Citation: | Pang Rongrong, Zhao Bingqian, Gao Lushuang, Wang Kangchen, Chen Jinping. Relationship between climatic suitability and productivity of Larix gmelinii forest[J]. Journal of Beijing Forestry University, 2023, 45(11): 1-10. DOI: 10.12171/j.1000-1522.20220361 |
Larix gmelinii is an important constructive tree species in the forests of northeastern Inner Mongolia of northern China. Global warming leads to great uncertainty on the potential geographical distribution and the productivity of L. gmelinii forest. Therefore, accurately assessing the potential climate suitability for L. gmelinii and its relationship with the forest productivity in northeastern Inner Mongolia plays an important role in the sustainable development of forest ecosystems in northeastern China.
Based on field inventory data from 68 sample plots in the natural forest area of northeastern Inner Mongolia and eight climatic variables, the MaxEnt model was used to simulate and predict the potential geographical distribution of L. gmelinii forest. The climate suitable geographical distribution and the area of L. gmelinii forest were determined. Based on the distribution probability of measured points, combining with the forest productivity and stand structure factors, the relationship among climatic suitability, forest productivity and its influencing factors was clarified.
The suitable area for L. gmelinii forest was mainly distributed in the northeast of Inner Mongolia, the north and southeast of Heilongjiang Province, and the southeast of Jilin Province of northeastern China. The area of suitable area was sorted from large to small as low suitable area (6.050 × 105 km2) > high suitable area (4.087 × 105 km2) > medium suitable area (3.534 × 105 km2). There was a significant negative correlation between climate suitability and productivity of L. gmelinii, and the productivity of the low suitable area was significantly higher than that of the high suitable area. Stand age had a significant moderating effect on the relationship between climate suitability and productivity of L. gmelinii. The negative correlation between climatic suitability and productivity was enhanced by low stand age, while the relationship between climatic suitability and productivity was weak when stand age was high.
This study confirms the significant negative relationship between climatic suitability and productivity of L. gmelinii forest, but this negative relationship may be affected by stand age. When studying the relationship between habitat suitability and productivity, the effects of climatic factors and stand structure should be considered.
[1] |
Guisan A, Thuiller W, Zimmermann N E. Habitat suitability and distribution models[M]. Cambridge: Cambridge University Press, 2017.
|
[2] |
Bertrand R, Lenoir J, Piedallu C, et al. Changes in plant community composition lag behind climate warming in lowland forests[J]. Nature, 2011, 479: 517−520. doi: 10.1038/nature10548
|
[3] |
Urban M C. Accelerating extinction risk from climate change[J]. Science, 2015, 348: 571−573. doi: 10.1126/science.aaa4984
|
[4] |
Dyderski M K, Paź S, Frelich L E, et al. How much does climate change threaten European forest tree species distributions?[J]. Global Change Biology, 2018, 24(3): 1150−1163. doi: 10.1111/gcb.13925
|
[5] |
Ruiz-Benito P, Madrigal-González J, Ratcliffe S, et al. Stand structure and recent climate change constrain stand basal area change in European forests: a comparison across boreal, temperate, and Mediterranean biomes[J]. Ecosystems, 2014, 17(8): 1439−1454. doi: 10.1007/s10021-014-9806-0
|
[6] |
Lenoir J, Gegout J C, Marquet P A, et al. A significant upward shift in plant species optimum elevation during the 20th century.[J]. Science, 2008, 320: 1768−1771. doi: 10.1126/science.1156831
|
[7] |
Chen I C, Hill J K, Ohlemuller R, et al. Rapid range shifts of species associated with high levels of climate warming[J]. Science, 2011, 333: 1024−1026. doi: 10.1126/science.1206432
|
[8] |
Alexander J M, Chalmandrier L, Lenoir J, et al. Lags in the response of mountain plant communities to climate change[J]. Global Change Biology, 2018, 24(2): 2563−2579.
