Citation: | Wang Chunling, Fan Yilin, Pang Yong, Jia Wen. Extraction of deciduous coniferous forest based on Google earth engine (GEE) and Sentinel-2 image[J]. Journal of Beijing Forestry University, 2023, 45(8): 1-15. DOI: 10.12171/j.1000-1522.20220422 |
[1] |
周以良. 中国的几种植被类型(Ⅵ)落叶针叶林[J]. 生物学通报, 1988(5): 6−10.
Zhou Y L. Several types of vegetation in China (Ⅵ) deciduous coniferous forest[J]. Bulletin of Biology, 1988(5): 6−10.
|
[2] |
刘旭升, 张晓丽. 森林植被遥感分类研究进展与对策[J]. 林业资源管理, 2004(1): 61−64.
Liu X S, Zhang X L. Research advances and counter measures of remote sensing classification of forest vegetation[J]. Forest Resources Management, 2004(1): 61−64.
|
[3] |
Teluguntla P, Thenkabail P S, Oliphant A, et al. A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144: 325−340. doi: 10.1016/j.isprsjprs.2018.07.017
|
[4] |
Gorelick N, Hancher M, Dixon M, et al. Google Earth Engine: planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment, 2017, 202: 18−27. doi: 10.1016/j.rse.2017.06.031
|
[5] |
李斌, 李崇贵, 李煜. 基于Sentinel-2数据的塞罕坝机械林场落叶松人工林提取[J]. 林业资源管理, 2021(2): 117−123.
Li B, Li C G, Li Y. Research on larch extraction in Saihanba Mechanical Forest Farm based on Sentinel-2 data[J]. Forest Resources Management, 2021(2): 117−123.
|
[6] |
Immitzer M, Vuolo F, Atzberger C. First experience with Sentinel-2 data for crop and tree species classifications in central Europe[J/OL]. Remote Sensing, 2016, 8(3): 166[2023−01−22]. https://doi.org/10.3390/rs8030166.
|
[7] |
Persson M, Lindberg E, Reese H. Tree species classification with multi-temporal Sentinel-2 data[J/OL]. Remote Sensing, 2018, 10(11): 1794[2023−01−02]. https://doi.org/10.3390/rs10111794.
|
[8] |
姚茂林, 江洪, 张丽玉. 基于Sentinel-2影像红边光谱指数与特征优选的竹林提取研究[J]. 海南大学学报(自然科学版), 2022, 40(4): 373−381.
Yao M L, Jiang H, Zhang L Y. Bamboo information extraction from Sentinel-2 image based on improved spectral indices and random forest Gini index[J]. Natural Science Journal of Hainan University, 2022, 40(4): 373−381.
|
[9] |
Immitzer M, Neuwirth M, Böck S, et al. Optimal input features for tree species classification in central Europe based on multi-temporal Sentinel-2 data[J/OL]. Remote Sensing, 2019, 11(22): 2599[2023−01−02]. https://doi.org/10.3390/rs11222599.
|
[10] |
Grabska E, Frantz D, Ostapowicz K. Evaluation of machine learning algorithms for forest stand species mapping using Sentinel-2 imagery and environmental data in the Polish Carpathians[J/OL]. Remote Sensing of Environment, 2020, 251: 112103[2023−01−23]. https://doi.org/10.1016/j.rse.2020.112103.
|
[11] |
郑杨, 董利虎, 李凤日. 黑龙江省红松人工林枝条分布数量模拟[J]. 应用生态学报, 2016, 27(7): 2172−2180.
Zheng Y, Dong L H, Li F R. Branch quantity distribution simulation for Pinus koraiensis plantation in Heilongjiang Province, China[J]. Chinese Journal of Applied Ecology, 2016, 27(7): 2172−2180.
|
[12] |
Shoko C, Mutanga O. Examining the strength of the newly-launched Sentinel 2 MSI sensor in detecting and discriminating subtle differences between C3 and C4 grass species[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 129: 32−40. doi: 10.1016/j.isprsjprs.2017.04.016
|
[13] |
吴炳方, 苑全治, 颜长珍, 等. 21世纪前十年的中国土地覆盖变化[J]. 第四纪研究, 2014, 34(4): 723−731.
Wu B F, Yuan Q Z, Yan C Z, et al. Land cover changes of China from 2000 to 2010[J]. Quaternary Sciences, 2014, 34(4): 723−731.
|
[14] |
吴炳方. 中华人民共和国土地覆被地图集(1∶1 000 000)[M]. 北京: 中国地图出版社, 2017.
