• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Luo Jia, Ma Ruoke, Qiao Mengji, Fu Yunlin. Distribution and identification of phenolic constituents in the sapwood and heartwood of Eucalyptus cloeziana[J]. Journal of Beijing Forestry University, 2023, 45(6): 127-136. DOI: 10.12171/j.1000-1522.20220372
Citation: Luo Jia, Ma Ruoke, Qiao Mengji, Fu Yunlin. Distribution and identification of phenolic constituents in the sapwood and heartwood of Eucalyptus cloeziana[J]. Journal of Beijing Forestry University, 2023, 45(6): 127-136. DOI: 10.12171/j.1000-1522.20220372

Distribution and identification of phenolic constituents in the sapwood and heartwood of Eucalyptus cloeziana

More Information
  • Received Date: September 12, 2022
  • Revised Date: March 16, 2023
  • Accepted Date: May 09, 2023
  • Available Online: May 11, 2023
  • Published Date: June 24, 2023
  •   Objective  This paper aims to investigate the distribution of phenolic substances in the cell structure of sapwood and heartwood of Eucalyptus cloeziana and the main phenolic components of heartwood accumulation.
      Method  The distribution of phenolic substances in sapwood and heartwood was characterized by laser confocal Raman spectroscopy, and then the changes of phenolic components in xylem and their contents were identified by ultra performance liquid chromatography-mass spectrometry.
      Result  The Raman spectroscopy absorption intensity of heartwood was significantly higher than that of sapwood, and the phenolic content at the cell corner was significantly higher than that of the intercellular level and secondary wall. Further determination of the phenolic content of the sapwood and heartwood of E. cloeziana showed that the total polyphenol content in the heartwood was 22.378 mg/g higher than that of the sapwood, indicating that a large amount of phenolic substances was deposited at the cell corners during the formation of the heartwood. A total of 21 phenolic components were identified for the first time by UPLC-MS/MS from methanolic extracts of E. cloeziana wood, mainly containing phenolic acids and derivatives, flavonoids, ellagic acid derivatives, galloyglucose derivatives and hydrolysable tannins, with relatively high contents of ellagic acid, ellagic acid-rhamnoside, gallic acid, ellagic acid-pentoside and methylphloroglucinol-O-galloyl-glucose. The relative contents of ellagic acid and gallic acid were significantly higher in the heartwood than in the sapwood, and the quantitative analysis showed that ellagic acid was 0.560 and 9.283 mg/g in the sapwood and heartwood, respectively, and gallic acid was 0.019 and 0.043 mg/g in the sapwood and heartwood, respectively.
      Conclusion  It is clear that the phenolic composition is concentrated in the cell corners during the formation of the heartwood of E. cloeziana, and that ellagic acid is the main component accumulated in the heartwood.
  • [1]
    蒋维昕, 梁馨元, 兰俊, 等. 大花序桉顶芽转录组SSR位点信息分析[J]. 中南林业科技大学学报, 2021, 41(4): 148−155. doi: 10.14067/j.cnki.1673-923x.2021.04.017

    Jiang W X, Liang X Y, Lan J, et al. Bioinformatic analysis of simple sequence repeat (SSR) loci in Eucalyptus cloeziana buds transcriptome[J]. Journal of Central South University of Forestry & Technology, 2021, 41(4): 148−155. doi: 10.14067/j.cnki.1673-923x.2021.04.017
    [2]
    罗佳, 马若克, 韦鹏练,等. 大花序桉心边材的径向和轴向的变异[J]. 北京林业大学学报, 2021, 43(4): 132−140.

    Luo J, Ma R K, Wei P L, et al. Variation on radial and axial of heartwood and sapwood in Eucalyptus cloeziana[J]. Journal of Beijing Forestry University, 2021, 43(4): 132−140.
    [3]
    黄振, 张俊, 陈炙, 等. 大花序桉国内遗传育种现状与研究展望[J]. 四川林业科技, 2018, 39(1): 17−21. doi: 10.16779/j.cnki.1003-5508.2018.01.004

    Huang Z, Zhang J, Chen Z, et al. Development and prospects of heredity and breeding researches on Eucalyptus cloeziana[J]. Journal of Sichuan Forestry Science and Technology, 2018, 39(1): 17−21. doi: 10.16779/j.cnki.1003-5508.2018.01.004
    [4]
    梁馨元, 刘金炽, 白天道, 等. 大花序桉EST-SSR标记开发及其种间通用性评价[J/OL]. 分子植物育种: 1−19[2023−04−17]. http://kns.cnki.net/kcms/detail/46.1068.S.20220303.2202.053.html.

