• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Mi Xiangcheng, Yu Jianping, Wang Ningning, Jia Wen, Ren Haibao, Chen Lei, Pang Yong, Ma Keping. Utilizing LiDAR technology to estimate forest aboveground biomass in Qianjiangyuan National Park, Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2022, 44(10): 77-84. DOI: 10.12171/j.1000-1522.20220383
Citation: Mi Xiangcheng, Yu Jianping, Wang Ningning, Jia Wen, Ren Haibao, Chen Lei, Pang Yong, Ma Keping. Utilizing LiDAR technology to estimate forest aboveground biomass in Qianjiangyuan National Park, Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2022, 44(10): 77-84. DOI: 10.12171/j.1000-1522.20220383

Utilizing LiDAR technology to estimate forest aboveground biomass in Qianjiangyuan National Park, Jiangxi Province of eastern China

More Information
  • Received Date: September 17, 2022
  • Revised Date: October 11, 2022
  • Available Online: October 13, 2022
  • Published Date: October 24, 2022
  •   Objective  Utilizing technologies of airborne lidar together with ground survey, we modelled and predicted aboveground biomass of subtropical forests in Qianjiangyuan National Park, Jiangxi Province of eastern China to provide basis for assessing conservation effectiveness and quality of animal habitats in national parks.
      Method  We used canopy structural indices to quantify canopy structural variation and maximal height of subtropical forests, then modelled forest aboveground biomass with canopy structural indices and topographic variables.
      Result  Mean canopy height, vertical complexity and maximal height were closely correlated with aboveground biomass. Aboveground biomass was mainly between 27.24−210.31 Mg/ha (quantile 0.05−0.95), mean value was 111.21 Mg/ha, and total aboveground biomass was2.57 × 106 Mg.
      Conclusion  The forest aboveground biomass is well modelled and predicted using canopy structural indices and topographic variables. Large area of zonal evergreen broadleaved forests is distributed in the national park with complex canopy structure and high aboveground biomass, while large area plantation and secondary forests are also distributed in two new parts of the national park with simple canopy structure and low aboveground biomass.
  • [1]
    Lohbeck M, Poorter L, Martínez-Ramos M, et al. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession[J]. Ecology, 2015, 96(5): 1242−1252. doi: 10.1890/14-0472.1
    [2]
    Poorter L, Bongers F, Aide T M, et al. Biomass resilience of Neotropical secondary forests[J]. Nature, 2016, 530: 211−214. doi: 10.1038/nature16512
    [3]
    马克平. 国家公园首先是自然保护基地[J]. 生物多样性, 2014, 22(4): 415−417.

    Ma K P. Nature conservation is the first priority for a national park[J]. Biodiversity Science, 2014, 22(4): 415−417.
    [4]
    Coops N C, Tompalski P, Goodbody T R H, et al. Modelling lidar-derived estimates of forest attributes over space and time: a review of approaches and future trends[J]. Remote Sensing of Environment, 2021, 260: 112477. doi: 10.1016/j.rse.2021.112477
    [5]
    Pandit S, Tsuyuki S, Dube T. Estimating above-ground biomass in sub-tropical buffer zone community forests, nepal, using sentinel 2 data[J]. Remote Sensing, 2018, 10(4): 601. doi: 10.3390/rs10040601
    [6]
    周俊宏, 王子芝, 廖声熙, 等. 基于GF-1影像的普达措国家公园森林地上生物量遥感估算[J]. 农业工程学报, 2021, 37(4): 216−223. doi: 10.11975/j.issn.1002-6819.2021.4.026

    Zhou J H, Wang Z Z, Liao S X, et al. Remote sensing estimation of forest aboveground biomass in Potatso National Park using GF-1 images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(4): 216−223. doi: 10.11975/j.issn.1002-6819.2021.4.026
    [7]
    Rodríguez-Veiga P, Wheeler J, Louis V, et al. Quantifying forest biomass carbon stocks from space[J]. Current Forestry Reports, 2017, 3(1): 1−18. doi: 10.1007/s40725-017-0052-5
    [8]
    Jucker T, Caspersen J, Chave J, et al. Allometric equations for integrating remote sensing imagery into forest monitoring programmes[J]. Global Change Biology, 2017, 23(1): 177−190. doi: 10.1111/gcb.13388
    [9]
    Fischer R, Knapp N, Bohn F, et al. The relevance of forest structure for biomass and productivity in temperate forests: new perspectives for remote sensing[J]. Surveys in Geophysics, 2019, 40(4): 709−734. doi: 10.1007/s10712-019-09519-x
    [10]
    Coomes D A, Dalponte M, Jucker T, et al. Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data[J]. Remote Sensing of Environment, 2017, 194: 77−88. doi: 10.1016/j.rse.2017.03.017
    [11]
    于明坚, 胡正华, 余建平, 等. 浙江古田山自然保护区森林植被类型[J]. 浙江大学学报(农业与生命科学版), 2001, 27(4): 23−28.

