• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Ke Dongfang, Xin Zhenbo, Zhang Houjiang, Peng Lin. Evaluation of physical and mechanical properties of ancient building wood based on MFSC characteristic CNN model of knocking sound[J]. Journal of Beijing Forestry University, 2023, 45(2): 149-160. DOI: 10.12171/j.1000-1522.20220364
Citation: Ke Dongfang, Xin Zhenbo, Zhang Houjiang, Peng Lin. Evaluation of physical and mechanical properties of ancient building wood based on MFSC characteristic CNN model of knocking sound[J]. Journal of Beijing Forestry University, 2023, 45(2): 149-160. DOI: 10.12171/j.1000-1522.20220364

Evaluation of physical and mechanical properties of ancient building wood based on MFSC characteristic CNN model of knocking sound

More Information
  • Received Date: September 01, 2022
  • Revised Date: January 18, 2023
  • Available Online: February 06, 2023
  • Published Date: February 24, 2023
  •   Objective  There are a large number of ancient buildings with wooden structures in China. How to conveniently test and evaluate the physical and mechanical properties of ancient building normal timber is a rigid requirement for the daily protection, repair and safety assessment of ancient wood building structures. In this study, the machine learning algorithm was introduced to the knocking sound signal, and try to apply the convenient knocking method to the nondestructive testing of the physical and mechanical properties of ancient building wood.
      Method  The four-section ancient larch (Larix gmelinii) timber members dismantled from an ancient royal building in Beijing were used as raw materials to process clear specimens. Firstly, the influence of size and density of the wood specimen on the knocking sound signal was investigated. And the physical and mechanical property parameters such as density, modulus of rupture, modulus of elasticity and compressive strength parallel to grain of wood specimens were measured experimentally. Then, the Mel frequency spectral coefficient (MFSC) feature extraction was carried out on the knocking sound signal collected in the experiment. Taking the knocking sound MFSC feature as the input, and the physical and mechanical properties of the specimen as the output, a convolutional neural network (CNN) evaluating model for the physical and mechanical properties of ancient building timber member was constructed.
      Result  The size of the specimen had no effect on the knocking signal, and the dominant peak frequency of the knocking signal of the specimen with higher density was higher. The dropout layer had a significant impact on the performance of the model, and the fitting effect was the best when the dropout rate was 0.2. The established model had a good effect on the evaluation of physical and mechanical properties of ancient building wood, and the coefficient of determination between the evaluation value of density, modulus of rupture, modulus of elasticity and compressive strength parallel to grain and the real value reached 0.873, 0.819, 0.746 and 0.860, respectively.
      Conclusion  The CNN model constructed in this study based on the MFSC feature of knocking sound is feasible to detect and evaluate the physical and mechanical properties of timber in ancient buildings.
  • [1]
    Du X C, Feng H L, Hu M Y, et al. Three-dimensional stress wave imaging of wood internal defects using TK riging method[J]. Computers and Electronics in Agriculture, 2018, 148: 63−71. doi: 10.1016/j.compag.2018.03.005
    [2]
    Patrícia C R, Michael A, José A C, et al. Non-destructive structural wood diagnosis of a medieval building—sciencedirect[J]. Procedia Structural Integrity, 2017, 5: 1147−1152. doi: 10.1016/j.prostr.2017.07.024
    [3]
    Tallavo F, Cascante G, Pandey M D, et al. A novel methodology for condition assessment of wood poles using ultrasonic testing[J]. NDT & E International, 2012, 52: 149−156.
    [4]
    Perlin L P, Pinto R C, Valle A D. Ultrasonic tomography in wood with anisotropy consideration[J]. Construction and Building Materials, 2019, 229: 116958. doi: 10.1016/j.conbuildmat.2019.116958
    [5]
    于永柱, 管成, 张厚江, 等. 古建筑墙体木柱缺陷对其安全性影响数值模拟研究[J]. 北京林业大学学报, 2022, 44(1): 132−145. doi: 10.12171/j.1000-1522.20210341

    Yu Y Z, Guan C, Zhang H J, et al. Numerical simulation on the influence of wall wood column defects on the safety of ancient building[J]. Journal of Beijing Forestry University, 2022, 44(1): 132−145. doi: 10.12171/j.1000-1522.20210341
    [6]
    陈九璋, 陈雪瑶, 戴璐. 残损斗栱节点受力性能试验研究[J]. 北京林业大学学报, 2020, 42(2): 149−158. doi: 10.12171/j.1000-1522.20190278

