Citation: | Luo Jia, Ma Ruoke, Qiao Mengji, Fu Yunlin. Distribution and identification of phenolic constituents in the sapwood and heartwood of Eucalyptus cloeziana[J]. Journal of Beijing Forestry University, 2023, 45(6): 127-136. DOI: 10.12171/j.1000-1522.20220372 |
[1] |
蒋维昕, 梁馨元, 兰俊, 等. 大花序桉顶芽转录组SSR位点信息分析[J]. 中南林业科技大学学报, 2021, 41(4): 148−155. doi: 10.14067/j.cnki.1673-923x.2021.04.017
Jiang W X, Liang X Y, Lan J, et al. Bioinformatic analysis of simple sequence repeat (SSR) loci in Eucalyptus cloeziana buds transcriptome[J]. Journal of Central South University of Forestry & Technology, 2021, 41(4): 148−155. doi: 10.14067/j.cnki.1673-923x.2021.04.017
|
[2] |
罗佳, 马若克, 韦鹏练,等. 大花序桉心边材的径向和轴向的变异[J]. 北京林业大学学报, 2021, 43(4): 132−140.
Luo J, Ma R K, Wei P L, et al. Variation on radial and axial of heartwood and sapwood in Eucalyptus cloeziana[J]. Journal of Beijing Forestry University, 2021, 43(4): 132−140.
|
[3] |
黄振, 张俊, 陈炙, 等. 大花序桉国内遗传育种现状与研究展望[J]. 四川林业科技, 2018, 39(1): 17−21. doi: 10.16779/j.cnki.1003-5508.2018.01.004
Huang Z, Zhang J, Chen Z, et al. Development and prospects of heredity and breeding researches on Eucalyptus cloeziana[J]. Journal of Sichuan Forestry Science and Technology, 2018, 39(1): 17−21. doi: 10.16779/j.cnki.1003-5508.2018.01.004
|
[4] |
梁馨元, 刘金炽, 白天道, 等. 大花序桉EST-SSR标记开发及其种间通用性评价[J/OL]. 分子植物育种: 1−19[2023−04−17]. http://kns.cnki.net/kcms/detail/46.1068.S.20220303.2202.053.html.
Liang X Y, Liu J Z, Bai T D, et al. EST-SSR marker development of Eucalyptus cloeziana and their applicability in genetic diversity and cross-species transferability[J/OL]. Molecular Plant Breeding: 1−19[2023−04−17]. http://kns.cnki.net/kcms/detail/46.1068.S.20220303.2202.053.html.
|
[5] |
Kampe A, Magel E. New insights into heartwood and heartwood formation[M]. Berlin: Springer Berlin Heidelberg, 2013: 71−95.
|
[6] |
Mounguengui S, Saha T J, Ndikontar M K, et al. Total phenolic and lignin contents, phytochemical screening, antioxidant and fungal inhibition properties of the heartwood extractives of ten Congo Basin tree species[J]. Annals of Forest Science, 2016, 73(2): 287−296. doi: 10.1007/s13595-015-0514-5
|
[7] |
Domingues R M A, Sousa G D A, Silva C M, et al. High value triterpenic compounds from the outer barks of several Eucalyptus species cultivated in Brazil and in Portugal[J]. Industrial Crops and Products, 2011, 33(1): 158−164. doi: 10.1016/j.indcrop.2010.10.006
|
[8] |
Ashour R, Okba M M, Menze E T, et al. Eucalyptus sideroxylon bark anti-inflammatory potential, its UPLC-PDA-ESI-qTOF-MS profiling, and isolation of a new phloroglucinol[J]. Journal of Chromatographic Science, 2019, 57(6): 565−574. doi: 10.1093/chromsci/bmz029
|
[9] |
Santos S A O, Vilela C, Freire C S R, et al. Ultra-high performance liquid chromatography coupled to mass spectrometry applied to the identification of valuable phenolic compounds from Eucalyptus wood[J]. Journal of Chromatography B, 2013, 938: 65−74. doi: 10.1016/j.jchromb.2013.08.034
|
[10] |
唐云, 李伟. 蓝桉的化学成分及其药理活性研究进展[J]. 中草药, 2015, 46(6): 923−931. doi: 10.7501/j.issn.0253-2670.2015.06.025
Tang Y, Li W. Research advances on chemical constituents of Eucalyptus globulus and their pharmacological activities[J]. Chinese Traditional and Herbal Drugs, 2015, 46(6): 923−931. doi: 10.7501/j.issn.0253-2670.2015.06.025
|
[11] |
Ossipov V, Koivuniemi A, Mizina P, et al. UPLC-PDA-Q exactive Orbitrap-MS profiling of the lipophilic compounds product isolated from Eucalyptus viminalis plants[J]. Heliyon, 2020, 6(12): e5768.
