Citation: | Ke Dongfang, Xin Zhenbo, Zhang Houjiang, Peng Lin. Evaluation of physical and mechanical properties of ancient building wood based on MFSC characteristic CNN model of knocking sound[J]. Journal of Beijing Forestry University, 2023, 45(2): 149-160. DOI: 10.12171/j.1000-1522.20220364 |
[1] |
Du X C, Feng H L, Hu M Y, et al. Three-dimensional stress wave imaging of wood internal defects using TK riging method[J]. Computers and Electronics in Agriculture, 2018, 148: 63−71. doi: 10.1016/j.compag.2018.03.005
|
[2] |
Patrícia C R, Michael A, José A C, et al. Non-destructive structural wood diagnosis of a medieval building—sciencedirect[J]. Procedia Structural Integrity, 2017, 5: 1147−1152. doi: 10.1016/j.prostr.2017.07.024
|
[3] |
Tallavo F, Cascante G, Pandey M D, et al. A novel methodology for condition assessment of wood poles using ultrasonic testing[J]. NDT & E International, 2012, 52: 149−156.
|
[4] |
Perlin L P, Pinto R C, Valle A D. Ultrasonic tomography in wood with anisotropy consideration[J]. Construction and Building Materials, 2019, 229: 116958. doi: 10.1016/j.conbuildmat.2019.116958
|
[5] |
于永柱, 管成, 张厚江, 等. 古建筑墙体木柱缺陷对其安全性影响数值模拟研究[J]. 北京林业大学学报, 2022, 44(1): 132−145. doi: 10.12171/j.1000-1522.20210341
Yu Y Z, Guan C, Zhang H J, et al. Numerical simulation on the influence of wall wood column defects on the safety of ancient building[J]. Journal of Beijing Forestry University, 2022, 44(1): 132−145. doi: 10.12171/j.1000-1522.20210341
|
[6] |
陈九璋, 陈雪瑶, 戴璐. 残损斗栱节点受力性能试验研究[J]. 北京林业大学学报, 2020, 42(2): 149−158. doi: 10.12171/j.1000-1522.20190278
Chen J Z, Chen X Y, Dai L. Experimental research on mechanical performance of damaged bracket set joints[J]. Journal of Beijing Forestry University, 2020, 42(2): 149−158. doi: 10.12171/j.1000-1522.20190278
|
[7] |
Feio A, Machado J S. In-situ assessment of timber structural members: combining information from visual strength grading and NDT/SDT methods: a review[J]. Construction and Building Materials, 2015, 101: 1157−1165. doi: 10.1016/j.conbuildmat.2015.05.123
|
[8] |
Jasieńko J, Nowak T, Hamrol K. Selected methods of diagnosis of historic timber structures: principles and possibilities of assessment[J]. Advanced Materials Research, 2013, 778: 225−232. doi: 10.4028/www.scientific.net/AMR.778.225
|
[9] |
Íñiguez-González G, Arriaga F, Esteban M, et al. Reference conditions and modification factors for the standardization of nondestructive variables used in the evaluation of existing timber structures[J]. Construction and Building Materials, 2015, 101: 1166−1171. doi: 10.1016/j.conbuildmat.2015.05.128
|
[10] |
张厚江, 管成, 文剑. 木质材料无损检测的应用与研究进展[J]. 林业工程学报, 2016, 1(6): 1−9.
