• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Wenjuan, Wang Tao, Zhao Fuze, Lin Jian. Basic properties of Chimonobambusa utilis and its spatiotemporal variations[J]. Journal of Beijing Forestry University, 2023, 45(3): 127-136. DOI: 10.12171/j.1000-1522.20220360
Citation: Liu Wenjuan, Wang Tao, Zhao Fuze, Lin Jian. Basic properties of Chimonobambusa utilis and its spatiotemporal variations[J]. Journal of Beijing Forestry University, 2023, 45(3): 127-136. DOI: 10.12171/j.1000-1522.20220360

Basic properties of Chimonobambusa utilis and its spatiotemporal variations

More Information
  • Received Date: August 28, 2022
  • Revised Date: February 09, 2023
  • Available Online: February 12, 2023
  • Published Date: March 24, 2023
  •   Objective  This paper aims to further improve the high value-added utilization of culm resources of Chimonobambusa utilis, the chemical components, physical and mechanical properties were investigated, and the variation regularity with age and axial part of bamboo culm were also revealed.
      Method  In this study, the natural plants of Chimonobambusa utilis were used as raw materials to determine the chemical component (mass fraction in this article) content and physical and mechanical properties, such as density, dry shrinkage, compressive strength parallel to grain, modulus of rapture (MOR), modulus of elasticity (MOE) and hardness according to the national standards. The crystallinity of cellulose and microfibril angle was calculated from the results of X-ray diffraction.
      Result  The content of each chemical component of Chimonobambusa utilis varied slightly with the age and axial part, and the variation pattern was not significant. The crystallinity increased with the age of bamboo and then decreased gradually, with a maximum of 50.39% at 2 years old, and increased gradually with the increase of axial part. The microfibril angle decreased and then increased with increasing age and axial part, and the smallest angle was 9.10° in the middle of 2 years old. The basic density ranged from 0.513 to 0.693 g/cm3, the oven-dried density ranged from 0.535 to 0.725 g/cm3, and the air-dried density ranged from 0.556 to 0.756 g/cm3. All densities showed an increasing trend with increasing age and axial part, and increased significantly between 1 and 2 years, and then increased steadily to stabilize. The oven-dried and air-dried shrinking ratio showed a decreasing trend with the increasing age and axial part, and decreased significantly between 1−2 years, and then decreased steadily, the latter fluctuating relatively more. The compressive strength parallel to grain ranged from 50.73 to 64.58 MPa, MOR ranged from 114.09 to 134.26 MPa, and MOE ranged from 8.45 to 12.42 GPa, all of which showed an increasing-decreasing-increasing trend with increasing age, and an increasing trend with increasing axial part; the mean values of inner and outer hardness ranged from 60.00 to 72.70 HD, which showed an increasing trend with increasing age and axial part. The dry shrinkage, compressive strength parallel to grain, MOE and hardness of Chimonobambusa utilis were significantly affected by anatomical index and major chemical components.
      Conclusion  Both bamboo age and axial part of culm affected the basic properties, but the effect of bamboo age was more significant. The culm material of Chimonobambusa utilis was basically mature over 2 years old, which could be the optimized cutting age of Chimonobambusa utilis. In addition, there were some significant correlations between physical-mechanical properties and anatomical structure index.
  • [1]
    王昌命, 王锦, 王文久, 等. 云南主要竹材材性与制浆造纸性能分析[J]. 中国造纸, 2008, 27(8): 10−12. doi: 10.3969/j.issn.0254-508X.2008.08.003

    Wang C M, Wang J, Wang W J, et al. The property and papermaking performance of the major bamboo species in Yunnan Province[J]. China Pulp & Paper, 2008, 27(8): 10−12. doi: 10.3969/j.issn.0254-508X.2008.08.003
    [2]
    付建虎. 阔叶箬竹基本性质和应用初探[D]. 合肥: 安徽农业大学, 2014.

