• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Zijian, Ye Meixia, Zhang Han, Wu Rongling. Mixed-effect model development for functional mapping[J]. Journal of Beijing Forestry University, 2024, 46(5): 163-172. DOI: 10.12171/j.1000-1522.20220416
Citation: Wang Zijian, Ye Meixia, Zhang Han, Wu Rongling. Mixed-effect model development for functional mapping[J]. Journal of Beijing Forestry University, 2024, 46(5): 163-172. DOI: 10.12171/j.1000-1522.20220416

Mixed-effect model development for functional mapping

More Information
  • Received Date: October 16, 2022
  • Revised Date: February 15, 2023
  • Available Online: April 21, 2024
  • Objective 

    Using the abundance of Escherichia coli strains and functional mapping model as the research foundation, this study explored the impact of mixed effects on the performance of functional mapping model by introducing fixed effects of the population and random effects caused by kinship relationship among individuals into the functional mapping model.

    Method 

    Based on the framework of functional mapping, this study employed the growth data from dynamic cultures of Escherichia coli as a practical case. Subgroups and SNP genotypes were considered as sources of fixed effects, and these fixed effect factors were integrated into the mapping model, leading to the extension of Q-matrix model. While maintaining the use of variance-covariance model for modeling random residuals, the Legendre model was employed to model random effects. A mixed-effect model analysis combining fixed effects with general random effects (model 1) was conducted. Additionally, the restricted maximum likelihood estimation method was utilized to derive variance-covariance parameters, random effects, and fixed effects, enabling the analysis of a mixed model combining fixed effects with random effects arising from kinship relationships (model 2). Finally, the Zwald test method was utilized to derive the calculation method for p-values at each marker locus.

    Result 

    (1) In both models, 95% of the markers exhibited p-values that were consistent with the expected values, resulting in satisfactory upward curvature in the QQ plot. (2) Compared with model 1, model 2 detected a greater number of SNP loci, indicating that model 2 provided a stronger explanation for the random effects caused by kinship relationship. (3) Computer simulation results revealed that when the sample size was small and the heritability was low, the false-positive rate of the model was 4.77%. However, when the sample size reached 800 and the heritability was 1%, the discovery rate of quantitative trait loci (QTL) by the model can exceed 70%. Alternatively, when the sample size was 400 and the heritability exceeded 1.5%, the QTL discovery rate can also exceed 70%.

    Conclusion 

    The mixed model approach proposed in this study, which introduces fixed effects and random effects caused by kinship relationship into the functional mapping model, effectively improves the theory of functional localization. This approach exhibits excellent calibration capabilities for covariate factors in fixed effects and can effectively dissect random effects from remaining residuals. This lays a solid foundation for subsequent improvements in functional localization and the development of software packages for the fixed effects plus kinship (Q + K) model.

  • [1]
    Das K, Li J, Fu G, et al. Dynamic semiparametric Bayesian models for genetic mapping of complex trait with irregular longitudinal data[J]. Statistics in Medicine, 2013, 32(3): 509−523. doi: 10.1002/sim.5535
    [2]
    Sun L D, Wu R L. Mapping complex traits as a dynamic system[J]. Physics of Life Reviews, 2015, 13: 155−185. doi: 10.1016/j.plrev.2015.02.007
    [3]
    Ma C X, Casella G, Wu R. Functional mapping of quantitative trait loci underlying the character process: a theoretical framework[J]. Genetics, 2002, 161(4): 1751−1762. doi: 10.1093/genetics/161.4.1751
    [4]
    甘静雯. 基于随机微分方程的复杂性状功能作图模型构建[D]. 北京: 北京林业大学, 2021.

