Citation: | Mi Xiangcheng, Yu Jianping, Wang Ningning, Jia Wen, Ren Haibao, Chen Lei, Pang Yong, Ma Keping. Utilizing LiDAR technology to estimate forest aboveground biomass in Qianjiangyuan National Park, Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2022, 44(10): 77-84. DOI: 10.12171/j.1000-1522.20220383 |
[1] |
Lohbeck M, Poorter L, Martínez-Ramos M, et al. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession[J]. Ecology, 2015, 96(5): 1242−1252. doi: 10.1890/14-0472.1
|
[2] |
Poorter L, Bongers F, Aide T M, et al. Biomass resilience of Neotropical secondary forests[J]. Nature, 2016, 530: 211−214. doi: 10.1038/nature16512
|
[3] |
马克平. 国家公园首先是自然保护基地[J]. 生物多样性, 2014, 22(4): 415−417.
Ma K P. Nature conservation is the first priority for a national park[J]. Biodiversity Science, 2014, 22(4): 415−417.
|
[4] |
Coops N C, Tompalski P, Goodbody T R H, et al. Modelling lidar-derived estimates of forest attributes over space and time: a review of approaches and future trends[J]. Remote Sensing of Environment, 2021, 260: 112477. doi: 10.1016/j.rse.2021.112477
|
[5] |
Pandit S, Tsuyuki S, Dube T. Estimating above-ground biomass in sub-tropical buffer zone community forests, nepal, using sentinel 2 data[J]. Remote Sensing, 2018, 10(4): 601. doi: 10.3390/rs10040601
|
[6] |
周俊宏, 王子芝, 廖声熙, 等. 基于GF-1影像的普达措国家公园森林地上生物量遥感估算[J]. 农业工程学报, 2021, 37(4): 216−223. doi: 10.11975/j.issn.1002-6819.2021.4.026
Zhou J H, Wang Z Z, Liao S X, et al. Remote sensing estimation of forest aboveground biomass in Potatso National Park using GF-1 images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(4): 216−223. doi: 10.11975/j.issn.1002-6819.2021.4.026
|
[7] |
Rodríguez-Veiga P, Wheeler J, Louis V, et al. Quantifying forest biomass carbon stocks from space[J]. Current Forestry Reports, 2017, 3(1): 1−18. doi: 10.1007/s40725-017-0052-5
|
[8] |
Jucker T, Caspersen J, Chave J, et al. Allometric equations for integrating remote sensing imagery into forest monitoring programmes[J]. Global Change Biology, 2017, 23(1): 177−190. doi: 10.1111/gcb.13388
|
[9] |
Fischer R, Knapp N, Bohn F, et al. The relevance of forest structure for biomass and productivity in temperate forests: new perspectives for remote sensing[J]. Surveys in Geophysics, 2019, 40(4): 709−734. doi: 10.1007/s10712-019-09519-x
|
[10] |
Coomes D A, Dalponte M, Jucker T, et al. Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data[J]. Remote Sensing of Environment, 2017, 194: 77−88. doi: 10.1016/j.rse.2017.03.017
|
[11] |
于明坚, 胡正华, 余建平, 等. 浙江古田山自然保护区森林植被类型[J]. 浙江大学学报(农业与生命科学版), 2001, 27(4): 23−28.
Yu M J, Hu Z H, Yu J P, et al. Forest vegetation types in Gutianshan Natural Reserve in Zhejiang[J]. Journal of Zhejiang University (Agriculture & Life Science), 2001, 27(4): 23−28.