|
[12] |
Felhofer M, Bock P, Xiao N, et al. Oak wood drying: precipitation of crystalline ellagic acid leads to discoloration[J]. Holzforschung, 2021, 75(8): 712−720. doi: 10.1515/hf-2020-0170
|
[13] |
王佳鸾, 赵俸艺, 张春红, 等. 鞣花酸提取、纯化及其生物活性研究进展[J]. 食品工业科技, 2022, 43(13): 416−424. doi: 10.13386/j.issn1002-0306.2021060276
Wang J L, Zhao F Y, Zhang C H, et al. Research progress of extraction, purification and bioactivity of ellagic acid[J]. Science and Technology of Food Industry, 2022, 43(13): 416−424. doi: 10.13386/j.issn1002-0306.2021060276
|
[14] |
Santos S A O, Villaverde J J, Freire C S R, et al. Phenolic composition and antioxidant activity of Eucalyptus grandis, E. urograndis (E. grandis × E. urophylla) and E. maidenii bark extracts[J]. Industrial Crops and Products, 2012, 39: 120−127. doi: 10.1016/j.indcrop.2012.02.003
|
[15] |
Tian L W, Xu M, Li Y, et al. Phenolic compounds from the branches of Eucalyptus maideni[J]. Chemstry Biodiversity, 2012, 9(1): 123−130. doi: 10.1002/cbdv.201100021
|
[16] |
Santos S A O, Freire C S R, Domingues M R M, et al. Characterization of phenolic components in polar extracts of Eucalyptus globulus Labill. bark by high-performance liquid chromatography-mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2011, 59(17): 9386−9393. doi: 10.1021/jf201801q
|
[17] |
Boulekbache-Makhlouf L, Meudec E, Mazauric J, et al. Qualitative and semi-quantitative analysis of phenolics in Eucalyptus globulus leaves by high-performance liquid chromatography coupled with diode array detection and electrospray ionisation mass spectrometry[J]. Phytochemical Analysis, 2013, 24(2): 162−170. doi: 10.1002/pca.2396
|
[18] |
韦佼宏, 陈月圆, 卢凤来, 等. 尾巨桉化学成分的研究[J]. 广西植物, 2014, 34(2): 163−166.
Wei J H, Chen Y Y, Lu F L, et al. Chemical constituents of Eucalyptus urphylla × E. grandis[J]. Guihaia, 2014, 34(2): 163−166.
|
[19] |
Santos S A O, Pinto P C R O, Silvestre A J D, et al. Chemical composition and antioxidant activity of phenolic extracts of cork from Quercus suber L.[J]. Industrial Crops and Products, 2010, 31(3): 521−526. doi: 10.1016/j.indcrop.2010.02.001
|
[20] |
Meyers K J, Swiecki T J, Mitchell A E. Understanding the native californian diet: identification of condensed and hydrolyzable tannins in Tanoak acorns (Lithocarpus densiflorus)[J]. Journal of Agricultural and Food Chemistry, 2006, 54(20): 7686−7691. doi: 10.1021/jf061264t
|
[21] |
Chen H Y, Yen P L, Chang T C, et al. Distribution of living ray parenchyma cells and major bioactive compounds during the heartwood formation of Taiwania cryptomerioides Hayata[J]. Journal of Wood Chemistry and Technology, 2018, 38: 84−95. doi: 10.1080/02773813.2017.1372478
|
[1] | Zou Xuge, Wang Yin, Wang Jianming, Qu Mengjun, Zhu Weilin, Zhao Hang, Si Jianhua, Li Jingwen. Coordination and trade-off of leaf functional traits in Populus euphratica and their response to tree age and soil factors[J]. Journal of Beijing Forestry University, 2024, 46(5): 82-92. DOI: 10.12171/j.1000-1522.20220522 |