    Gan J W. Construction of functional mapping model for complex traits based on stochastic differential equations[D]. Beijing: Beijing Forestry University, 2021.
    [5]
    Lou X, Yang M, Wu R L, et al. A general statistical framework for unifying interval and linkage disequilibrium mapping: towards highresolution mapping of quantitative traits[J]. Journal of the American Statistical Association, 2005, 100: 158−171.
    [6]
    Wu R L, Ma C X, Lin M, et al. A general framework for analyzing the genetic architecture of developmental characteristics[J]. Genetics, 2004, 166(3): 1541−1551. doi: 10.1534/genetics.166.3.1541
    [7]
    Wu R L, Lin M. Functional mapping: how to map and study the genetic architecture of dynamic complex traits[J]. Nature Reviews Genetics, 2006, 7(3): 229−237. doi: 10.1038/nrg1804
    [8]
    Chitwood D H, Topp C N. Revealing plant cryptotypes: defining meaningful phenotypes among infinite traits[J]. Current Opinion in Plant Biology, 2015, 24: 54−60. doi: 10.1016/j.pbi.2015.01.009
    [9]
    Li Z, Sillanpaa M J. Dynamic quantitative trait locus analysis of plant phenomic data[J]. Trends in Plant Science, 2015, 20(12): 822−833. doi: 10.1016/j.tplants.2015.08.012
    [10]
    Ye M X, Jiang L B, Mao K, et al. Functional mapping of seasonal transition in perennial plants[J]. Briefings in Bioinformatics, 2015, 16(3): 526−535. doi: 10.1093/bib/bbu025
    [11]
    Zhao W, Hou W, Littell R C, et al. Structured antedependence models for functional mapping of multiple longitudinal traits[J]. Statistical Applications in Genetics and Molecular Biology, 2005, 4: e33.
    [12]
    Wu R L, Ma C X, Littell R C, et al. A logistic mixture model for characterizing genetic determinants causing differentiation in growth trajectories[J]. Genetics Resesearch, 2002, 79(3): 235−245. doi: 10.1017/S0016672302005633
    [13]
    Hou W, Li H, Zhang B, et al. A nonlinear mixed-effect mixture model for functional mapping of dynamic traits[J]. Heredity (Edinb), 2008, 101(4): 321−328. doi: 10.1038/hdy.2008.53
    [14]
    Zhu H, Lee S. Analysis of generalized linear mixed models via a stochastic approximation algorithm with Markov chain Monte-Carlo method[J]. Statistics and Computing, 2002, 12(2): 175−183.
    [15]
    Stoica P, Moses R, Friedlander B, et al. Maximum likelihood estimation of the parameters of multiple sinusoids from noisy measurements[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(3): 379−392.
    [16]
    Yu J, Pressoir G, Briggs W H, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness[J]. Nature Genetics, 2006, 38(2): 203−208. doi: 10.1038/ng1702
    [17]
    Meyer K. WOMBAT: a tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML)[J]. Journal of Zhejiang University-Science B, 2007, 8(11): 815−821. doi: 10.1631/jzus.2007.B0815
    [18]
    Hauck W W, Donner A. Corrigenda: “Wald’s test as applied to hypotheses in logit analysis”[J]. Journal of the American Statistical Association, 1980(370): 482.
    [19]
    Marchelan F, Osilenker B P. Estimates for Legendre-Sobolev polynomials that are orthogonal with respect to the scalar product[J]. Journal of Inequalities and Applications, 1997(6): 871−880.
    [20]
    Zhao W, Chen Y Q, Casella G, et al. A non-stationary model for functional mapping of complex traits[J]. Bioinformatics, 2005, 21(10): 2469−2477. doi: 10.1093/bioinformatics/bti382
    [21]
    Nelder J A, Mead R. A simplex method for function minimization[J]. Computer Science, 1965, 7: 308−313.
    [22]
    Lindstrom M J, Bates D M. Correction to: “Newton-Raphson and EM algorithms for linear mixed-effects models for repeated measures-data”[J]. Journal of the American Statistical Association, 1994(428): 1572.
    [23]
    Laird N M, Ware J H. Random-effects models for longitudinal data[J]. Biometrics, 1982, 38(4): 963−974. doi: 10.2307/2529876
    [24]
    Vanraden P M. Efficient methods to compute genomic predictions[J]. Journal of Dairy Science, 2008, 91(11): 4414−4423. doi: 10.3168/jds.2007-0980
    [25]
    Yang D, Jin Y, He X, et al. Inferring multilayer interactome networks shaping phenotypic plasticity and evolution[J]. Nature Communications, 2021, 12(1): 5304. doi: 10.1038/s41467-021-25086-5
    [26]
    Jiang L, He X, Jin Y, et al. A mapping framework of competition-cooperation QTLs that drive community dynamics[J]. Nature Communications, 2018, 9(1): 3010. doi: 10.1038/s41467-018-05416-w
    [27]
    Raj A, Stephens M, Pritchard J K. fastSTRUCTURE: variational inference of population structure in large SNP data sets[J]. Genetics, 2014, 197(2): 573−589. doi: 10.1534/genetics.114.164350
    [28]
    Jiang L, Clavijo J A, Sun L, et al. Plastic expression of heterochrony quantitative trait loci (hQTLs) for leaf growth in the common bean (Phaseolus vulgaris)[J]. New Phytologist, 2015, 207(3): 872−882. doi: 10.1111/nph.13386
    [29]
    Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps[J]. Genetics, 1989, 121(1): 185−199. doi: 10.1093/genetics/121.1.185
    [30]
    Kang H M, Zaitlen N A, Wade C M, et al. Efficient control of population structure in model organism association mapping[J]. Genetics, 2008, 178(3): 1709−1723. doi: 10.1534/genetics.107.080101
    [31]
    Zhang Z, Ersoz E, Lai C Q, et al. Mixed linear model approach adapted for genome-wide association studies[J]. Nature Genetics, 2010, 42(4): 355−360. doi: 10.1038/ng.546
    [32]
    Lippert C, Listgarten J, Liu Y, et al. Fast linear mixed models for genome-wide association studies[J]. Nature Methods, 2011, 8(10): 833−835. doi: 10.1038/nmeth.1681
    [33]
    Ning C, Wang D, Zhou L, et al. Efficient multivariate analysis algorithms for longitudinal genome-wide association studies[J]. Bioinformatics, 2019, 35(23): 4879−4885. doi: 10.1093/bioinformatics/btz304
  • Related Articles

