Citation: | Li Wanlu, Li Jingyu, Guo Juan, Yang Tao, Ma Erni. A comparative study on moisture sorption thermodynamics of ancient and recent cypress[J]. Journal of Beijing Forestry University, 2023, 45(4): 126-135. DOI: 10.12171/j.1000-1522.20220355 |
[1] |
Sandstrom M, Jalilehvand F, Persson I, et al. Deterioration of the seventeenth-century warship Vasa by internal formation of sulphuric acid[J]. Nature, 2002, 415: 893−897. doi: 10.1038/415893a
|
[2] |
Walsh-Korb Z, Avérous L. Recent developments in the conservation of materials properties of historical wood[J]. Progress in Materials Science, 2019, 102: 167−221. doi: 10.1016/j.pmatsci.2018.12.001
|
[3] |
Zoia L, Salanti A, Orlandi M. Chemical characterization of archaeological wood: softwood Vasa and hardwood Riksapplet case studies[J]. Journal of Cultural Heritage, 2015, 16(4): 428−437. doi: 10.1016/j.culher.2014.09.015
|
[4] |
林国聪, 孟原召, 王光远. 浙江宁波渔山小白礁一号沉船遗址调查与试掘[J]. 中国国家博物馆馆刊, 2011, 33(11): 54−68.
Lin G C, Meng Y Z, Wang G Y. Survey and exploratory excavation of the Xiaobaijiao 1 Wreck Site in Yushan[J]. Journal of National Museum of China, 2011, 33(11): 54−68.
|
[5] |
张玄微. 浅析饱水古木材低温低氧保藏技术—以“南海Ⅰ号”出土饱水木材标本为例[J]. 客家文博, 2020, 13(4): 17−21.
Zhang X W. Analysis on the preservation technology of moisture-saturated ancient wood at low temperature and low oxygen: taking the moisture-saturated wood specimen unearthed from “Nanhai Ⅰ” as an example[J]. Hakka Cultural Heritage Vision, 2020, 13(4): 17−21.
|
[6] |
Crestini C, El Hadidi N M N, Palleschi G. Characterisation of archaeological wood: a case study on the deterioration of a coffin[J]. Microchemical Journal, 2009, 92(2): 150−154. doi: 10.1016/j.microc.2009.03.003
|
[7] |
Łucejko J J, Modugno F, Ribechini E, et al. Characterisation of archaeological waterlogged wood by pyrolytic and mass spectrometric techniques[J]. Analytica Chimica Acta, 2009, 654(1): 26−34. doi: 10.1016/j.aca.2009.07.007
|
[8] |
卢芸. 木材超分子科学: 科学意义及展望[J]. 木材科学与技术, 2022, 36(2): 1−10. doi: 10.12326/j.2096-9694.2022026
Lu Y. Wood supramolecular science: scientific significance and prospects[J]. Chinese Journal of Wood Science and Technology, 2022, 36(2): 1−10. doi: 10.12326/j.2096-9694.2022026
|
[9] |
Majka J, Babiński L, Olek W. Sorption isotherms of waterlogged subfossil scots pine wood impregnated with a lactitol and trehalose mixture[J]. Holzforschung, 2017, 71(10): 813−819. doi: 10.1515/hf-2017-0006
|
[10] |
Hailwood A J, Horrobin S. Absorption of water by polymers: analysis in terms of a simple model[J]. Transactions of the Faraday Society, 1946, 42: 84−92. doi: 10.1039/tf946420b084
|
[11] |
Guo J, Yin Y F, Han L Y, et al. Deterioration of the cell wall in waterlogged wooden archeological artifacts, 2400 years old[J]. International Association of Wood Anatomists Journal, 2019, 40(4): 1−25.
|
[12] |
Thybring E E, Kymäläinen M, Rautkari L. Experimental techniques for characterising water in wood covering the range from dry to fully water-saturated[J]. Wood Science and Technology, 2018, 52(2): 297−329. doi: 10.1007/s00226-017-0977-7
|
[13] |
曹金珍. 吸着·解吸过程中水分与木材之间的相互作用—从介电弛豫及吸附热力学[D]. 北京: 北京林业大学, 2001.