|
[9] |
Feeley K J, Bravo-Avila C, Fadrique B, et al. Climate-driven changes in the composition of New World plant communities[J]. Nature Climate Change, 2020, 10(10): 965−970. doi: 10.1038/s41558-020-0873-2
|
[10] |
Segan D B, Murray K A, Watson J E M. A global assessment of current and future biodiversity vulnerability to habitat loss–climate change interactions[J]. Global Ecology and Conservation, 2016, 5: 12−21. doi: 10.1016/j.gecco.2015.11.002
|
[11] |
Mantyka-Pringle C S, Martin T G, Rhodes J R. Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis[J]. Global Change Biology, 2013, 19(5): 1642−1644. doi: 10.1111/gcb.12148
|
[12] |
Willis K J, Bhagwat S A. Biodiversity and climate change[J]. Science, 2009, 326: 806−807. doi: 10.1126/science.1178838
|
[13] |
Hoffmann M, Hilton-Taylor C, Angulo A, et al. The impact of conservation on the status of the world’s vertebrates[J]. Science, 2010, 330: 1503−1509. doi: 10.1126/science.1194442
|
[14] |
Bernal-Escobar M, Zuleta D, Feeley K J. Changes in the climate suitability and growth rates of trees in eastern North America[J/OL]. Ecography, 2022, 9: e06298[2022−11−13]. https://doi.org/10.1111/ecog.06298.
|
[15] |
Chase J M, Leibold M A. Ecological niches: linking classical and contemporary approaches[M]. Chicago: University of Chicago Press, 2003.
Chase J M, Leibold M A. Ecological niches: linking classical and contemporary approaches[M]. Chicago: University of Chicago Press, 2003.
|
[16] |
Shelford V E. Physiological animal geography[J]. Journal of Morphology, 1911, 22: 551−618. doi: 10.1002/jmor.1050220303
|
[17] |
刘玉佳, 顾卓欣, 王晓春. 模拟气候变暖对东北兴安落叶松径向生长的影响[J]. 生态学报, 2017, 37(8): 2684−2693.
Liu Y J, Gu Z X, Wang X C. Impact of simulated climate warming on the radial growth of Larix gmelinii in northeast China[J]. Acta Ecologica Sinica, 2017, 37(8): 2684−2693.
|
[18] |
Luo W, Kim H S, Zhao X, et al. New forest biomass carbon stock estimates in Northeast Asia based on multisource data[J]. Global Change Biology, 2020, 26(12): 7045−7066. doi: 10.1111/gcb.15376
|
[19] |
Hubau W, Lewis S L, Phillips O L, et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests[J]. Nature, 2020, 579: 80−87. doi: 10.1038/s41586-020-2035-0
|
[20] |
Margalef-Marrase J, Pérez-Navarro M Á, Lloret F. Relationship between heatwave-induced forest die-off and climatic suitability in multiple tree species[J]. Global Change Biology, 2020, 26: 3134−3146. doi: 10.1111/gcb.15042
|
[21] |
Luo Y, Chen H Y H. Climate change-associated tree mortality increases without decreasing water availability[J]. Ecology Letters, 2015, 18(11): 1207−1215. doi: 10.1111/ele.12500
|
[22] |
Taccoen A, Piedallu C, Seynave I, et al. Climate change impact on tree mortality differs with tree social status[J]. Forest Ecology and Management, 2021, 489: 119048. doi: 10.1016/j.foreco.2021.119048
|
[23] |
马松梅, 聂迎彬, 段霞, 等. 蒙古扁桃植物的潜在地理分布及居群保护优先性[J]. 生态学报, 2015, 35(9): 2960−2966.
Ma S M, Nie Y B, Duan X, et al. The potential distribution and population protection priority of Amygdalus mongolica[J]. Acta Ecologica Sinica, 2015, 35(9): 2960−2966.
|
[24] |
Fitzpatrick M C, Gove A D, Sanders N J, et al. Climate change, plant migration, and range collapse in a global biodiversity hotspot: the Banksia (Proteaceae) of Western Australia[J]. Global Change Biology, 2008, 14(6): 1337−1352. doi: 10.1111/j.1365-2486.2008.01559.x
|
[25] |
Zhang K, Yao L, Meng J, et al. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change[J]. Science of the Total Environment, 2018, 634: 1326−1334. doi: 10.1016/j.scitotenv.2018.04.112
|
[26] |
Lyu S, Wang X, Zhang Y, et al. Different responses of Korean pine ( Pinus koraiensis) and Mongolia oak ( Quercus mongolica) growth to recent climate warming in northeast China[J]. Dendrochronologia, 2017, 45: 113−122. doi: 10.1016/j.dendro.2017.08.002
|
[27] |
Li Q, Liu Y, Nakatsuka T, et al. Fang Delayed warming in Northeast China: insights from an annual temperature reconstruction based on tree-ring delta δ18O[J]. Science of the Total Environment, 2020, 749: 141432. doi: 10.1016/j.scitotenv.2020.141432
|
[28] |
Li W, Jiang Y, Dong M, et al. Diverse responses of radial growth to climate across the southern part of the Asian boreal forests in northeast China[J]. Forest Ecology and Management, 2019, 458: 117759.