    Chen J Z, Chen X Y, Dai L. Experimental research on mechanical performance of damaged bracket set joints[J]. Journal of Beijing Forestry University, 2020, 42(2): 149−158. doi: 10.12171/j.1000-1522.20190278
    [7]
    Feio A, Machado J S. In-situ assessment of timber structural members: combining information from visual strength grading and NDT/SDT methods: a review[J]. Construction and Building Materials, 2015, 101: 1157−1165. doi: 10.1016/j.conbuildmat.2015.05.123
    [8]
    Jasieńko J, Nowak T, Hamrol K. Selected methods of diagnosis of historic timber structures: principles and possibilities of assessment[J]. Advanced Materials Research, 2013, 778: 225−232. doi: 10.4028/www.scientific.net/AMR.778.225
    [9]
    Íñiguez-González G, Arriaga F, Esteban M, et al. Reference conditions and modification factors for the standardization of nondestructive variables used in the evaluation of existing timber structures[J]. Construction and Building Materials, 2015, 101: 1166−1171. doi: 10.1016/j.conbuildmat.2015.05.128
    [10]
    张厚江, 管成, 文剑. 木质材料无损检测的应用与研究进展[J]. 林业工程学报, 2016, 1(6): 1−9.

    Zhang H J, Guan C, Wen J. Applications and research development of nondestructive testing of wood based materials[J]. Journal of Forestry Engineering, 2016, 1(6): 1−9.
    [11]
    孙燕良, 张厚江, 朱磊, 等. 木构件材料力学性能快速检测研究[J]. 西北林学院学报, 2012, 27(2): 245−248. doi: 10.3969/j.issn.1001-7461.2012.02.50

    Sun Y L, Zhang H J, Zhu L, et al. Rapid test on mechanical properties of wooden components[J]. Journal of Northwest Forestry University, 2012, 27(2): 245−248. doi: 10.3969/j.issn.1001-7461.2012.02.50
    [12]
    孙燕良, 张厚江, 朱磊, 等. 基于微钻阻力的落叶松弹性模量快速检测[J]. 湖北农业科学, 2012, 51(11): 2348−2350. doi: 10.3969/j.issn.0439-8114.2012.11.055

    Sun Y L, Zhang H J, Zhu L, et al. Research on rapid detection of larch wood modulus of elasticity based on micro-drilling resistance[J]. Hubei Agricultural Sciences, 2012, 51(11): 2348−2350. doi: 10.3969/j.issn.0439-8114.2012.11.055
    [13]
    朱磊, 张厚江, 孙燕良, 等. 基于应力波和微钻阻力的红松类木构件力学性能的无损检测[J]. 南京林业大学学报(自然科学版), 2013, 37(2): 156−158.

    Zhu L, Zhang H J, Sun Y L, et al. Mechanical properties non-destructive testing of wooden components of Korean pine based on stress wave and micro-drilling resistance[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2013, 37(2): 156−158.
    [14]
    朱磊, 张厚江, 孙燕良, 等. 基于应力波和微钻阻力的古建筑木构件材料力学性能检测[J]. 东北林业大学学报, 2011, 39(10): 81−83. doi: 10.3969/j.issn.1000-5382.2011.10.023

    Zhu L, Zhang H J, Sun Y L, et al. Determination of mechanical properties of ancient architectural timber based on stress wave andmicro-drilling[J]. Journal of Northeast Forestry University, 2011, 39(10): 81−83. doi: 10.3969/j.issn.1000-5382.2011.10.023
    [15]
    Cascón I, Sarasua J A, Tena M, et al. Development of an acoustic method for wood disease assessment[J]. Computers and Electronics in Agriculture, 2021, 186(5): 106195.
    [16]
    邬冠华, 林俊明, 任吉林, 等. 声振检测方法的发展[J]. 无损检测, 2011, 33(2): 35−41.

