林分密度对刺槐人工林土壤养分和微生物群落的影响. 干旱区研究. 2025(02): 274-288 .
    3. 武燕,李歆玉,张奕婷,丁波,张运林,符裕红,刘讯. 西南喀斯特地区不同龄组马尾松人工林枯落物碳氮磷化学计量特征及其影响因子. 北京林业大学学报. 2024(02): 87-94 . 本站查看
    4. 巩大鹏,毕华兴,王劲峰,赵丹阳,黄靖涵,宋艺琳. 晋西黄土区不同密度刺槐人工林叶片-枯落物-土壤化学计量特征. 林业科学研究. 2024(02): 156-164 .
    5. 陈宇,庞涛,瞿相,彭建,杨汉波,代林利,辜云杰. 造林密度对楠木幼龄林生长、土壤理化性质与酶活性的影响. 四川林业科技. 2024(03): 9-20 .
    6. 龚世豪,查同刚,张晓霞,张恒硕,高连炜,于洋. 晋西黄土区典型林分凋落物-土壤养分对降雨再分配变化的响应. 生态学报. 2024(17): 7748-7759 .
    7. 窦金萍,武小钢,杨秀云,陈冠光,靳雅君,吴茜. 不同类型豆科植物群落凋落物对城市土壤质量的影响. 林业调查规划. 2024(05): 198-204 .
    8. 贾亚倢,杨建英,张建军,胡亚伟,张犇,赵炯昌,李阳,唐鹏. 晋西黄土区林分密度对油松人工林生物量及土壤理化性质的影响. 浙江农林大学学报. 2024(06): 1211-1221 .
    9. 陈涛,王露露,王思崇,朱学灵,叶永忠. 河南省丘陵低山区刺槐人工林立地分类及立地质量评价. 西北林学院学报. 2023(01): 153-159 .
    10. 高利强,刘莹,王国梁. 人工和天然油松林表层土壤不同粒径团聚体有机碳及其组分分布特征. 水土保持学报. 2023(02): 320-328 .
    11. 孙阔,袁兴中,王晓锋,袁嘉,候春丽,魏丽景. 三峡水库消落带土壤养分含量及生态化学计量特征. 长江流域资源与环境. 2023(02): 403-414 .
    12. 张誉. 不同造林技术对水土保持林土壤特性的影响研究. 广东蚕业. 2023(03): 50-52 .
    13. 钟欢,董文渊,浦婵,谢泽轩,张炜,郑静楠,夏莉. 滇东北4种类型筇竹林分土壤碳氮磷生态化学计量特征研究. 西南林业大学学报(自然科学). 2023(03): 111-119 .
    14. 魏亚娟,刘美英,解云虎,李星. 吉兰泰盐湖防护体系建立38 a以来土壤养分特征. 干旱区研究. 2023(05): 747-755 .
    15. 党记刚. 陕西黄土区典型人工林分结构与水土保持功能耦合关系研究. 科技创新与生产力. 2023(08): 47-50 .
    16. 朱燕,翟博超,孙美美,罗伶书,王瑛,杜盛. 黄土丘陵区不同密度刺槐和油松人工林土壤理化性质与化学计量特征. 水土保持研究. 2023(06): 160-167 .
    17. 兰道云,毕华兴,赵丹阳,王宁,云慧雅,王珊珊,崔艳红. 晋西黄土区不同密度油松人工林保育土壤功能评价. 水土保持学报. 2022(02): 189-196 .
    18. 郭强,官凤英,辉朝茂,刘蔚漪,邹学明. 密度和施肥调控对巨龙竹新竹生长及生物量特征的影响. 北京林业大学学报. 2022(04): 95-106 . 本站查看
    19. 张恒宇,孙树臣,吴元芝,安娟,宋红丽. 黄土高原不同植被密度条件下土壤水、碳、氮分布特征. 生态环境学报. 2022(05): 875-884 .
    20. 郭鑫,魏天兴,陈宇轩,沙国良,任康,于欢. 黄土丘陵区典型退耕恢复植被土壤生态化学计量特征. 干旱区地理. 2022(06): 1899-1907 .
    21. 梁广国,陶建元,郭坤,王子旗,张艳明,王金颖. 不同林型、不同林分密度植被下土壤养分及其化学计量比研究. 吉林林业科技. 2021(06): 14-21 .

    Other cited types(13)

Catalog

    Article views (1059) PDF downloads (170) Cited by(34)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return