    [1]Li Yuting, Ma Aiyun, Miao Zheng, Hao Yuanshuo, Dong Lihu. Effects of neighborhood competition on biomass and distribution of Larix olgensis[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20230322
    [2]Zhao Qingxia, Xia Yufang. Effects of mowing modes on biomass, crude protein and crude fat contents of Broussonetia papyrifera in karst area[J]. Journal of Beijing Forestry University, 2023, 45(6): 62-68. DOI: 10.12171/j.1000-1522.20210425
    [3]Song Runxian, Li Xiang, Mao Xiuhong, Wang Li, Chen Xiangli, Yao Junxiu, Zhao Xiyang, Li Shanwen. Transcriptome analysis of clone Populus deltoides ‘Zhonghe 1’ under cadmium stress[J]. Journal of Beijing Forestry University, 2021, 43(7): 12-21. DOI: 10.12171/j.1000-1522.20210037
    [4]Yao Junxiu, Chen Ganniu, Li Shanwen, Qiao Yanhui, Zhong Weiguo, Li Qinghua, Dong Yufeng, Wu Dejun. Physiological and biochemical properties and growth of Aigeiros clones under cadmium stress[J]. Journal of Beijing Forestry University, 2020, 42(4): 12-20. DOI: 10.12171/j.1000-1522.20190462
    [5]Xing Lei, Xue Hai-xia, Li Qing-he, Gao Ting-ting. Scaling from leaf to whole plant in biomass and nitrogen content of Nitraria tangutorum seedlings[J]. Journal of Beijing Forestry University, 2018, 40(2): 76-81. DOI: 10.13332/j.1000-1522.20170338
    [6]LIU Kun, CAO Lin, WANG Gui-bin, CAO Fu-liang. Biomass allocation patterns and allometric models of Ginkgo biloba[J]. Journal of Beijing Forestry University, 2017, 39(4): 12-20. DOI: 10.13332/j.1000-1522.20160374
    [7]DONG Dian, LIN Tian-xi, TANG Jing-yi, LIU Jing-chen, SUN Guo-wen, YAO Jie, CHENG Yan-xia. Biomass allocation patterns and allometric models of Tilia amurensis[J]. Journal of Beijing Forestry University, 2014, 36(4): 54-63. DOI: 10.13332/j.cnki.jbfu.2014.04.013
    [8]ZHAO Xi-yang, WANG Jun-hui, ZHANG Jin-feng, ZHANG Shou-gong, ZHANG Zeng-shun, MA Jian-wei, YUN Hui-ling, LI Kui-you. Variation analysis on chlorophyll fluorescence and growth traits of Catalpa bungei clones[J]. Journal of Beijing Forestry University, 2012, 34(3): 41-47.
    [9]DUAN Wen-xia, ZHU Bo, LIU Rui, CHEN Shi, ZHOU Yu-ping, CHEN Fang. Biomass and soil carbon dynamics in Cryptomeria fortunei plantations[J]. Journal of Beijing Forestry University, 2007, 29(2): 55-59.
    [10]CHENG Tang-ren, MA Qin-yan, FENG Zhong-ke, LUO Xu. Research on forest biomass in Xiaolong Mountains, Gansu Province[J]. Journal of Beijing Forestry University, 2007, 29(1): 31-36. DOI: 10.13332/j.1000-1522.2007.01.006
  • Cited by