    Wu G H, Lin J M, Ren J L, et al. Evolution of the acoustic impact testing method[J]. Nondestructive Testing, 2011, 33(2): 35−41.
    [17]
    Senalik C A, Zhou L, Ross R J. Assessment of deterioration in timbers with time and frequency domain analysis techniques[C]//Wang X, Senalik C A, Ross R J. 20th International Nondestructive Testing and Evaluation of Wood Symposium. Madison: Department of Agriculture, Forest Service, Forest Products Laboratory, 2017: 298−306.
    [18]
    Xin Z, Zhang H, Guan C, et al. Screening for internal defects of timber members based on impact evaluation method[J]. Construction and Building Materials, 2020, 263(10): 120145.
    [19]
    Esteban L G, Fernández F G, Palacios P D. Prediction of plywood bonding quality using an artificial neural network[J]. Holzforschung, 2011, 65(2): 209−214.
    [20]
    Nasir V, Nasir V, Fathi H, et al. Prediction of mechanical properties of artificially weathered wood by color change and machine learning[J]. Materials, 2021, 14(21): 6314. doi: 10.3390/ma14216314
    [21]
    Xin Z B, Ke D F, Zhang H J, et al. Non-destructive evaluating the density and mechanical properties of ancient timber members based on machine learning approach[J]. Construction & Building Materials, 2022, 341: 127855.
    [22]
    Yuan C, Zhang J, Chen L, et al. Timber moisture detection using wavelet packet decomposition and convolutional neural network[J]. Smart Materials and Structures, 2021, 30(3): 1−13.
    [23]
    Cawley P, Adams R D. The mechanics of the coin-tap method of non-destructive testing[J]. Journal of Sound and Vibration, 1988, 122(2): 299−316. doi: 10.1016/S0022-460X(88)80356-0
    [24]
    Cawley P. Low frequency NDT techniques for the detection of disbonds and delaminations[J]. Ndt & E International, 1992, 25(2): 100.
    [25]
    Volkmann J, Stevens S S, Newman E B. A scale for the measurement of the psychological magnitude pitch[J]. Journal of the Acoustical Society of America, 1937, 8(3): 185−190. doi: 10.1121/1.1915893
    [26]
    张钰莎, 蒋盛益. 基于MFCC特征提取和改进SVM的语音情感数据挖掘分类识别方法研究[J]. 计算机应用与软件, 2020, 37(8): 160−165. doi: 10.3969/j.issn.1000-386x.2020.08.028

    Zhang Y S, Jiang S Y. Speech emotion data mining classification and recognition method based on MFCC feature extraction and improved SVM[J]. Computer Applictions and Software, 2020, 37(8): 160−165. doi: 10.3969/j.issn.1000-386x.2020.08.028
    [27]
    中国林业科学研究院木材工业研究所, 中国国家标准化管理委员会. 木材含水率测定方法: GB/T 1931—2009[S]. 北京: 中国标准出版社, 2009: 8.

    Reasearch Insitute of Wood Industry, Standardization Administration. Method for determination of the moisture content of wood: GB/T 1931−2009[S]. Beijing: Standard Press of China, 2009: 8.
    [28]
    中国林业科学研究院木材工业研究所, 中国家标准化管理委员会. 木材抗弯弹性模量测定方法: GB/T 1936.2—2009[S]. 北京: 中国标准出版社, 2009: 8.

    Reasearch Insitute of Wood Industry, Standardization Administratio. Method for determination of the modulus of elasticity in static bending of wood: GB/T 1936.2−2009[S]. Beijing: Standard Press of China, 2009: 8.
    [29]
    中国林业科学研究院木材工业研究所, 中国国家标准化管理委员会. 木材抗弯强度试验方法: GB/T 1936.1—2009[S]. 北京: 中国标准出版社, 2009: 8.

    Reasearch Insitute of Wood Industry, Standardization Administration. Method of testing in bending strength of wood: GB/T 1936.1−2009[S]. Beijing: Standard Press of China, 2009: 8.
    [30]
    中国林业科学研究院木材工业研究所, 中国国家标准化管理委员会. 木材顺纹抗压强度试验方法: GB/T 1935—2009[S]. 北京: 中国标准出版社, 2009: 8.

    Reasearch Insitute of Wood Industry, Standardization Administration. Method of testing in compressive strength parallel to grain of wood: GB/T 1935−2009[S]. Beijing: Standard Press of China, 2009: 8.
    [31]
    中国林业科学研究院木材工业研究所, 中国国家标准化管理委员会. 木材密度测定方法: GB/T 1933—2009[S]. 北京: 中国标准出版社, 2009: 8.

    Reasearch Insitute of Wood Industry, Standardization Administration. Method for determination of the density of wood: GB/T 1933—2009[S]. Beijing: Standard Press of China, 2009: 8.
    [32]
    Yokoyama M, Gril J, Matsuo M, et al. Mechanical characteristics of aged Hinoki wood from Japanese historical buildings[J]. Comptes Rendus Physique, 2009, 10(7): 601−611. doi: 10.1016/j.crhy.2009.08.009
    [33]
    孙燕良. 基于微钻阻力的古建筑木材密度与力学性能检测研究[D]. 北京: 北京林业大学, 2012.

    Sun Y L. Determining wood density and mechanical properties of ancient architectural timbers with micro-drilling resistance[D]. Beijing: Beijing Forestry University, 2012.
    [34]
    朱磊. 基于应力波的古建筑木构件材料力学性能检测技术研究[D]. 北京: 北京林业大学, 2012.

    Zhu L. Determining the mechanical properties of ancient architectural timber with stress waves[D]. Beijing: Beijing Forestry University, 2012.
  • Cited by

    Periodical cited type(1)

    1. 曹莹. 既有建筑资料缺失的建筑物安全性鉴定. 中国建筑金属结构. 2023(04): 156-158 .

    Other cited types(2)

Catalog

    Article views (691) PDF downloads (67) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return