Zhang H J, Guan C, Wen J. Applications and research development of nondestructive testing of wood based materials[J]. Journal of Forestry Engineering, 2016, 1(6): 1−9.
|
[11] |
孙燕良, 张厚江, 朱磊, 等. 木构件材料力学性能快速检测研究[J]. 西北林学院学报, 2012, 27(2): 245−248. doi: 10.3969/j.issn.1001-7461.2012.02.50
Sun Y L, Zhang H J, Zhu L, et al. Rapid test on mechanical properties of wooden components[J]. Journal of Northwest Forestry University, 2012, 27(2): 245−248. doi: 10.3969/j.issn.1001-7461.2012.02.50
|
[12] |
孙燕良, 张厚江, 朱磊, 等. 基于微钻阻力的落叶松弹性模量快速检测[J]. 湖北农业科学, 2012, 51(11): 2348−2350. doi: 10.3969/j.issn.0439-8114.2012.11.055
Sun Y L, Zhang H J, Zhu L, et al. Research on rapid detection of larch wood modulus of elasticity based on micro-drilling resistance[J]. Hubei Agricultural Sciences, 2012, 51(11): 2348−2350. doi: 10.3969/j.issn.0439-8114.2012.11.055
|
[13] |
朱磊, 张厚江, 孙燕良, 等. 基于应力波和微钻阻力的红松类木构件力学性能的无损检测[J]. 南京林业大学学报(自然科学版), 2013, 37(2): 156−158.
Zhu L, Zhang H J, Sun Y L, et al. Mechanical properties non-destructive testing of wooden components of Korean pine based on stress wave and micro-drilling resistance[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2013, 37(2): 156−158.
|
[14] |
朱磊, 张厚江, 孙燕良, 等. 基于应力波和微钻阻力的古建筑木构件材料力学性能检测[J]. 东北林业大学学报, 2011, 39(10): 81−83. doi: 10.3969/j.issn.1000-5382.2011.10.023
Zhu L, Zhang H J, Sun Y L, et al. Determination of mechanical properties of ancient architectural timber based on stress wave andmicro-drilling[J]. Journal of Northeast Forestry University, 2011, 39(10): 81−83. doi: 10.3969/j.issn.1000-5382.2011.10.023
|
[15] |
Cascón I, Sarasua J A, Tena M, et al. Development of an acoustic method for wood disease assessment[J]. Computers and Electronics in Agriculture, 2021, 186(5): 106195.
|
[16] |
邬冠华, 林俊明, 任吉林, 等. 声振检测方法的发展[J]. 无损检测, 2011, 33(2): 35−41.
Wu G H, Lin J M, Ren J L, et al. Evolution of the acoustic impact testing method[J]. Nondestructive Testing, 2011, 33(2): 35−41.
|
[17] |
Senalik C A, Zhou L, Ross R J. Assessment of deterioration in timbers with time and frequency domain analysis techniques[C]//Wang X, Senalik C A, Ross R J. 20th International Nondestructive Testing and Evaluation of Wood Symposium. Madison: Department of Agriculture, Forest Service, Forest Products Laboratory, 2017: 298−306.
|
[18] |
Xin Z, Zhang H, Guan C, et al. Screening for internal defects of timber members based on impact evaluation method[J]. Construction and Building Materials, 2020, 263(10): 120145.
|
[19] |
Esteban L G, Fernández F G, Palacios P D. Prediction of plywood bonding quality using an artificial neural network[J]. Holzforschung, 2011, 65(2): 209−214.
|
[20] |
Nasir V, Nasir V, Fathi H, et al. Prediction of mechanical properties of artificially weathered wood by color change and machine learning[J]. Materials, 2021, 14(21): 6314. doi: 10.3390/ma14216314
|
[21] |
Xin Z B, Ke D F, Zhang H J, et al. Non-destructive evaluating the density and mechanical properties of ancient timber members based on machine learning approach[J]. Construction & Building Materials, 2022, 341: 127855.
|
[22] |
Yuan C, Zhang J, Chen L, et al. Timber moisture detection using wavelet packet decomposition and convolutional neural network[J]. Smart Materials and Structures, 2021, 30(3): 1−13.
|
[23] |
Cawley P, Adams R D. The mechanics of the coin-tap method of non-destructive testing[J]. Journal of Sound and Vibration, 1988, 122(2): 299−316. doi: 10.1016/S0022-460X(88)80356-0
|
[24] |
Cawley P. Low frequency NDT techniques for the detection of disbonds and delaminations[J]. Ndt & E International, 1992, 25(2): 100.