Cao J Z. Interaction between water and wood during adsorption and desorption processes: from dielectric and thermodynamic approaches[D]. Beijing: Beijing Forestry University, 2001.
|
[14] |
Simón C, Esteban L G, Palacios P, et al. Thermodynamic properties of the water sorption isotherms of wood of limba (Terminalia superba Engl. & Diels), obeche (Triplochiton scleroxylon K. Schum.), radiata pine (Pinus radiata D. Don) and chestnut (Castanea sativa Mill.)[J]. Industrial Crops and Products, 2016, 94(8): 122−131.
|
[15] |
Perry N P, Audimar P B, Andy L. Thermodynamics of moisture sorption by the giant-timber bamboo[J]. Holzforschung, 1997, 51(2): 177−182. doi: 10.1515/hfsg.1997.51.2.177
|
[16] |
韩刘杨. 小白礁Ⅰ号沉船饱水· 脱水加固木材的结构与性能研究[D]. 北京: 中国林业科学研究院, 2020.
Han L Y. Structure and performance of both waterlogged and consolidated archaeological wood: a case of Xiaobaijiao No. 1 Shipwreck[D]. Beijing: Chinese Academy of Forestry, 2020.
|
[17] |
Bari E, Nazarmezhad N, Kazemi S M, et al. Comparison between degradation capabilities of the white rot fungi Pleurotus ostreanus and Trametes versicolor in beech wood[J]. International Biodeterioration & Biodegradation, 2015, 104(12): 231−237.
|
[18] |
孙佳楠. 东营凹陷页岩可动油评价及留烃机理[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2021.
Sun J N. Evalution of movable oil and retention machanics of Dongying depression shales[D]. Guangzhou: University of Chinese Academy of Sciences, Guangzhou Institute of Geochemistry, 2021.
|
[19] |
Pandey K K, Pitman A J. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi[J], International Biodeterioration & Biodegradation, 2003, 52(3): 151−160.
|
[20] |
Oudiani A E, Msahli S, Sakli F. In-depth study of agave fiber structure using Fourier transform infrared spectroscopy[J]. Carbohydrate Polymers, 2017, 164(5): 242−248.
|
[21] |
Xia Y, Chen T Y, Wen J L, et al. Multi-analysis of chemical transformations of lignin macromolecules from waterlogged archaeological wood[J]. International Journal of Biological Macromolecules, 2018, 109: 407−416. doi: 10.1016/j.ijbiomac.2017.12.114
|
[22] |
袁诚, 翟胜丞, 章一蒙, 等. 红外光谱结合热重法对考古木材降解状况的分析[J]. 光谱学与光谱分析, 2020, 40(9): 2943−2950.
Yuan C, Zhai S C, Zhang Y M, et al. Simple evaluation of the degradation state of archaeological wood based on the infrared spectroscopy combined with thermogravimetry[J]. Spectroscopy and Spectral Analysis, 2020, 40(9): 2943−2950.
|
[23] |
袁诚, 陈冰炜, 黄曹兴, 等. 徐州出土汉代棺木用材树种鉴定及其化学性质[J]. 林业工程学报, 2019, 4(3): 52−59.
Yuan C, Chen B W, Huang C X, et al. Species identification and chemical analysis of coffin wood in the Han Dynasty excavated in Xuzhou[J]. Journal of Forestry Engineering, 2019, 4(3): 52−59.
|
[24] |
Kadita S. Studies on the water sorption of wood[J]. Wood Research, 1960, 23: 1−61.
|
[25] |
Simpson W. Sorption theories applied to wood[J]. Wood and Fiber Science, 1980, 12(3): 183−195.
|
[26] |
García-Iruela A, García E L, García F F, et al. Effect of degradation on wood hygroscopicity: the case of a 400-year-old coffin[J]. Forests, 2020, 11(7): 712. doi: 10.3390/f11070712
|
[27] |
Nilsson T, Rowell R. Historical wood-structure and properties[J]. Journal of Cultural Heritage, 2012, 13(3): S5−S9. doi: 10.1016/j.culher.2012.03.016
|
[28] |
Urquhart A R. The mechanism of the adsorption of water by cotton[J]. Journal of the Textile Institute, 1929, 20: 125−132. doi: 10.1080/19447022908661485
|
[29] |
郭娟, 杨弢, 殷亚方. 考古木材的吸湿性能及其内在影响机制[M] 北京: 科学出版社, 2020: 240-249.
