• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Hao Qian, Wang Yida, Ge Ying, Zhou Jing, Liu Zhenbo. Acoustic vibration performance of birch veneer-metal copper mesh composites[J]. Journal of Beijing Forestry University, 2023, 45(1): 148-158. DOI: 10.12171/j.1000-1522.20220378
Citation: Hao Qian, Wang Yida, Ge Ying, Zhou Jing, Liu Zhenbo. Acoustic vibration performance of birch veneer-metal copper mesh composites[J]. Journal of Beijing Forestry University, 2023, 45(1): 148-158. DOI: 10.12171/j.1000-1522.20220378

Acoustic vibration performance of birch veneer-metal copper mesh composites

More Information
  • Received Date: September 14, 2022
  • Revised Date: December 27, 2022
  • Accepted Date: December 27, 2022
  • Available Online: December 29, 2022
  • Published Date: January 24, 2023
  •   Objective  The selection and use of traditional solid wood musical instrument soundboards are very strict. However, at present, there is a shortage of high-quality wood resources in our country, and the pressure on resource demand is relatively high. The development of composite materials that can be used as musical instrument soundboards is an effective way to alleviate the pressure on wood demand.
      Method  2-layer and 5-layer birch veneer composite materials with two thicknesses and metal copper meshes were prepared in the experiment. On the basis of analyzing the dimensional stability of composite, the acoustic vibration performance of the composite was tested by the dual channel Fast Fourier Transform Spectrum Analyzer (FFT), and the effects of the direction of birch veneer pavement, the location and number of layers of metal copper mesh on the acoustic vibration performance were studied. The acoustic performance of the composite was compared with that of Sitka spruce by the comprehensive scoring method.
      Result  The highest coefficient of moisture expansion resistance of double layer and five layer birch veneer composites prepared with metal mesh was 80.00% and 88.09%, respectively. The increase of bonding interface improved the coefficient of moisture expansion resistance of the composites. The direction of birch veneer pavement affected the EL/ER value of composite materials. The EL/ER value of double-layer veneer composite materials paved with parallel veneer texture was 29.09, and the EL/ER value of double-layer veneer composite materials paved with interlaced veneer texture was 0.99. The 5-layer composite added with two layers of metal copper mesh had a vibration efficiency quality close to that of Sitka spruce and a better timbre. Its moisture resistance coefficient reached 87.61%, the longitudinal specific dynamic modulus of elasticity reached 20.02 GPa, the sound radiation quality constant reached 6.13 m/(Pa·s3), the sound impedance was 3.29 Pa·s/m, and the E/G value reached 29.63.
      Conclusion  The comparison with Sitka spruce shows that the acoustic vibration performance of the composite material can basically meet the requirements of general musical instruments, and it has good dimensional stability, which is a good substitute for traditional solid wood soundboards.
  • [1]
    刘镇波, 沈隽. 共鸣板用材的振动特性与钢琴的声学品质[M]. 北京: 科学出版社, 2009.

    Liu Z B, Shen J. Vibration characteristics of acoustics board and acoustic quality of piano[M]. Beijing: Science Press, 2009.
    [2]
    余德倩, 赵晨鹏, 翟胜丞, 等. 吸湿循环处理对常用乐器用材声学振动性能的影响[J]. 林业工程学报, 2021, 6(5): 61−67.

    Yu D Q, Zhao C P, Zhai S C, et al. Effect of hygroscopic cycle treatment on acoustic vibration performance of different wood species for musical instruments[J]. Journal of Forestry Engineering, 2021, 6(5): 61−67.
    [3]
    张晓玮, 王婧如, 王明浩, 等. 中国云杉属树种地理分布格局的主导气候因子[J]. 林业科学, 2020, 56(4): 1−11. doi: 10.11707/j.1001-7488.20200401

    Zhang X W, Wang J R, Wang M H, et al. Dominant climatic factors influencing the geographical distribution pattern of Picea in China[J]. Scientia Silvae Sinicae, 2020, 56(4): 1−11. doi: 10.11707/j.1001-7488.20200401
    [4]
    陈伏生, 易敏, 马际凯, 等. 中国林木种业发展现状与展望[J]. 江西农业大学学报, 2021, 43(3): 488−496. doi: 10.13836/j.jjau.2021054