|
[29] |
Duveneck M J, Thompson J R. Climate change imposes phenological trade-offs on forest net primary productivity[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(9): 2298−2313. doi: 10.1002/2017JG004025
|
[30] |
Tei S, Sugimoto A, Yonenobu H, et al. Tree-ring analysis and modeling approaches yield contrary response of circumboreal forest productivity to climate change[J]. Global Change Biology, 2017, 23(12): 5179−5188. doi: 10.1111/gcb.13780
|
[31] |
Collalti A, Ibrom A, Stockmarr A, et al. Forest production efficiency increases with growth temperature[J]. Nature Communications, 2020, 11(1): 5322. doi: 10.1038/s41467-020-19187-w
|
[32] |
Brecka A, Shahi C, Chen H. Climate change impacts on boreal forest timber supply[J]. Forest Policy & Economics, 2018, 92: 11−21.
|
[33] |
Littell J S, Oneil E E, Mckenzie D, et al. Forest ecosystems, disturbance, and climatic change in Washington State, USA[J]. Climatic Change, 2010, 102: 129−158. doi: 10.1007/s10584-010-9858-x
|
[34] |
Allen C D, Macalady A K, Chenchouni H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J]. Forest Ecology and Management, 2010, 259(4): 660−684. doi: 10.1016/j.foreco.2009.09.001
|
[35] |
Hanewinkel M, Cullmann D A, Schelhaas M J, et al. Climate change may cause severe loss in the economic value of European forest land[J]. Nature Climate Change, 2013, 3(3): 203−207. doi: 10.1038/nclimate1687
|
[36] |
Sun J, Jiao W, Wang Q, et al. Potential habitat and productivity loss of Populus deltoides industrial forest plantations due to global warming[J]. Forest Ecology and Management, 2021, 496(15): 119474.
|
[37] |
Matskovsky V, Venegas-González A, Garreaud R, et al. Tree growth decline as a response to projected climate change in the 21st century in Mediterranean mountain forests of Chile[J]. Global and Planetary Change, 2020, 198(2): 103406.
|
[38] |
IPCC. Climate change 2021: the physical science basis[R]. Cambrige: Cambridge University Press, 2021.
|
[39] |
孙凤华, 杨素英, 陈鹏狮. 东北地区近44 年的气候暖干化趋势分析及可能影响[J]. 生态学杂志, 2005, 24(7): 751−755, 762. doi: 10.3321/j.issn:1000-4890.2005.07.008
Sun F H, Yang S Y, Chen P S. Climatic warming-drying trend in Northeastern China during the last 44 years and its effects[J]. Chinese Journal of Ecology, 2005, 24(7): 751−755, 762. doi: 10.3321/j.issn:1000-4890.2005.07.008
|
[40] |
吉奇, 宋冀凤, 刘辉. 近50 年东北地区温度降水变化特征分析[J]. 气象与环境学报, 2006, 22(5): 1−5. doi: 10.3969/j.issn.1673-503X.2006.05.001
Ji Q, Song J F, Liu H. Characteristics of temperature and precipitation in Northeast China from 1951 to 2000[J]. Journal of Meteorolgy and Environment, 2006, 22(5): 1−5. doi: 10.3969/j.issn.1673-503X.2006.05.001
|
[41] |
王绍武, 赵宗慈, 唐国利. 中国的气候变暖[J]. 国际政治研究, 2009, 30(4): 1−11, 194.
Wang S W, Zhao Z C, Tang G L. The warming of climate in China[J]. The Journal of International Studies, 2009, 30(4): 1−11, 194.
|
[42] |
吴祥定. 树木年轮与气候变化[M]. 北京: 气象出版社, 1990.
Wu X D. Tree rings and climate change [M]. Beijing: Meteorological Press, 1990.
|
[43] |
常永兴, 陈振举, 张先亮, 等. 气候变暖下大兴安岭落叶松径向生长对温度的响应[J]. 植物生态学报, 2017, 41(3): 279–289.