Guo J, Yang T, Yin Y F. The moisture adsorption properties and internal influence mechanism of archaeological wood[M]. Beijing: Science Press, 2020: 240−249.
|
[1] | Dai Rui, Duan Shuaishuai, Xiao Shikui, Wei Zhipeng, Lü Shufang, Shi Guoan, Wu Jiang, Fan Bingyou. Screening of internal reference genes of cut flowers of Paeonia lactiflora and expression analysis of key genes of ethylene biosynthesis[J]. Journal of Beijing Forestry University, 2025, 47(1): 106-115. DOI: 10.12171/j.1000-1522.20240054 |
[2] | Liu Jiaming, Zhao Jian, Zhang Jianzhong, Zhao Dong. Cutting constitutive equation and its parameter measurement of oil tree peony stem[J]. Journal of Beijing Forestry University, 2020, 42(11): 138-144. DOI: 10.12171/j.1000-1522.20200229 |
[3] | Zhao Xiaozhi, Gao Li, Jia Guixia. Effects of light treatment on cutting quality of Juniperus chinensis ‘Plumosa Aurea’[J]. Journal of Beijing Forestry University, 2020, 42(8): 132-140. DOI: 10.12171/j.1000-1522.20200007 |
[4] | ZHAO Hong-gang, LE Lei, LIU Ming-li, WU Jun-hua, LIU Yan-long. Laser cutting preparation technology of solid wood parquet laminate flooring[J]. Journal of Beijing Forestry University, 2016, 38(6): 110-115. DOI: 10.13332/j.1000-1522.20150380 |
[5] | HONG Yan, CHEN Zhi-lin, DAI Si-lan. Light induction on flowering characteristics of cut chrysanthemum ‘Reagan’[J]. Journal of Beijing Forestry University, 2015, 37(3): 133-138. DOI: 10.13332/j.1000-1522.20140223 |
[6] | LI Bo, LI Shu-sen, YANG Hong-ze, LI Bin.. Analysis of occupational hazards in gardeners爷cutting#br# irrigation posture.[J]. Journal of Beijing Forestry University, 2014, 36(2): 145-148. |
[7] | ZHANG Wen-chao, CAO Yuan, WU Jia-ye, HAO Rui-zhi, JING Yan-ping. Laser microdissection system of poplar anther.[J]. Journal of Beijing Forestry University, 2013, 35(1): 139-143. |
[8] | CHEN Cheng, YU Guo-sheng. Effect of sliding cutting angle of bush reciprocating cutter on bush cutting[J]. Journal of Beijing Forestry University, 2011, 33(2): 115-119. |
[9] | HAN Ke-ting, WANG Juan, DAI Si-lan. Adventitous shoot regeneration from internode transverse thin cell layers of cut spray chrysanthemum.[J]. Journal of Beijing Forestry University, 2009, 31(2): 102-107. |
[10] | YANG Yong-fu, XI Bao-tian, LI Li. Cutting forces of moso bamboo[J]. Journal of Beijing Forestry University, 2006, 28(4): 17-21. |
1. |
王佳庆. 北京市白皮松栽培技术优化研究. 现代园艺. 2025(04): 13-14+18 .
![]() | |
2. |
赵娜,吕建魁,李少宁,徐晓天,李斌,赵加辉,鲁绍伟. 不同干旱处理刺槐、侧柏光合特性与内源脱落酸含量的相关关系. 生态学报. 2024(05): 2100-2114 .
![]() | |
3. |
党毅,王维,张永娥,王渝淞,丁兵兵,樊登星,贾国栋,余新晓,董俊杰. 坝上高原不同植被类型覆盖下土壤水分含量对降雨的动态响应. 北京林业大学学报. 2023(05): 106-118 .
![]() | |
4. |
刘诗莹,鲁绍伟,李少宁,徐晓天,孙芷郁,赵娜. 北京市七种园林树种叶水势动态特征及其影响因素分析. 北方园艺. 2022(07): 75-82 .
![]() | |
5. |
岳军伟,张美妮,赵培. 秦岭南麓油松林水分利用效率的边缘效应研究. 商洛学院学报. 2022(02): 1-6 .
![]() | |
6. |
于丰源,张金鑫,孙一荣,宋立宁. 科尔沁沙地主要造林树种叶片δ~(13)C比较研究. 林业科学研究. 2022(04): 179-187 .
![]() | |
7. |
韩璐 ,杨菲 ,吴应明 ,牛云明 ,曾祎明 ,陈立欣 . 晋西黄土区典型乔灌木短期水分利用效率对环境因子的响应. 植物生态学报. 2021(12): 1350-1364 .
![]() |