    Yu M J, Hu Z H, Yu J P, et al. Forest vegetation types in Gutianshan Natural Reserve in Zhejiang[J]. Journal of Zhejiang University (Agriculture & Life Science), 2001, 27(4): 23−28.
    [12]
    张田田, 王璇, 任海保, 等. 浙江古田山次生与老龄常绿阔叶林群落特征的比较[J]. 生物多样性, 2019, 27(10): 1069−1080. doi: 10.17520/biods.2019059

    Zhang T T, Wang X, Ren H B, et al. A comparative study on the community characteristics of secondary and old-growth evergreen broad-leaved forests in Gutianshan, Zhejiang Province[J]. Biodiversity Science, 2019, 27(10): 1069−1080. doi: 10.17520/biods.2019059
    [13]
    Guo Q, Su Y, Hu T, et al. An integrated UAV-borne lidar system for 3D habitat mapping in three forest ecosystems across China[J]. International Journal of Remote Sensing, 2017, 38(8−10): 2954−2972.
    [14]
    Harms K E, Condit R, Hubbell S P, et al. Habitat associations of trees and shrubs in a 50-ha neotropical forest plot[J]. Journal of Ecology, 2001, 89: 947−959. doi: 10.1111/j.1365-2745.2001.00615.x
    [15]
    Yamakura T, Kanzaki A, Itoh T, et al. Topography of a large-scale research plot established within a tropical rain forest at Lambir, Sarawak[J]. Tropics, 1995, 5: 41−56. doi: 10.3759/tropics.5.41
    [16]
    Getzin S, Wiegand K, Schöning I. Assessing biodiversity in forests using very high-resolution images and unmanned aerial vehicles[J]. Methods in Ecology and Evolution, 2012, 3(2): 397−404. doi: 10.1111/j.2041-210X.2011.00158.x
    [17]
    Knapp N, Fischer R, Cazcarra-Bes V, et al. Structure metrics to generalize biomass estimation from lidar across forest types from different continents[J]. Remote Sensing of Environment, 2020, 237: 111597. doi: 10.1016/j.rse.2019.111597
    [18]
    Roussel J R, Auty D, Coops N C, et al. LidR: an R package for analysis of Airborne Laser Scanning (ALS) data[J]. Remote Sensing of Environment, 2020, 251: 112061. doi: 10.1016/j.rse.2020.112061
    [19]
    Hijmans R J, Bivand R, Forner K, et al. Terra: spatial data analysis. R package version 1.6-7[Z/OL]. [2022−07−21]. https://CRAN.R-project.org/package=terra.
    [20]
    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, 2022, Vienna, Austria[Z/OL]. [2022−07−21]. https://www.R-project.org/.
    [21]
    Gough C M, Atkins J W, Fahey R T, et al. High rates of primary production in structurally complex forests[J]. Ecology, 2019, 100(10): e02864.
    [22]
    Ali A. Forest stand structure and functioning: current knowledge and future challenges[J]. Ecological Indicators, 2019, 98: 665−677. doi: 10.1016/j.ecolind.2018.11.017
    [23]
    王晓莉, 常禹, 陈宏伟, 等. 黑龙江省大兴安岭森林生物量空间格局及其影响因素[J]. 应用生态学报, 2014, 25(4): 974−982. doi: 10.13287/j.1001-9332.2014.0082

    Wang X L, Chang Y, Chen H W, et al. Spatial pattern of forest biomass and its influencing factors in the Great Xing’an Mountains, Heilongjiang Province, China[J]. Chinese Journal of Applied Ecology, 2014, 25(4): 974−982. doi: 10.13287/j.1001-9332.2014.0082
    [24]
    Lin D, Lai J, Yang B, et al. Forest biomass recovery after different anthropogenic disturbances: relative importance of changes in stand structure and wood density[J]. European Journal of Forest Research, 2015, 134: 769−780. doi: 10.1007/s10342-015-0888-9
    [25]
    余建平, 伊晓霞, 余顺海, 等. 基于景观格局指数的钱江源国家公园生态系统完整性评价分析[J]. 浙江林业科技, 2020, 40(4): 30−36. doi: 10.3969/j.issn.1001-3776.2020.04.005

    Yu J P, Yi X X, Yu S H, et al. Analysis on ecological integrity of Qianjiangyuan National Park based on landscape pattern index[J]. Zhejiang Forest Science and Technology, 2020, 40(4): 30−36. doi: 10.3969/j.issn.1001-3776.2020.04.005
  • Related Articles