Chang Y X, Chen Z J, Zhang X L, et al. Responses of radial growth to temperature in Larix gmelinii of the Da Hinggan Ling under climate warming[J]. Chinese Journal of Plant Ecology 2017, 41 (3): 279–289.
|
[44] |
郭雪梅, 王兆鹏, 张楠, 等. 樟子松和落叶松径向生长对气候变化的响应[J]. 应用生态学报, 2021, 32(10): 3405−3414. doi: 10.13287/j.1001-9332.202110.042
Guo X M, Wang Z P, Zhang N, et al. Response of radial growth of Pinus sylvestris var. mongolica and Larix gmelinii to climate change[J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3405−3414. doi: 10.13287/j.1001-9332.202110.042
|
[45] |
韩艳刚, 盖学瑞, 邱思玉, 等. 大兴安岭兴安落叶松径向生长对气候响应的时空变化[J]. 应用生态学报, 2021, 32(10): 3397−3404. doi: 10.13287/j.1001-9332.202110.021
Han Y G, Gai X R, Qiu S Y, et al. Spatial and temporal variation of the responses of radial growth of Larix gmelinii to climate in the Daxing’anling Mountains of Northeast China[J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3397−3404. doi: 10.13287/j.1001-9332.202110.021
|
[46] |
李峰, 周广胜, 曹铭昌. 兴安落叶松地理分布对气候变化响应的模拟[J]. 应用生态学报, 2006, 17(12): 2255−2260. doi: 10.3321/j.issn:1001-9332.2006.12.005
Li F, Zhou G S, Cao M C. Responses of Larix gmellinii geographical distribution to future climate change: a simulation study[J]. Chinese Journal of Applied Ecology, 2006, 17(12): 2255−2260. doi: 10.3321/j.issn:1001-9332.2006.12.005
|
[47] |
冷文芳, 贺红士, 布仁仓, 等. 中国东北落叶松属3 种植物潜在分布对气候变化的敏感性分析[J]. 植物生态学报, 2007, 31(5): 825−833. doi: 10.17521/cjpe.2007.0104
Leng W F, He H S, Bu R C, et al. Sensitivity analysis of the impacts of climate change on potential distribution of three larch ( Larix) species in northeastern China[J]. Chinese Journal of Plant Ecology, 2007, 31(5): 825−833. doi: 10.17521/cjpe.2007.0104
|
[48] |
石慰. 气候变化对中国东北兴安落叶松分布的影响[D]. 北京: 北京林业大学, 2013.
Shi W. Effects of climate change of distribution of Larix gmellinii[D]. Bejing: Beijing Forestry University, 2013.
|
[49] |
张喜娟, 陈琛, 郜飞飞, 等. 中国东北兴安落叶松林空间分布及其对气候变化的响应[J]. 生态学杂志, 2022, 41(6): 1041−1049.
Zhang X J, Chen C, Gao F F, et al. Spatial distribution of Larix gmelinii forests in Northeast China and its response to climate change[J]. Chinese Journal of Ecology, 2022, 41(6): 1041−1049.
|
[50] |
吴兆飞. 东北天然林主要林型生长动态模拟[D]. 北京: 北京林业大学, 2020.
Wu Z F. Simulation of growth dynamics of main forest types in northeast natural forest [D]. Beijing: Beijing Forestry University, 2020.
|
[51] |
Wang T, Wang G, Innes J L, et al. ClimateAP: an application for dynamic local downscaling of historical and future climate data in Asia Pacific[J]. Frontiers of Agricultural Science and Engineering, 2017, 4(4): 448−458. doi: 10.15302/J-FASE-2017172
|
[52] |
Hargreaves G H, Samani Z A. Reference crop evapotranspirationfrom temperature[J]. American Society of Agricultural and Biological Engineers, 1985, 1(2): 96−99.
|
[53] |
Wang T L, Hamann A, Spittlehouse D L, et al. Climate WNA-high-resolution spatial climate data for western North America[J]. Journal of Applied Meteorology and Climatology, 2012, 51(1): 16−29. doi: 10.1175/JAMC-D-11-043.1
|
[54] |
Manel S, Williams H C, Ormerod S J. Evaluating presence-absence models in ecology: the need to account for prevalence[J]. Journal of Applied Ecology, 2002, 38(5): 921−931.
|
[55] |
王运生, 谢丙炎, 万方浩, 等. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性, 2007, 15(4): 365−372. doi: 10.3321/j.issn:1005-0094.2007.04.005
Wang Y S, Xie B Y, Wan F H, et al. Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models[J]. Biodiversity Science, 2007, 15(4): 365−372. doi: 10.3321/j.issn:1005-0094.2007.04.005
|
[56] |
国家林业局. 立木生物量模型及碳计量参数—落叶松[M]. 北京: 中国标准出版社, 2016.