|
[12] |
张田田, 王璇, 任海保, 等. 浙江古田山次生与老龄常绿阔叶林群落特征的比较[J]. 生物多样性, 2019, 27(10): 1069−1080. doi: 10.17520/biods.2019059
Zhang T T, Wang X, Ren H B, et al. A comparative study on the community characteristics of secondary and old-growth evergreen broad-leaved forests in Gutianshan, Zhejiang Province[J]. Biodiversity Science, 2019, 27(10): 1069−1080. doi: 10.17520/biods.2019059
|
[13] |
Guo Q, Su Y, Hu T, et al. An integrated UAV-borne lidar system for 3D habitat mapping in three forest ecosystems across China[J]. International Journal of Remote Sensing, 2017, 38(8−10): 2954−2972.
|
[14] |
Harms K E, Condit R, Hubbell S P, et al. Habitat associations of trees and shrubs in a 50-ha neotropical forest plot[J]. Journal of Ecology, 2001, 89: 947−959. doi: 10.1111/j.1365-2745.2001.00615.x
|
[15] |
Yamakura T, Kanzaki A, Itoh T, et al. Topography of a large-scale research plot established within a tropical rain forest at Lambir, Sarawak[J]. Tropics, 1995, 5: 41−56. doi: 10.3759/tropics.5.41
|
[16] |
Getzin S, Wiegand K, Schöning I. Assessing biodiversity in forests using very high-resolution images and unmanned aerial vehicles[J]. Methods in Ecology and Evolution, 2012, 3(2): 397−404. doi: 10.1111/j.2041-210X.2011.00158.x
|
[17] |
Knapp N, Fischer R, Cazcarra-Bes V, et al. Structure metrics to generalize biomass estimation from lidar across forest types from different continents[J]. Remote Sensing of Environment, 2020, 237: 111597. doi: 10.1016/j.rse.2019.111597
|
[18] |
Roussel J R, Auty D, Coops N C, et al. LidR: an R package for analysis of Airborne Laser Scanning (ALS) data[J]. Remote Sensing of Environment, 2020, 251: 112061. doi: 10.1016/j.rse.2020.112061
|
[19] |
Hijmans R J, Bivand R, Forner K, et al. Terra: spatial data analysis. R package version 1.6-7[Z/OL]. [2022−07−21]. https://CRAN.R-project.org/package=terra.
|
[20] |
R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, 2022, Vienna, Austria[Z/OL]. [2022−07−21]. https://www.R-project.org/.
|
[21] |
Gough C M, Atkins J W, Fahey R T, et al. High rates of primary production in structurally complex forests[J]. Ecology, 2019, 100(10): e02864.
|
[22] |
Ali A. Forest stand structure and functioning: current knowledge and future challenges[J]. Ecological Indicators, 2019, 98: 665−677. doi: 10.1016/j.ecolind.2018.11.017
|
[23] |
王晓莉, 常禹, 陈宏伟, 等. 黑龙江省大兴安岭森林生物量空间格局及其影响因素[J]. 应用生态学报, 2014, 25(4): 974−982. doi: 10.13287/j.1001-9332.2014.0082
Wang X L, Chang Y, Chen H W, et al. Spatial pattern of forest biomass and its influencing factors in the Great Xing’an Mountains, Heilongjiang Province, China[J]. Chinese Journal of Applied Ecology, 2014, 25(4): 974−982. doi: 10.13287/j.1001-9332.2014.0082
|
[24] |
Lin D, Lai J, Yang B, et al. Forest biomass recovery after different anthropogenic disturbances: relative importance of changes in stand structure and wood density[J]. European Journal of Forest Research, 2015, 134: 769−780. doi: 10.1007/s10342-015-0888-9
|
[25] |
余建平, 伊晓霞, 余顺海, 等. 基于景观格局指数的钱江源国家公园生态系统完整性评价分析[J]. 浙江林业科技, 2020, 40(4): 30−36. doi: 10.3969/j.issn.1001-3776.2020.04.005
Yu J P, Yi X X, Yu S H, et al. Analysis on ecological integrity of Qianjiangyuan National Park based on landscape pattern index[J]. Zhejiang Forest Science and Technology, 2020, 40(4): 30−36. doi: 10.3969/j.issn.1001-3776.2020.04.005
|