[2] | Huang Qingyang, Xie Lihong, Cao Hongjie, Yang Fan, Ni Hongwei. Variation characteristics of leaf functional traits of Populus davidiana in Wudalianchi Volcano, northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(2): 81-89. DOI: 10.12171/j.1000-1522.20200089 |
[3] | Li Jinhang, Zhu Jiyou, Catherine Mhae B. Jandug, Zhao Kai, Xu Chengyang. Relationship between leaf functional trait variation of Cotinus coggygria seedling and location geographical-climatic factors under drought stress[J]. Journal of Beijing Forestry University, 2020, 42(2): 68-78. DOI: 10.12171/j.1000-1522.20190079 |
[4] | Zhong Yueming, Wang Wenjuan, Wang Jianming, Wang Yuchen, Li Jingwen, Yuan Dong, Fan Yunyun, Wei Xincheng. Leaf functional traits of oasis plants in extremely arid areas and its response to soil water and salt factors[J]. Journal of Beijing Forestry University, 2019, 41(10): 20-29. DOI: 10.13332/j.1000-1522.20190128 |
[5] | Wu Dongshan, Yang Zhangqi, Huang Yongli. Analysis and evaluation of resin productivity and resin component among different half sibling families of Pinus massoniana[J]. Journal of Beijing Forestry University, 2019, 41(2): 53-61. DOI: 10.13332/j.1000-1522.20170377 |
[6] | CHEN Wu, KONG De-cang, CUI Yan-hong, CAO Ming, PANG Xiao-ming, LI Ying-yue. Phenotypic genetic diversity of a core collection of Ziziphus jujuba and correlation analysis of dehiscent characters[J]. Journal of Beijing Forestry University, 2017, 39(6): 78-84. DOI: 10.13332/j.1000-1522.20170024 |
[7] | ZHAO Wen-xia, ZOU Bin, ZHENG Jing-ming, LUO Jiu-fu. Correlations between leaf, stem and root functional traits of common tree species in an evergreen broad-leaved forest[J]. Journal of Beijing Forestry University, 2016, 38(6): 35-41. DOI: 10.13332/j.1000-1522.20160087 |
[8] | LIU Xi-zhen, FENG Huan-ying, CAI Cun-ju, FAN Shao-hui, LIU Guang-lu. Response of leaf functional traits of Moso bamboo during the invading process into the broad-leaved forest[J]. Journal of Beijing Forestry University, 2015, 37(8): 8-10. DOI: 10.13332/j.1000-1522.20150157 |
[9] | WAN Hong-mei, LI Xia, DONG Dao-rui, ZHAO Zhao, TANG Jin. Correlation analysis and characteristics of measuring factors for Populus euphratica after drought stress water delivery.[J]. Journal of Beijing Forestry University, 2012, 34(2): 34-38. |
[10] | MO Chang-ming, MA Xiao-jun, , QI Li-wang, BAI Long-hua, SHI Lei, FENG Shi-xin. Genetic variation, correlation and path analysis of Siraitia grosvenorii germplasm characters.[J]. Journal of Beijing Forestry University, 2008, 30(4): 121-125. |
1. |
李豪,吴明豪,詹芳芷,李虹烨,张翔,刘志成. 耦合Graphab-PLUS模型的生态网络动态评估框架——以北京市中心城区为例. 北京林业大学学报. 2025(01): 95-105 .
![]() | |
2. |
张浪,仲启铖,张瑞,张桂莲. 城市绿地生态网络概念辨析及构建方法探析. 园林. 2024(01): 4-10 .
![]() | |
3. |
李华,郑育桃,黄荷,陈飞平. 基于MSPA和MCR模型的庐山市生态网络构建. 中南林业科技大学学报. 2024(02): 98-107 .
![]() | |
4. |
刘园园,马彩虹,滑雨琪,李聪慧,杨航. 基于MSPA_P-MCR_F的干旱区层级生态网络构建与优化——以宁夏中卫市为例. 自然资源遥感. 2024(01): 67-76 .
![]() | |
5. |
杨迈,郑毅,李晓琳,欧朝蓉,杨秀彪,孙仕仙. 洱海流域生态网络构建与分析. 湿地科学. 2024(02): 254-263 .
![]() | |
6. |
邵润钰,罗紫薇,胡希军,王烨梓,张九月. 基于MSPA和MCR模型的株洲市生态网络构建与优化. 西北林学院学报. 2024(02): 217-227 .