State Forestry Administration. Tree biomass models and related parameters to carbon accounting for Larix[M]. Beijing: Standards Press of China, 2016.
|
[57] |
He H, Zhang C, Zhao X, et al. Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests, Northeastern China[J]. PLoS One, 2018, 13(1): e0186226. doi: 10.1371/journal.pone.0186226
|
[58] |
周国逸, 伊光彩, 唐旭利, 等. 中国森林生态系统碳储量−生物量方程[M]. 北京: 科学出版社, 2018.
Zhou G Y, Yin G C, Tang X L, et al. Carbon stocks in forest ecosystems in China: biomass equation[M]. Beijing: Science Press, 2018.
|
[59] |
IPCC. Climate change 2007, synthesis report: contribution of working groups Ⅰ, Ⅱ & Ⅲ to the fourth assessment report of the intergovernmental panel on climate change[M]. Geneva: IPCC, 2007.
|
[60] |
唐启义, 冯明光. DPS数据处理系统: 实验设计、统计分析及模型优化[M]. 北京: 科学出版社, 2006.
Tang Q Y, Feng M G. DPS Data processing system: experimental design, statistical analysis and data mining[M]. Beijing: Science and Technology Press, 2006.
|
[61] |
袁志发, 周静芋, 郭满才, 等. 决策系数: 通径分析中的决策指标[J]. 西北农林科技大学学报(自然科学版), 2001, 29(5): 131−133.
Yuan Z F, Zhou J Y, Guo M C, et al. Decision coefficient: the dicision index of path analysis[J]. Journal of Northwest A&F University (Natural Science Edition), 2001, 29(5): 131−133.
|
[62] |
温晓示, 陈彬杭, 张树斌, 等. 不同林龄、树种落叶松人工林径向生长与气候变化的关系[J]. 植物生态学报, 2019, 43(1): 27−36. doi: 10.17521/cjpe.2018.0155
Wen X S, Chen B H, Zhang S B, et al. Relationships of radial growth with climate change in larch plantations of different stand ages and species[J]. Chinese Journal of Plant Ecology, 2019, 43(1): 27−36. doi: 10.17521/cjpe.2018.0155
|
[63] |
Mcmahon S M, Parker G G, Schlesinger M. Evidence for a recent increase in forest growth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(8): 3611−3615.
|
[64] |
王美玉, 赵天宏, 张巍巍, 等. CO2 浓度升高与温度、干旱相互作用对植物生理生态过程的影响[J]. 干旱地区农业研究, 2007(2): 99−103. doi: 10.3321/j.issn:1000-7601.2007.02.021
Wang M Y, Zhao T H, Zhang W W, et al. Effects of the interaction of elevated CO2 concentration with temperature and drought on plant physiological and ecological processes[J]. Agricultural Research in the Arid Areas, 2007(2): 99−103. doi: 10.3321/j.issn:1000-7601.2007.02.021
|
[65] |
张先亮, 崔明星, 马艳军, 等. 大兴安岭库都尔地区兴安落叶松年轮宽度年表及其与气候变化的关系[J]. 应用生态学报, 2010, 21(10): 2501−2507. doi: 10.13287/j.1001-9332.2010.0353
Zhang X L, Cui M X, Ma Y J, et al. Larix gmelinii tree-ring width chronology and its responses to climate change in Kuduer, Great Xing’an Mountains[J]. Chinese Journal of Applied Ecology, 2010, 21(10): 2501−2507. doi: 10.13287/j.1001-9332.2010.0353
|
[66] |
Wu X, Liu H, Guo D, et al. Growth decline linked to warming-induced water limitation in hemi-boreal forests[J]. PLoS One, 2012, 7(8): e42619. doi: 10.1371/journal.pone.0042619
|
[67] |
Chmura D J, Anderson P D, Howe G T, et al. Forest responses to climate change in the northwestern United States: ecophysiological foundations for adaptive management[J]. Forest Ecology and Management, 2011, 261(7): 1121−1142. doi: 10.1016/j.foreco.2010.12.040
|
[68] |
Hacket-Pain A J, Cavin L, Friend A D, et al. Consistent limitation of growth by high temperature and low precipitation from range core to southern edge of European beech indicates widespread vulnerability to changing climate[J]. European Journal of Forest Research, 2016, 135(5): 897−909. doi: 10.1007/s10342-016-0982-7