    Chen F S, Yi M, Ma J K, et al. Current status and future prospect of forest seed industry in China[J]. Acta Agriculturae Universitatis Jiangxiensis, 2021, 43(3): 488−496. doi: 10.13836/j.jjau.2021054
    [5]
    江泽慧, 邓丽萍, 宋荣臻, 等. 木竹材声学振动特性研究进展[J]. 世界林业研究, 2021, 34(2): 1−7. doi: 10.13348/j.cnki.sjlyyj.2021.0011.y

    Jiang Z H, Deng L P, Song R Z, et al. Research progress on the acoustic vibration performance of wood and bamboo[J]. World Forestry Research, 2021, 34(2): 1−7. doi: 10.13348/j.cnki.sjlyyj.2021.0011.y
    [6]
    贺福, 杨永岗. 碳纤维增强木材复合材料[J]. 化工新型材料, 2003, 31(10): 9−12. doi: 10.3969/j.issn.1006-3536.2003.10.004

    He F, Yang Y G. Carbon fiber reinforced wood composite[J]. New Chemical Materials, 2003, 31(10): 9−12. doi: 10.3969/j.issn.1006-3536.2003.10.004
    [7]
    Phillips S, Lessard L. Application of natural fiber composites to musical instrument top plates[J]. Journal of Composite Materials, 2012, 46(2): 145−154. doi: 10.1177/0021998311410497
    [8]
    Jalili M M, Mousavi S Y, Pirayeshfar A S. Investigating the acoustical properties of carbon fiber-, glass fiber, and hemp fiber-reinforced polyester composites[J]. Polymer Composites, 2015, 35(11): 2103−2111.
    [9]
    张元梓, 刘乾, 高源, 等. 木质−碳纤维复合材料的制备工艺[J]. 东北林业大学学报, 2019, 47(10): 90−95. doi: 10.3969/j.issn.1000-5382.2019.10.018

    Zhang Y Z, Liu Q, Gao Y, et al. Process optimization of wood-carbon fiber composites[J]. Journal of Northeast Forestry University, 2019, 47(10): 90−95. doi: 10.3969/j.issn.1000-5382.2019.10.018
    [10]
    Ono T, Miyakoshi S, Watanabe U. Acoustic characteristics of unidirectionally fiber-reinforced polyurethane foam composites for musical instrument soundboards[J]. Acoustical Science and Technology, 2002, 23(3): 135−142. doi: 10.1250/ast.23.135
    [11]
    Ono T, Isomura D. Acoustic characteristics of carbon fiber-reinforced synthetic wood for musical instrument soundboards[J]. Acoustical Science and Technology, 2004, 25(6): 475−477. doi: 10.1250/ast.25.475
    [12]
    贺建民, 路伟, 王立峰, 等. 碳纤维增强面板的制备及其力学性能[J]. 森林工程, 2022, 38(3): 63−69. doi: 10.3969/j.issn.1006-8023.2022.03.009

    He J M, Lu W, Wang L F, et al. Preparation and mechanical properties of carbon fiber reinforced panel[J]. Forest Engineering, 2022, 38(3): 63−69. doi: 10.3969/j.issn.1006-8023.2022.03.009
    [13]
    Ismail A S, Jawaid M, Naveen J. Void content, tensile, vibration and acoustic properties of kenaf/bamboo fiber reinforced epoxy hybrid composites[J]. Materials, 2019, 12(13): 2094. doi: 10.3390/ma12132094
    [14]
    郑海军, 顾少华, 李琪微, 等. 基于主成分评价法的竹木旱滑板面板力学性能综合评价[J]. 林业工程学报, 2022, 7(3): 46−52.

    Zheng H J, Gu S H, Li Q W, et al. Comprehensive evaluation of mechanical properties of bamboo-wood dry skateboard face panels using principal component evaluation method[J]. Journal of Forestry Engineering, 2022, 7(3): 46−52.
    [15]
    林斌, 苗媛媛, 李瑞, 等. 桦木单板/玻璃纤维复合材料声学振动性能的研究[J]. 北京林业大学学报, 2019, 41(1): 126−133. doi: 10.13332/j.1000-1522.20180317

    Lin B, Miao Y Y, Li R, et al. Acoustic vibration properties of birch veneer/glass fiber composites[J]. Journal of Beijing Forestry University, 2019, 41(1): 126−133. doi: 10.13332/j.1000-1522.20180317
    [16]
    Lee S K, Kim M W, Park C J, et al. Effect of fiber orientation on acoustic and vibration response of a carbon fiber/epoxy composite plate natural vibration mode and sound radiation[J]. International Journal of Mechanical Sciences, 2016, 117: 162−173. doi: 10.1016/j.ijmecsci.2016.08.023
    [17]
    Sayyad A S, Ghugal Y M. On the free vibration analysis of laminated composite and sandwich plates: a review of recent literature with some numerical results[J]. Composite, 2015, 129: 177−201.
    [18]
    赵俊石. 玻璃纤维增强杨木单板复合层板结构与工艺研究[D]. 北京: 中国林业科学研究院, 2013.