![]() | |
7. |
许涛,樊鹤翔,周可钦,李涵璟,王苗. 基于MSPA-MCR-CIRCUIT的山西省运城市景观生态网络构建. 中国园林. 2024(03): 114-118 .
![]() | |
8. |
彭慧思,王艳慧,王志岗. 基于夜间灯光数据的郑州都市圈一体化景观格局的时空演变. 应用生态学报. 2024(05): 1359-1368 .
![]() | |
9. |
董欣雨,刘扬. 基于形态学空间格局分析与景观连通性的易门县生态网络构建与优化. 云南农业大学学报(自然科学). 2024(05): 168-177 .
![]() | |
10. |
丁金华,褚涵,孙琦. 基于MSPA与电路理论的水网地区生态网络构建. 中国城市林业. 2024(05): 122-129 .
![]() | |
11. |
申佳可,李烨,王云才. 基于生态感知的景观生态格局构建新思路与实施框架. 中国园林. 2024(12): 63-69 .
![]() | |
12. |
秦子博,玄锦,黄柳菁,刘兴诏. 基于MSPA和MCR模型的海岛型城市生态网络构建——以福建省平潭岛为例. 水土保持研究. 2023(02): 303-311 .
![]() | |
13. |
杜箫宇,吕飞南,王春雨,宇振荣. 基于MSPA-Conefor-MCR的县域尺度生态网络构建——以延庆区为例. 应用生态学报. 2023(04): 1073-1082 .
![]() | |
14. |
李彤,贾宝全,刘文瑞,张秋梦,姜莎莎. 宜昌市生态安全网络要素时空动态及其影响因素. 生态学报. 2023(15): 6154-6169 .
![]() | |
15. |
郑群明,申明智,曹灵,扈嘉辉. 基于MSPA和旅游流的风景道构建研究——以湖南省为例. 湖南师范大学自然科学学报. 2023(05): 17-27 .
![]() | |
16. |
陈胜兰,丁山,魏甫,阳胜男,周维,罗致,毛旭鹏. 基于生态景观连通性的浏阳市自然保护地整合优化评价. 中南林业调查规划. 2023(04): 21-25 .
![]() | |
17. |
邓靖琳,沈一,王倩娜,雷雪,高黄根. 四川眉山市彭山区生态空间格局构建——基于MSPA与生态扩张适宜性分析. 中国城市林业. 2023(06): 121-127 .
![]() | |
18. |
王博娅,刘志成. 城市更新背景下北京市中心城区生态网络的优化策略. 城市发展研究. 2022(01): 113-120 .
![]() | |
19. |
高娜,姜雪,郑曦. 基于生态系统服务的永定河流域北京段生态网络构建与优化. 北京林业大学学报. 2022(03): 106-118 .
![]() | |
20. |
姚新治,杨航,王立涛,许磊,何鹏飞,田国行. 基于MSPA模型的登封市生态网络构建与优化. 河南科学. 2022(05): 776-784 .
![]() | |
21. |
费文君,赵梦琴. 基于MSPA的南京市绿色基础设施网络构建. 南京林业大学学报(自然科学版). 2022(03): 50-56 .
![]() | |
22. |
石龙宇,郑巧雅,廖振珍. 雄安新区生态基础设施建设与城市发展协同度评价. 生态学报. 2022(12): 4968-4977 .
![]() | |
23. |
陈南南,康帅直,赵永华,周煜杰,闫瑾,卢雅茹. 基于MSPA和MCR模型的秦岭(陕西段)山地生态网络构建. 应用生态学报. 2021(05): 1545-1553 .
![]() | |
24. |
代继平,朱坤,周天宇,彭建松. 腾冲市中心城区生态空间网络构建. 林业资源管理. 2021(05): 131-138 .
![]() | |
25. |
陈竹安,马彬彬,危小建,曾令权,姜晓桦. 基于MSPA和MCR模型的南昌市生态网络构建与优化. 水土保持通报. 2021(06): 139-147 .
![]() | |
26. |
张美丽,齐跃普,张利,陈影,周亚鹏,陈亚恒,王树涛. 基于Linkage Mapper与粒度反推法的太行山中北段生态节点识别与分析:以河北省阜平县为例. 生态与农村环境学报. 2020(12): 1569-1578 .
![]() |