    Fu J H. A preliminary study on the application and on the basic properties of Indocalamus latifolius[D]. Hefei: Anhui Agricultural University, 2014.
    [3]
    杨喜, 刘杏娥, 杨淑敏, 等. 5种丛生竹材物理力学性质的比较[J]. 东北林业大学学报, 2013, 41(10): 91−93. doi: 10.3969/j.issn.1000-5382.2013.10.019

    Yang X, Liu X E, Yang S M, et al. Comparison of physical-mechanical properties of five sympodial bamboo species[J]. Journal of Northeastern Forestry University, 2013, 41(10): 91−93. doi: 10.3969/j.issn.1000-5382.2013.10.019
    [4]
    黄兴彦. 硬头黄竹材性变异规律及耐老化性能研究[D]. 雅安: 四川农业大学, 2015.

    Huang X Y. Variation in bamboo properties of Bambusa rigida and investigation of its aging resistance[D]. Yaan: Sichuan Agricultural University, 2015.
    [5]
    Huang W, Li Y, Niklas K J, et al. A superellipse with deformation and its application in describing the cross-sectional shapes of a square bamboo[J]. Symmetry, 2020, 12(12): 2073−2087. doi: 10.3390/sym12122073
    [6]
    赵树丛. 桐梓方竹发展记[J]. 中国林业产业, 2020, 17(11): 73−77.

    Zhao S C. The development of Tongzi square bamboo[J]. China Forestry Industry, 2020, 17(11): 73−77.
    [7]
    娄义龙. 金佛山方竹垂直分布及低海拔异地引种后笋产量和品质[J]. 世界竹藤通讯, 2021, 19(1): 24−33.

    Lou Y L. Vertical distribution of Chimonobambusa utilis and its shoot yield and quality after introduced to different places at low elevation[J]. World Bamboo and Rattan, 2021, 19(1): 24−33.
    [8]
    任春春, 贾玉龙, 娄义龙, 等. 贵州金佛山方竹笋营养及功能成分剖析[J]. 食品与发酵工业, 2021, 47(10): 214−221.

    Ren C C, Jia Y L, Lou Y L, et al. Analysis of nutritional and functional components of bamboo shoots in Chimonobambusa utilis, Guizhou[J]. Food and Fermentation Industries, 2021, 47(10): 214−221.
    [9]
    娄义龙. 金佛山方竹适生土壤特性及其形态多样性调查[J]. 世界竹藤通讯, 2021, 19(2): 48−52.

    Lou Y L. Investigation of workable soil characteristics and morphological diversity of Chimonobambusa utilis[J]. World Bamboo and Rattan, 2021, 19(2): 48−52.
    [10]
    娄义龙, 陈荣喜, 张果, 等. 金佛山方竹在黔中竹海森林公园不同类型林地上的造林效果[J]. 世界竹藤通讯, 2021, 19(6): 61−64.

    Lou Y L, Chen R X, Zhang G, et al. Afforestation effect of Chimonobambusa utilis at forestland of different types in bamboo forest park in central Guizhou Province[J]. World Bamboo and Rattan, 2021, 19(6): 61−64.
    [11]
    娄义龙. 大娄山区金佛山方竹种子营养成分与播种育苗[J]. 世界竹藤通讯, 2021, 19(5): 25−33.

    Lou Y L. Seed nutrients and seedling breeding of Chimonobambusa utilis in Daloushan Mountains[J]. World Bamboo and Rattan, 2021, 19(5): 25−33.
    [12]
    林金国, 赖根明, 郑国丰, 等. 方竹材基本密度和干缩性变异规律的研究[J]. 西北林学院学报, 2004, 19(2): 112−115. doi: 10.3969/j.issn.1001-7461.2004.02.033

    Lin J G, Lai G M, Zheng G F, et al. Variation law of basic density and shrinkage of Chimonobambusa quadrangularis[J]. Journal of Northwest Forestry University, 2004, 19(2): 112−115. doi: 10.3969/j.issn.1001-7461.2004.02.033
    [13]
    刘文芳, 章亮, 张文标, 等. 金佛山方竹材的热解及产物性能研究[J]. 竹子学报, 2018, 37(3): 85−92.