    Zhao J S. Research on reinforced glass fiber poplar veneer composite laminates structure and technology[D]. Beijing: Chinese Academy of Forestry, 2013.
    [19]
    Tang L D, Wu Y B, Yuan L P, et al. The heat insulation and smoke suppression effect of M-Si-phosphocarbonaceous catalyzed by metal salt-doped APP silicon gel in situ build in wood[J]. Journal of Thermal Analysis and Calorimetry, 2021, 146(6): 2353−2364. doi: 10.1007/s10973-020-10530-3
    [20]
    胡伟航, 沈梦霞, 段超, 等. 基于木材的超级电容器电极材料的研究进展[J]. 中国造纸, 2021, 40(3): 83−94. doi: 10.11980/j.issn.0254-508X.2021.03.012

    Hu W H, Shen M X, Duan C, et al. Research progress of wood-based electrode materials for supercapacitors[J]. China Pulp and Paper, 2021, 40(3): 83−94. doi: 10.11980/j.issn.0254-508X.2021.03.012
    [21]
    Han G J, Ma Z G, Zhou B, et al. Cellulose-based Ni-decorated graphene magnetic film for electromagnetic interference shielding[J]. Journal of Colloid and Interface Science, 2021, 583: 571−578. doi: 10.1016/j.jcis.2020.09.072
    [22]
    梁祥鹏. 多层实木铝箔复合制备功能人造板技术研究[D]. 郑州: 河南农业大学, 2016.

    Liang X P. Study on preparation technology of multi-poplar veneer/aluminum boil laminated functional boards[D]. Zhengzhou: Henan Agricultural University, 2017.
    [23]
    Duan S W, Zhou W Z, Liu X L, et al. Experimental study on the bending behavior of steel-wood composite beams[J]. Advance in Civil Engineering, 2021: 1315849.
    [24]
    肖飞, 吴义强, 左迎峰, 等. 竹单板/泡沫铝复合材料的制备及胶合性能评估[J]. 林业工程学报, 2021, 6(3): 35−40.

    Xiao F, Wu Y Q, Zuo Y F, et al. Preparation and bonding performance evaluation of bamboo veneer/foam aluminum composites[J]. Journal of Forestry Engineering, 2021, 6(3): 35−40.
    [25]
    中华人民共和国国家林业局. 改性木材尺寸稳定性测定方法: LY/T 2490—2015[S]. 北京: 中国标准出版社, 2015.

    The SAtate Forestry Administration of the People’s Republic of China. Test method for dimensional stability of modified wood: LY/ T 2490−2015[S]. Beijing: Standards Press of China, 2015.
    [26]
    Ashaari Z, Lee S H, Nabil F L, et al. Physico-mechanical properties of laminates made from Sematan bamboo and saesenduk wood derived from Malaysia’s secondary forest[J]. International Forestry Review, 2017, 19(Suppl. 3): 1−8.
  • Cited by

    Periodical cited type(25)