|
[69] |
Cavin L, Jump A S. Highest drought sensitivity and lowest resistance to growth suppression are found in the range core of the tree Fagus sylvatica L. not the equatorial range edge[J]. Global Change Biology, 2017, 23(1): 362−379. doi: 10.1111/gcb.13366
|
[70] |
Hacket-Pain A J, Ascoli D, Vacchiano G, et al. Climatically controlled reproduction drives interannual growth variability in a temperate tree species[J]. Ecology Letters, 2018, 21(12): 1833−1844. doi: 10.1111/ele.13158
|
[71] |
Schuster R, Oberhuber W. Drought sensitivity of three co-occurring conifers within a dry inner alpine environment[J]. Trees, 2013, 27: 61−69. doi: 10.1007/s00468-012-0768-6
|
[72] |
Cao J, Liu H, Zhao B, et al. High forest stand density exacerbates growth decline of conifers driven by warming but not broad-leaved trees in temperate mixed forest in northeast Asia[J]. Science of the Total Environment, 2021, 795(9): 148875
|
[73] |
Zambrano J, Marchand P, Swenson N G. Local neighbourhood and regional climatic contexts interact to explain tree performance[J]. Proceedings of the Royal Society B: Biological Sciences, 2017, 284: 20170523. doi: 10.1098/rspb.2017.0523
|
[74] |
Carrer M, Urbinati C. Age-dependent tree-ring growth responses to climate in Larix declidua and Pinus cembra[J]. Ecology, 2004, 85: 730−740. doi: 10.1890/02-0478
|
[75] |
Yu G R, Liu Y B, Wang X C, et al. Age-dependent tree-ring growth responses to climate in Qilian juniper ( Sabina przewalskii Kom.)[J]. Trees, 2008, 22: 197−204. doi: 10.1007/s00468-007-0170-y
|
[76] |
Wang X C, Zhang Y D, Mcrae D J. Spatial and agedependent tree-ring growth responses of Larix gmelinii to climate in northeastern China[J]. Trees, 2009, 23: 875−885. doi: 10.1007/s00468-009-0329-9
|
[77] |
Succarie A, Xu Z, Wang W, et al. Effects of climate change on tree water use efficiency, nitrogen availability and growth in boreal forest of northern China[J]. Journal of Soils and Sediments, 2020, 20(10): 3607−3614. doi: 10.1007/s11368-020-02734-9
|
[78] |
Bond B J. Age-related changes in photosynthesis of woody plants[J]. Trends in Plant Science, 2000, 5(8): 349−353. doi: 10.1016/S1360-1385(00)01691-5
|
[79] |
Thomas S C, Winner W E. Photosynthetic differences between saplings and adult trees: an integration of field results by meta-analysis[J]. Tree Physiology, 2002, 22(2−3): 117−127.
|
[80] |
Sun Z, Liu L, Peng S, et al. Age-related modulation of the nitrogen resorption efficiency response to growth requirements and soil nitrogen availability in a temperate pine plantation[J]. Ecosystems, 2016, 19(4): 698−709. doi: 10.1007/s10021-016-9962-5
|
[81] |
Colangelo M, Camarero J J, Gazol A, et al. Mediterranean old-growth forests exhibit resistance to climate warming[J]. Science of the Total Environment, 2021, 801(1): 149684.
|
[82] |
Peng Y, Chen H Y H, Yang Y. Global pattern and drivers of nitrogen saturation threshold of grassland productivity[J]. Functional Ecology, 2020, 34(9): 1979−1990. doi: 10.1111/1365-2435.13622
|
[83] |
Tian D, Niu S, Pan Q, et al. Nonlinear responses of ecosystem carbon fluxes and water-use efficiency to nitrogen addition in Inner Mongolia grassland[J]. Functional Ecology, 2016, 30(3): 490−499. doi: 10.1111/1365-2435.12513
|