    Liang X Y, Liu J Z, Bai T D, et al. EST-SSR marker development of Eucalyptus cloeziana and their applicability in genetic diversity and cross-species transferability[J/OL]. Molecular Plant Breeding: 1−19[2023−04−17]. http://kns.cnki.net/kcms/detail/46.1068.S.20220303.2202.053.html.
    [5]
    Kampe A, Magel E. New insights into heartwood and heartwood formation[M]. Berlin: Springer Berlin Heidelberg, 2013: 71−95.
    [6]
    Mounguengui S, Saha T J, Ndikontar M K, et al. Total phenolic and lignin contents, phytochemical screening, antioxidant and fungal inhibition properties of the heartwood extractives of ten Congo Basin tree species[J]. Annals of Forest Science, 2016, 73(2): 287−296. doi: 10.1007/s13595-015-0514-5
    [7]
    Domingues R M A, Sousa G D A, Silva C M, et al. High value triterpenic compounds from the outer barks of several Eucalyptus species cultivated in Brazil and in Portugal[J]. Industrial Crops and Products, 2011, 33(1): 158−164. doi: 10.1016/j.indcrop.2010.10.006
    [8]
    Ashour R, Okba M M, Menze E T, et al. Eucalyptus sideroxylon bark anti-inflammatory potential, its UPLC-PDA-ESI-qTOF-MS profiling, and isolation of a new phloroglucinol[J]. Journal of Chromatographic Science, 2019, 57(6): 565−574. doi: 10.1093/chromsci/bmz029
    [9]
    Santos S A O, Vilela C, Freire C S R, et al. Ultra-high performance liquid chromatography coupled to mass spectrometry applied to the identification of valuable phenolic compounds from Eucalyptus wood[J]. Journal of Chromatography B, 2013, 938: 65−74. doi: 10.1016/j.jchromb.2013.08.034
    [10]
    唐云, 李伟. 蓝桉的化学成分及其药理活性研究进展[J]. 中草药, 2015, 46(6): 923−931. doi: 10.7501/j.issn.0253-2670.2015.06.025

    Tang Y, Li W. Research advances on chemical constituents of Eucalyptus globulus and their pharmacological activities[J]. Chinese Traditional and Herbal Drugs, 2015, 46(6): 923−931. doi: 10.7501/j.issn.0253-2670.2015.06.025
    [11]
    Ossipov V, Koivuniemi A, Mizina P, et al. UPLC-PDA-Q exactive Orbitrap-MS profiling of the lipophilic compounds product isolated from Eucalyptus viminalis plants[J]. Heliyon, 2020, 6(12): e5768.
    [12]
    Felhofer M, Bock P, Xiao N, et al. Oak wood drying: precipitation of crystalline ellagic acid leads to discoloration[J]. Holzforschung, 2021, 75(8): 712−720. doi: 10.1515/hf-2020-0170
    [13]
    王佳鸾, 赵俸艺, 张春红, 等. 鞣花酸提取、纯化及其生物活性研究进展[J]. 食品工业科技, 2022, 43(13): 416−424. doi: 10.13386/j.issn1002-0306.2021060276

    Wang J L, Zhao F Y, Zhang C H, et al. Research progress of extraction, purification and bioactivity of ellagic acid[J]. Science and Technology of Food Industry, 2022, 43(13): 416−424. doi: 10.13386/j.issn1002-0306.2021060276
    [14]
    Santos S A O, Villaverde J J, Freire C S R, et al. Phenolic composition and antioxidant activity of Eucalyptus grandis, E. urograndis (E. grandis × E. urophylla) and E. maidenii bark extracts[J]. Industrial Crops and Products, 2012, 39: 120−127. doi: 10.1016/j.indcrop.2012.02.003
    [15]
    Tian L W, Xu M, Li Y, et al. Phenolic compounds from the branches of Eucalyptus maideni[J]. Chemstry Biodiversity, 2012, 9(1): 123−130. doi: 10.1002/cbdv.201100021
    [16]
    Santos S A O, Freire C S R, Domingues M R M, et al. Characterization of phenolic components in polar extracts of Eucalyptus globulus Labill. bark by high-performance liquid chromatography-mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2011, 59(17): 9386−9393. doi: 10.1021/jf201801q
    [17]
    Boulekbache-Makhlouf L, Meudec E, Mazauric J, et al. Qualitative and semi-quantitative analysis of phenolics in Eucalyptus globulus leaves by high-performance liquid chromatography coupled with diode array detection and electrospray ionisation mass spectrometry[J]. Phytochemical Analysis, 2013, 24(2): 162−170. doi: 10.1002/pca.2396
    [18]
    韦佼宏, 陈月圆, 卢凤来, 等. 尾巨桉化学成分的研究[J]. 广西植物, 2014, 34(2): 163−166.