    Liu W F, Zhang L, Zhang W B, et al. Pyrolysis of Chimonobabusa utilis (Keng) Keng f. and characteristics of its carbonization products[J]. Journal of Bamboo Research, 2018, 37(3): 85−92.
    [14]
    张雨, 徐佳佳, 张文标, 等. 烘焙预处理对方竹热解产物特性的影响[J]. 浙江农林大学学报, 2019, 36(5): 981−989.

    Zhang Y, Xu J J, Zhang W B, et al. Pretreatment on characteristics of pyrolysis products for small diameter sympodial bamboo with torrefaction[J]. Journal of Zhejiang A&F University, 2019, 36(5): 981−989.
    [15]
    邓珺杭, 包善飞, 丁显平, 等. 中国方竹种质资源库建设探讨[J]. 防护林科技, 2020, 38(10): 81−83.

    Deng J H, Bao S F, Ding X P, et al. Construction of chinese chimonobambusa utilis germplasm resource bank[J]. Protected Forest Science and Technology, 2020, 38(10): 81−83.
    [16]
    Shi J Y, Zhang Y X, Zhou D Q, et al. Illustrated flora of Bambusoideae in China[M]. Singapore City: Science Press and Springer Nature Singapore Pte Ltd, 2020.
    [17]
    Segal L C, Creely J J, Martin A E, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer[J]. Textile Research Journal, 1959, 29(10): 786−794. doi: 10.1177/004051755902901003
    [18]
    张卫丽. 基于SPSS的试剂中氯元素含量的单因素方差分析[J]. 工业控制计算机, 2017, 30(6): 34−35.

    Zhang W L. One-way ANOVA of elemental chlorine content in reagents based on SPSS[J]. Industrial Control Computer, 2017, 30(6): 34−35.
    [19]
    史正军, 辉朝茂, 袁清泉. 云南甜竹化学成分分析[J]. 世界竹藤通讯, 2009, 7(2): 10−13. doi: 10.3969/j.issn.1672-0431.2009.02.004

    Shi Z J, Hui Z M, Yuan Q Q. A study on chemical composition of Dendrocalamus brandisii in Yunnan[J]. World Bamboo and Rattan, 2009, 7(2): 10−13. doi: 10.3969/j.issn.1672-0431.2009.02.004
    [20]
    江泽慧, 于文吉, 余养伦. 竹材化学成分分析和表面性能表征[J]. 东北林业大学学报, 2006, 50(4): 1−2. doi: 10.3969/j.issn.1000-5382.2006.04.001

    Jiang Z H, Yu W J, Yu Y L. Analysis of chemical components of bamboo wood and characteristic of surface performance[J]. Journal of Northeastern Forestry University, 2006, 50(4): 1−2. doi: 10.3969/j.issn.1000-5382.2006.04.001
    [21]
    杨淑惠. 植物纤维化学[M]. 北京: 中国轻工业出版社, 2005.

    Yang S H. Lignocellulosic chemistry[M]. Beijing: China Light Industry Press, 2005.
    [22]
    曹钰, 王新洲, 李延军, 等. 高温油热处理对竹材淀粉含量及防霉性能的影响[J]. 林业工程学报, 2020, 5(2): 109−115.

    Cao Y, Wang X Z, Li Y J, et al. Effect of high temperature oil heat treatment on the starch content and mold-resistant property of bamboo[J]. Journal of Forestry Engineering, 2020, 5(2): 109−115.
    [23]
    刘瑞华, 成聃睿, 史正军, 等. 薄壁型巨龙竹秆材化学成分分析[J]. 世界竹藤通讯, 2014, 12(5): 22−25.