|
[25] |
Volkmann J, Stevens S S, Newman E B. A scale for the measurement of the psychological magnitude pitch[J]. Journal of the Acoustical Society of America, 1937, 8(3): 185−190. doi: 10.1121/1.1915893
|
[26] |
张钰莎, 蒋盛益. 基于MFCC特征提取和改进SVM的语音情感数据挖掘分类识别方法研究[J]. 计算机应用与软件, 2020, 37(8): 160−165. doi: 10.3969/j.issn.1000-386x.2020.08.028
Zhang Y S, Jiang S Y. Speech emotion data mining classification and recognition method based on MFCC feature extraction and improved SVM[J]. Computer Applictions and Software, 2020, 37(8): 160−165. doi: 10.3969/j.issn.1000-386x.2020.08.028
|
[27] |
中国林业科学研究院木材工业研究所, 中国国家标准化管理委员会. 木材含水率测定方法: GB/T 1931—2009[S]. 北京: 中国标准出版社, 2009: 8.
Reasearch Insitute of Wood Industry, Standardization Administration. Method for determination of the moisture content of wood: GB/T 1931−2009[S]. Beijing: Standard Press of China, 2009: 8.
|
[28] |
中国林业科学研究院木材工业研究所, 中国家标准化管理委员会. 木材抗弯弹性模量测定方法: GB/T 1936.2—2009[S]. 北京: 中国标准出版社, 2009: 8.
Reasearch Insitute of Wood Industry, Standardization Administratio. Method for determination of the modulus of elasticity in static bending of wood: GB/T 1936.2−2009[S]. Beijing: Standard Press of China, 2009: 8.
|
[29] |
中国林业科学研究院木材工业研究所, 中国国家标准化管理委员会. 木材抗弯强度试验方法: GB/T 1936.1—2009[S]. 北京: 中国标准出版社, 2009: 8.
Reasearch Insitute of Wood Industry, Standardization Administration. Method of testing in bending strength of wood: GB/T 1936.1−2009[S]. Beijing: Standard Press of China, 2009: 8.
|
[30] |
中国林业科学研究院木材工业研究所, 中国国家标准化管理委员会. 木材顺纹抗压强度试验方法: GB/T 1935—2009[S]. 北京: 中国标准出版社, 2009: 8.
Reasearch Insitute of Wood Industry, Standardization Administration. Method of testing in compressive strength parallel to grain of wood: GB/T 1935−2009[S]. Beijing: Standard Press of China, 2009: 8.
|
[31] |
中国林业科学研究院木材工业研究所, 中国国家标准化管理委员会. 木材密度测定方法: GB/T 1933—2009[S]. 北京: 中国标准出版社, 2009: 8.
Reasearch Insitute of Wood Industry, Standardization Administration. Method for determination of the density of wood: GB/T 1933—2009[S]. Beijing: Standard Press of China, 2009: 8.
|
[32] |
Yokoyama M, Gril J, Matsuo M, et al. Mechanical characteristics of aged Hinoki wood from Japanese historical buildings[J]. Comptes Rendus Physique, 2009, 10(7): 601−611. doi: 10.1016/j.crhy.2009.08.009
|
[33] |
孙燕良. 基于微钻阻力的古建筑木材密度与力学性能检测研究[D]. 北京: 北京林业大学, 2012.
Sun Y L. Determining wood density and mechanical properties of ancient architectural timbers with micro-drilling resistance[D]. Beijing: Beijing Forestry University, 2012.
|
[34] |
朱磊. 基于应力波的古建筑木构件材料力学性能检测技术研究[D]. 北京: 北京林业大学, 2012.
Zhu L. Determining the mechanical properties of ancient architectural timber with stress waves[D]. Beijing: Beijing Forestry University, 2012.
|
1. |
曹莹. 既有建筑资料缺失的建筑物安全性鉴定. 中国建筑金属结构. 2023(04): 156-158 .
![]() |