    [1]Cui Tingting, Zhu Liying, Zhang Litian, Ye Yongxiang, Lin Qinlan, Yan Minlong. Analysis of spatial vitality characteristics and influencing factors of Wuyi Mountain National Park from online and offline perspectives[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240278
    [2]Yu Xiao, Ouyang Xunzhi, Pan Ping, Deng Wenping, Peng Songli, Zang Hao, Hu Rongrong. Spatial structure characteristics and its evaluation of evergreen broadleaved forest at different growth stages in Lushan Mountain, Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2022, 44(12): 32-40. DOI: 10.12171/j.1000-1522.20210450
    [3]Sun Qiaoyun, Bao Menghan, Huang Hanwen, Zhang Yujun. Boundary delimitation of the proposed Songnen Plain National Park of northeastern China[J]. Journal of Beijing Forestry University, 2022, 44(1): 103-112. DOI: 10.12171/j.1000-1522.20210418
    [4]Tang Weilu, Jin Kun. Preliminary study on night lodging habitat selection of Nomascus hainanus in Hainan Tropical Rainforest National Park, southern China[J]. Journal of Beijing Forestry University, 2021, 43(2): 113-126. DOI: 10.12171/j.1000-1522.20200185
    [5]YU Jia-lin, ZHANG Wei-guo, TIAN Kun, SONG Wei-hong, LI Qiu-ping, YANG Rong, ZHANG Yun. Response of radial growth of three conifer trees to climate change at their upper distribution limits in Potatso National Park, Shangri-La, southwestern China[J]. Journal of Beijing Forestry University, 2017, 39(1): 43-51. DOI: 10.13332/j.1000-1522.20160184
    [6]ZHAO Wen-xia, ZOU Bin, ZHENG Jing-ming, LUO Jiu-fu. Correlations between leaf, stem and root functional traits of common tree species in an evergreen broad-leaved forest[J]. Journal of Beijing Forestry University, 2016, 38(6): 35-41. DOI: 10.13332/j.1000-1522.20160087
    [7]WANG Yong, QIAO Yong, SUN Xiang-yang. Soil taxonomy in Jiufeng National Forest Park, Beijing[J]. Journal of Beijing Forestry University, 2010, 32(3): 217-220.
    [8]CUI Li-juan, ZHANG Man-yin, LI Wei, WANG Yi-fei, SHANG Xiao-jing.. Management and assessment of national wetland parks.[J]. Journal of Beijing Forestry University, 2009, 31(5): 102-107.
    [9]SHI Qiang, HE Qing-tang. The best tourism environmental capacity of Zhangjiajie National Forest Park, southern China[J]. Journal of Beijing Forestry University, 2007, 29(4): 143-147. DOI: 10.13332/j.1000-1522.2007.04.029
    [10]WANG Qing-kui, WANG Si-long, FENG Zong-wei. Comparison of active soil organic carbon pool between Chinese fir plantations and evergreen broadleaved forests[J]. Journal of Beijing Forestry University, 2006, 28(5): 1-6.
  • Cited by

    Periodical cited type(8)

    1. 龙丹,吴逸卿,周伟龙,朱子安,周文婕,仲磊,沈国春,刘金亮,于明坚. 百山祖国家公园与邻近地区常绿阔叶林群落特征比较. 浙江农林大学学报. 2025(01): 12-22 .
    2. 王果,王成,王宏涛,张成龙,吴博文. 利用手持激光点云的矿区自然林树干提取. 激光与红外. 2024(01): 57-62 .
    3. 王宁宁,米湘成,童光蓉,任海保,王巍伟,马克平,陈磊. 2018年浙江古田山24公顷亚热带常绿阔叶林动态监测样地林冠结构与地形数据集. 中国科学数据(中英文网络版). 2024(01): 190-201 .
    4. 蒋文娟,刘经天,邵开丽. 激光雷达融合机器视觉的物流分拣多目标视频跟踪. 激光杂志. 2024(06): 221-226 .
    5. 任承芳,和正华,赵冬莲,叶江霞. 遥感与GIS在我国国家公园建设与保护研究中的应用及展望. 世界林业研究. 2024(04): 72-77 .
    6. 黄静,孙新旺. 南京紫金山国家森林公园景观美景度评价及影响因素分析. 中南林业科技大学学报. 2024(11): 146-154 .
    7. 王鹏,黄晗雯,周雪,陈树新,徐珊珊,李乐. 国家公园体制试点区景观格局特征演变与驱动机制. 中国城市林业. 2023(06): 72-80 .
    8. 徐学红,王巍伟,米湘成,陈磊,马克平. 中国森林生物多样性监测网络(CForBio):二十年进展与展望. 生物多样性. 2023(12): 132-146 .

    Other cited types(7)

Catalog

    Article views (755) PDF downloads (161) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return