    Liu R H, Cheng D R, Shi Z J, et al. A study of chemical composition of Dendrocalamus sinicus with thin culm wall[J]. World Bamboo and Rattan, 2014, 12(5): 22−25.
    [24]
    Gu J, Catchmark J M. The impact of cellulose structure on binding interactions with hemicellulose and pectin[J]. Cellulose, 2013, 20(4): 1613−1627. doi: 10.1007/s10570-013-9965-8
    [25]
    French A D. Idealized powder diffraction patterns for cellulose polymorphs[J]. Cellulose, 2014, 21(2): 885−896. doi: 10.1007/s10570-013-0030-4
    [26]
    杨淑敏, 江泽慧, 任海青, 等. 利用X-射线衍射法测定竹材纤维素结晶度[J]. 东北林业大学学报, 2010, 38(8): 75−77. doi: 10.3969/j.issn.1000-5382.2010.08.023

    Yang S M, Jiang Z H, Ren H Q, et al. Determination of cellulose crystallinity of bamboo culms with X-ray diffraction spectrum[J]. Journal of Northeastern Forestry University, 2010, 38(8): 75−77. doi: 10.3969/j.issn.1000-5382.2010.08.023
    [27]
    Wahab R, Mustafa M T, Sulaiman O, et al. Anatomical and physical properties of cultivated two- and four-year-old Bambusa vulgaris[J]. Sains Malaysiana, 2010, 39(4): 571−579.
    [28]
    Wahab R, Mohamed A, Mustafa M T, et al. Physical characteristics and anatomical properties of cultivated bamboo (Bambusa vulgaris Schrad.) culms[J]. Journal of Biological Sciences, 2009, 9(7): 753−759. doi: 10.3923/jbs.2009.753.759
    [29]
    钟莎, 张双保, 覃道春, 等. 毛竹含水率、基本密度和干缩性的变异规律[J]. 北京林业大学学报, 2009, 31(增刊1): 185−188.

    Zhong S, Zhang S B, Qin D C, et al. Variation patterns of moisture content, basic density and dry shrinkage of Phyllostachys pubescens[J]. Journal of Beijing Forestry University, 2009, 31(Suppl.1): 185−188.
    [30]
    严彦, 刘焕荣, 张秀标, 等. 毛竹材性差异对胶合竹层板应力分级的影响[J]. 安徽农业大学学报, 2017, 44(2): 260−264.

    Yan Y, Liu H R, Zhang X B, et al. The effect of Phyllostachy pubescens f. lutea Wen property on the E-rated classification of laminated bamboo board[J]. Journal of Anhui Agricultural University, 2017, 44(2): 260−264.
    [31]
    谢九龙, 齐锦秋, 周亚巍, 等. 慈竹材物理力学性质研究[J]. 竹子研究汇刊, 2011, 30(4): 30−34.

    Xie J L, Qi J Q, Zhou Y W, et al. A study on bamboo physico-mechanical properties of Neosinocalamus affinis[J]. Journal of Bamboo Research, 2011, 30(4): 30−34.
    [32]
    杨喜, 刘杏娥, 杨淑敏, 等. 梁山慈竹材质生成过程中的物理力学性质研究[J]. 林业实用技术, 2012(11): 94−96.

    Yang X, Liu X E, Yang S M, et al. Study on the physical and mechanical properties of the material generation process of Liang Shan Cixi bamboo[J]. Forest Science and Technology, 2012(11): 94−96.
    [33]
    刘一星, 赵广杰. 木质资源材料学[M]. 北京: 中国林业出版社, 2004.

    Liu Y X, Zhao G J. Wood resource materials[M]. Beijing: China Forestry Publishing House, 2004.
    [34]
    张宏健, 杜凡, 张福兴, 等. 云南4种材用丛生竹的主要物理力学性质[J]. 西南林业大学学报(自然科学), 1998, 18(3): 189−193.

    Zhang H J, Du F, Zhang F X, et al. Main physical and mechanical properties of four typical thick-growing bamboo in Yunnan[J]. Journal of Southwest Forestry (Natural Science), 1998, 18(3): 189−193.
    [35]
    杨云芳, 愈有明, 方伟, 等. 红壳竹竹材物理力学性质的研究[J]. 浙江农林大学学报, 1998, 15(2): 158−163.

    Yang Y F, Yu Y M, Fang W, et al. Study on the physico-mechanical properties of culm-wood of Phyllostachys iridenscens[J]. Journal of Zhejiang A&F University, 1998, 15(2): 158−163.
    [36]
    关明杰, 朱一辛, 张齐生. 甜竹的干缩性及其纤维饱和点[J]. 南京林业大学学报(自然科学版), 2003, 27(1): 33−36.