    Periodical cited type(10)

    1. 苏芝凤,黄德周,朱芷仪,陈荣枢,代廷皓,梁建宏,朱婧. 亚热带森林不同土壤类型团聚体酶活性及化学计量特征的差异. 环境科学. 2025(03): 1716-1728 .
    2. 陈荣枢,王汝儒,孙佳豪,黄玲,杨思娴,蒲纪龙,黄慧敏,朱婧. 漓江流域海拔、土壤及植被对土壤养分和酶化学计量比的影响. 广西植物. 2023(02): 242-252 .
    3. 王吕,马庆兵,姜华,寸兴刚,段新慧,何承刚. 云南寻甸县湿地草甸植被、土壤因子和微生物的特征. 草业科学. 2023(07): 1754-1765 .
    4. 郑武扬,王艳霞,王月江,冯刚刚. 石漠化治理区不同优势树种根际土壤酶活性与土壤理化性质和微生物数量的关系. 东北林业大学学报. 2021(01): 96-100 .
    5. 张艳,王冬梅. 北方土石山区不同植被恢复模式土壤酶活性研究. 农业研究与应用. 2021(01): 42-46 .
    6. 涂志华,周凌峰,黄艳萍,陈夙怡,陈金辉,李胜男. 海南岛黎母山国家自然保护区热带云雾林土壤酶活性的根际效应. 水土保持通报. 2021(03): 1-7 .
    7. Zhouzhou Fan,Shuyu Lu,Shuang Liu,Zhaorong Li,Jiaxin Hong,Jinxing Zhou,Xiawei Peng. The effects of vegetation restoration strategies and seasons on soil enzyme activities in the Karst landscapes of Yunnan, southwest China. Journal of Forestry Research. 2020(05): 1949-1957 .
    8. 郑武扬,王艳霞,王月江,冯刚刚. 喀斯特石漠化区不同植被治理模式对土壤质量的影响. 西部林业科学. 2020(04): 41-47 .
    9. 李永双,范周周,国辉,周金星,彭霞薇. 菌剂添加对不同树种根际土壤微生物及碳酸钙溶蚀的影响. 中国岩溶. 2020(06): 854-862 .
    10. 魏安琪,魏天兴,刘海燕,王莎. 黄土区刺槐和油松人工林土壤微生物PLFA分析. 北京林业大学学报. 2019(04): 88-98 . 本站查看

    Other cited types(12)

Catalog

    Article views (371) PDF downloads (34) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return