    Wei J H, Chen Y Y, Lu F L, et al. Chemical constituents of Eucalyptus urphylla × E. grandis[J]. Guihaia, 2014, 34(2): 163−166.
    [19]
    Santos S A O, Pinto P C R O, Silvestre A J D, et al. Chemical composition and antioxidant activity of phenolic extracts of cork from Quercus suber L.[J]. Industrial Crops and Products, 2010, 31(3): 521−526. doi: 10.1016/j.indcrop.2010.02.001
    [20]
    Meyers K J, Swiecki T J, Mitchell A E. Understanding the native californian diet: identification of condensed and hydrolyzable tannins in Tanoak acorns (Lithocarpus densiflorus)[J]. Journal of Agricultural and Food Chemistry, 2006, 54(20): 7686−7691. doi: 10.1021/jf061264t
    [21]
    Chen H Y, Yen P L, Chang T C, et al. Distribution of living ray parenchyma cells and major bioactive compounds during the heartwood formation of Taiwania cryptomerioides Hayata[J]. Journal of Wood Chemistry and Technology, 2018, 38: 84−95. doi: 10.1080/02773813.2017.1372478
  • Related Articles

    [1]Wang Rongfang, Zhang Ziyan, Li Dehai. Effects of extraction methods on extraction components and antioxidant activity of Quercus mongolica shell[J]. Journal of Beijing Forestry University, 2022, 44(5): 150-160. DOI: 10.12171/j.1000-1522.20210352
    [2]Deng Wenhong, Zhao Xinrui, Zhang Junqi, Guo Huihong. Determination of plant hormones in plant tissues by UPLC-MS/MS[J]. Journal of Beijing Forestry University, 2019, 41(8): 154-160. DOI: 10.13332/j.1000-1522.20190052
    [3]WANG Wu-hao, QI Qi, LI Yun, GAI Ying. Internal-standard quantitative determination of chlorogenic acid in Eucommia ulmoides plant by CE-MS[J]. Journal of Beijing Forestry University, 2017, 39(4): 115-119. DOI: 10.13332/j.1000-1522.20160030
    [4]LI Ran, QI Qi, LI Yun, CHEN Xue-mei, GAI Ying. A method of HPLC-MS/MS to determine chlorogenic acid and other three kinds of active components in Eucommia ulmoids[J]. Journal of Beijing Forestry University, 2016, 38(6): 123-129. DOI: 10.13332/j.1000-1522.20160105
    [5]LI Jin-ke, DENG Wen-hong, CHEN Shao-liang. Quantitative analysis of gibberellins in plant tissues by GPC-HPLC-LC/MS.[J]. Journal of Beijing Forestry University, 2014, 36(6): 171-178. DOI: 10.13332/j.cnki.jbfu.2014.06.027
    [6]YANG Li-bin, SONG Rui-qing, LI Chong-wei. Effects of ethyl acetate extract of Trichoderma harzianum fermentation liquid on physiological index of Phytophthora infestans[J]. Journal of Beijing Forestry University, 2013, 35(2): 92-96.
    [7]LI Jin-ke, CHEN Hua-jun, CHEN Shao-liang. Quantitative analysis of jasmonic acids, indole-3-acetic acid and abscisic acid in plant tissues by GC-MS[J]. Journal of Beijing Forestry University, 2010, 32(5): 143-148.
    [8]JI Hong-fang, ZHANG Ling-wen, SONG Rui-qing. Effects of Lactarius vellereus fermenting liquor extraction on the activity of several impo rtant enzymes in mycelia of Alternaria alternata[J]. Journal of Beijing Forestry University, 2009, 31(4): 51-54.
    [9]JI Hong-fang, ZHANG Ling-wen, SONG Rui-qing. Inhibiting mechanism of the extraction of Lactarius vellereus fermenting liquid on Alternaria alternata in poplar[J]. Journal of Beijing Forestry University, 2008, 30(4): 146-149.
    [10]JI Hong-fang, SONG Rui-qing, YANG Qian. Effects of extraction from Lactarius vellereus fermenting liquor on the activity of protective enzymes, content of MDA and conductivity ratio in Alternaria alternata(Fr.) Keissler[J]. Journal of Beijing Forestry University, 2007, 29(6): 156-160. DOI: 10.13332/j.1000-1522.2007.06.022
  • Cited by

    Periodical cited type(3)

    1. 王家强,郑锋振. 耐热嗜酸β-甘露聚糖酶TaMan5A在毕赤酵母中高效表达及酶学性质研究. 食品与发酵工业. 2024(03): 52-58 .
    2. 王旭洁,姚三川,雒翠梅,母军,漆楚生. 路易斯酸预处理对木材热降解特性的影响. 北京林业大学学报. 2024(11): 133-140 . 本站查看
    3. 蔡金澄,雒翠梅,王旭洁,母军. 高温热处理对挪威云杉及泡桐木振动性能和化学组分的影响. 林产工业. 2023(11): 14-20 .

    Other cited types(4)

Catalog

    Article views (426) PDF downloads (60) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return