    Guan M J, Zhu Y X, Zhang Q S. Research on shrinkage and fiber saturation point of Dendrocalamus hamiltonii[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2003, 27(1): 33−36.
    [37]
    崔敏, 殷亚方, 姜笑梅, 等. 不同竹龄毛竹材物理性质的差异分析[J]. 森林与环境学报, 2010, 30(4): 338−343.

    Cui M, Yin Y F, Jiang X M, et al. Variation analysis of physical characteristics in Phyllostachy pubescens stem at different growth ages[J]. Journal of Forestry and Environment, 2010, 30(4): 338−343.
    [38]
    苏文会, 顾小平, 朱如云, 等. 大木竹竹材物理性质的研究[J]. 南京林业大学学报(自然科学版), 2007, 31(2): 42−46.

    Su W H, Gu X P, Zhu R Y, et al. Study on physical properties of Bambusa wenchouensis wood[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2007, 31(2): 42−46.
    [39]
    张闻博, 费本华, 田根林, 等. 不同纬度毛竹物理力学性质的比较研究[J]. 北京林业大学学报, 2019, 41(4): 136−145.

    Zhang W B, Fei B H, Tian G L, et al. Comparative study on physical mechanic properties of Phyllostachys edulis in different latitudes[J]. Journal of Beijing Forestry University, 2019, 41(4): 136−145.
    [40]
    李光荣, 辜忠春, 李军章,等. 毛竹竹材物理力学性能研究[J]. 湖北林业科技, 2014, 43(5): 44−49.

    Li G R, Gu Z C, Li J Z, et al. Study on physical and mechanical performance of Phyllostachy pubescens[J]. Hubei Forestry Science and Technology, 2014, 43(5): 44−49.
  • Cited by

    Periodical cited type(13)

    1. 熊海贝,龙有为,陈琳,丁叶蔚. 木结构无损检测技术研究与应用综述. 结构工程师. 2023(01): 191-201 .
    2. 王祺,冯鑫浩,史诗琪,杨兆哲,詹先旭,吴智慧. 机器视觉在木制品制造中的应用. 木材科学与技术. 2022(05): 17-24 .
    3. 王锦亚,李振业,倪超. 基于机器视觉的实木地板在线分色识别算法. 林业工程学报. 2021(05): 135-139 .
    4. 庄子龙,刘英,沈鹭翔,丁奉龙,王争光. 基于多层感知机的木材颜色分类. 林业机械与木工设备. 2020(06): 8-14 .
    5. 陈威,刘艳,雷庆. 基于智能视觉的小差异行为特征分类. 计算机科学. 2019(03): 298-302 .
    6. 孙建平,梁懿,蒋志林,柳婧如. 图像处理技术在竹木复合材料性能评估中的应用展望. 西北林学院学报. 2019(02): 246-249+256 .
    7. 王明谦,王昆,许清风. 木结构无损检测技术研究进展. 施工技术. 2019(21): 85-90 .
    8. 杜丽娟. 舰船导航系统超分辨率图像智能提取技术研究. 舰船科学技术. 2018(16): 82-84 .
    9. 何波. 篮球投射过程中的角度智能视觉图像分解判断方法. 现代电子技术. 2018(10): 175-178 .
    10. 马玉芳. 基于智能视觉的微型高精度图像采集系统设计. 现代电子技术. 2018(19): 67-70 .
    11. 魏晓慧,马晓珍,刘亚秋. 基于蜂群单阈值分割的SRC板材缺陷分类方法. 沈阳工业大学学报. 2017(03): 292-298 .
    12. 陈熔,刘杰. 基于智能视觉的特定人员检索平台设计与实现. 现代电子技术. 2017(14): 102-105 .
    13. 李晓东. 视觉传达设计认识探讨. 鸭绿江(下半月版). 2016(12): 175 .

    Other cited types(9)

Catalog

    Article views (511) PDF downloads (59) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return