    1. 成思丽,王丹,贺斌,胡兆柳,陈林,唐军荣,陈诗,许玉兰,蔡年辉. 不同苗龄云南松苗木平茬根系形态特征分析. 浙江农林大学学报. 2024(02): 322-332 .
    2. 蔡年辉,胡兆柳,贺斌,成思丽,陈林,唐军荣,陈诗,许玉兰,李根前. 云南松苗木萌枝能力对截干高度的响应. 西北农林科技大学学报(自然科学版). 2024(04): 85-94 .
    3. 向凌潇,张俊威,李建明. 灌溉量与灌溉频率对番茄根系生长、产量和营养元素吸收的影响. 西北农林科技大学学报(自然科学版). 2024(05): 80-92+123 .
    4. 崔远远,张征云,刘鹏,张运春,张桥英. 镉与聚乙烯微塑料胁迫对小白菜根系的形态特征和分形维数的影响. 生态环境学报. 2023(01): 158-165 .
    5. 覃桂丽,玉舒中. 降香黄檀根系性状对石灰岩石砾的适应响应. 西南林业大学学报(自然科学). 2023(03): 24-32 .
    6. 胡静,张桥英,张运春,崔远远,谭晶华. 水位对若尔盖高原湿地植物群落结构和植物功能性状的影响. 绿色科技. 2023(06): 22-29 .
    7. 石海涛,张大才. 干旱胁迫对高寒草甸不同功能群植物的影响. 林业科技通讯. 2023(08): 48-51 .
    8. 蔡年辉,唐军荣,李亚麒,陈诗,陈林,许玉兰,李根前. 植物生长调节剂对云南松苗木根系形态的影响. 河南农业大学学报. 2022(03): 381-391 .
    9. 代丽丽,张传生,石研. 黄栌个体生长情况与根系结构的关系探究. 现代园艺. 2022(12): 6-8 .
    10. 张燕,葛江琨,李洪亮,杨晨,戴振芬,陈洪年. 高陡岩质边坡体裂隙率与植物生长速度的关系研究. 安全与环境工程. 2022(04): 93-100 .
    11. 蔡年辉,唐军荣,李亚麒,陈诗,陈林,许玉兰,李根前. 云南松苗木根系可塑性对平茬高度的响应. 云南大学学报(自然科学版). 2022(06): 1305-1313 .
    12. 杜志敏,向凌云,杜凯敏,杨文玲,王继雯,雷高,郭雪白,郭亮,周静,巩涛,陈国参,甄静. 磷灰石、石灰对Cd胁迫下黑麦草根形态及Cd吸收影响研究. 农业环境科学学报. 2021(01): 92-101 .
    13. 贾林巧,陈光水,张礼宏,陈廷廷,姜琦,陈宇辉,范爱连,王雪. 常绿阔叶林外生和丛枝菌根树种细根形态和构型性状对氮添加的可塑性响应. 应用生态学报. 2021(02): 529-537 .
    14. 李宝财,梁文汇,蓝金宣,李军集,杨卓颖,黄晓露. 不同沙土配比基质对岗松幼苗根系形态及营养吸收的影响. 广西林业科学. 2021(02): 157-163 .
    15. 郑诚,温仲明,郭倩,樊勇明,杨玉婷,高飞. 基于MaxEnt模型的延河流域草本植物适生分布与功能性状分析. 生态学报. 2021(17): 6825-6835 .
    16. 李佳佳,魏多,徐翎清,王秋红,马龙彪,刘大丽. 甜菜对低氮胁迫的形态学响应机制. 中国农学通报. 2021(36): 41-46 .
    17. 张祖衔,邓薇,李春,徐洪伟,周晓馥. 施加枯草芽孢杆菌和哈茨木霉对黄瓜幼苗生长的影响. 北方园艺. 2021(23): 11-20 .
    18. 张岚,张玲卫,刘会良,陈艳锋. 降水增加对古尔班通古特沙漠两种短命植物生长的影响. 应用生态学报. 2020(01): 9-16 .
    19. 李金航,周玫,朱济友,徐程扬. 黄栌幼苗根系构型对土壤养分胁迫环境的适应性研究. 北京林业大学学报. 2020(03): 65-77 . 本站查看
    20. 李青,祖艳群,王吉秀,杨晶祥,牛秀艳. 铅锌矿区重金属胁迫对野生小花南芥根系特征的影响. 贵州农业科学. 2020(04): 148-152 .
    21. 吴焦焦,张文,高岚,谭星,乐佳兴,田秋玲,冯大兰,黄小辉,齐代华,许一丰,梁洪海,吴铭河,黄诗夏,刘芸. 三峡库区次生黄栌灌木林的群落特征及种间联结性. 生态学报. 2020(12): 4053-4063 .
    22. 李煜,赵国红,尹峰,宁立波. 岩质边坡覆绿植物的根系形态变化特征及影响因子研究. 湖南师范大学自然科学学报. 2020(02): 45-52+81 .
    23. 王效瑾,高巍,赵鹏,于冲冲,刘红恩,聂兆君,秦世玉,李畅. 小麦幼苗根系形态对镉胁迫的响应. 农业环境科学学报. 2019(06): 1218-1225 .
    24. 刘海,韦莉,任永胜,易艳灵,杨倩,李贤伟,范川. 柏木根系分泌物对栾树细根形态及N、P含量的影响. 西北植物学报. 2019(09): 1661-1669 .
    25. 周华健,冯文新,赵国红,尹峰,宁立波,白冰珂. 黄栌在高陡岩质边坡覆绿中的环境适应特征. 湖南师范大学自然科学学报. 2019(05): 60-64+80 .

    Other cited types(18)

Catalog

    Article views (556) PDF downloads (86) Cited by(43)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return