Wu B F. Land cover atlas of the People’s Republic of China (1∶1 000 000)[M]. Beijing: China Cartographic Publishing House, 2017.
|
[15] |
Zhang X, Liu L, Chen X, et al. Fine land-cover mapping in China using Landsat datacube and an operational SPECLib-based approach[J/OL]. Remote Sensing, 2019, 11(9): 1056[2023−01−02]. https://doi.org/10.3390/rs11091056.
|
[16] |
Zhang X, Liu L, Chen X, et al. GLC_FCS30: Global Land-Cover product with fine classification system at 30m using time-series Landsat imagery[J]. Earth System Science Data, 2021, 13(6): 2753−2776. doi: 10.5194/essd-13-2753-2021
|
[17] |
庞勇, 蒙诗栎, 史锴源, 等. 中国天然林保护工程区森林覆盖遥感监测[J]. 生态学报, 2021, 41(13): 5080−5092.
Pang Y, Meng S L, Shi K Y, et al. Forest coverage monitoring in the Natural Forest Protection Project area of China[J]. Acta Ecologica Sinica, 2021, 41(13): 5080−5092.
|
[18] |
Pang Y, Li Z, Ju H, et al. LiCHy: the CAF’s LiDAR, CCD and hyperspectral integrated airborne observation system[J/OL]. Remote Sensing, 2016, 8(5): 398[2023−01−02]. https://doi.org/10.3390/rs8050398.
|
[19] |
池毓锋, 赖日文, 余莉莉, 等. 基于Landsat 8 OLI数据的树种类型分布提取[J]. 自然资源学报, 2017, 32(7): 1193−1203.
Chi Y F, Lai R W, Yu L L, et al. Extracting tree species distribution with Landsat 8 OLI data[J]. Journal of Natural Resources, 2017, 32(7): 1193−1203.
|
[20] |
Tucker C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment, 1979, 8(2): 127−150. doi: 10.1016/0034-4257(79)90013-0
|
[21] |
Huete A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment, 1988, 25(3): 295−309. doi: 10.1016/0034-4257(88)90106-X
|
[22] |
董灵波, 梁凯富, 张一帆,等. 基于Landsat 8时间序列数据的翠岗林场森林类型划分[J]. 应用生态学报, 2022, 33(9): 2339−2346.
Dong L B, Liang K F, Zhang Y F, et al. Classification of forest types in Cuigang Forest Farm based on time series data of Landsat 8[J]. Chinese Journal of Applied Ecology, 2022, 33(9): 2339−2346.
|
[23] |
尹芬, 丁美青. 运用 ENVI 实现 SPOT-5 卫星影像的 RVI 提取[J]. 测绘与空间地理信息, 2016, 39(1): 47−48.
Yin F, Ding M Q. RVI extraction of SPOT-5 satellite images using ENVI[J]. Geomatics & Spatial Information Technology, 2016, 39(1): 47−48.
|
[24] |
周晓双. 基于高光谱的稻麦叶面积指数监测研究[D]. 南京: 南京农业大学, 2015.
Zhou X S. Monitoring leaf area index in rice and wheat with hyperspectral remote sensing[D]. Nanjing: Nanjing Agricultural University, 2015.
|
[25] |
李智峰, 朱谷昌, 董泰锋. 基于灰度共生矩阵的图像纹理特征地物分类应用[J]. 地质与勘探, 2011, 47(3): 456−461.
Li Z F, Zhu G C, Dong T F. Application of GLCM-based texture features to remote sensing image classification[J]. Geology and Exploration, 2011, 47(3): 456−461.
|
[26] |
Huang D, Xu S, Sun J, et al. Accuracy assessment model for classification result of remote sensing image based on spatial sampling[J/OL]. Journal of Applied Remote Sensing, 2017, 11(4): 046023[2023−01−02]. https://doi.org/10.1117/1.JRS.11.046023.
|
[27] |
Qu L, Chen Z, Li M, et al. Accuracy improvements to pixel-based and object-based lulc classification with auxiliary datasets from Google earth engine[J/OL]. Remote Sensing, 2021, 13(3): 453[2023−01−02]. https://doi.org/10.3390/rs13030453.
|
[28] |
Hill R A, Wilson A K, George M, et al. Mapping tree species in temperate deciduous woodland using time-series multi-spectral data[J]. Applied Vegetation Science, 2010, 13(1): 86−99. doi: 10.1111/j.1654-109X.2009.01053.x
|
[29] |
Nelson M. Evaluating multitemporal sentinel-2 data for forest mapping using random forest[J/OL]. Environmental Science, Mathematics, 2017[2023−01−02]. https://core.ac.uk/display/132537655.
|
[1] | Wang Xin, Liu Xinyue, Mu Yanmei, Liu Peng, Jia Xin. Changes in vegetation phenology and its responses to climatic factors in the Mu Us Desert[J]. Journal of Beijing Forestry University, 2023, 45(7): 61-75. DOI: 10.12171/j.1000-1522.20220443 |
[2] | Yu Peiyang, Tong Xiaojuan, Li Jun, Zhang Jingru, Liu Peirong, Xie Han. Simulation analysis on phenology of woody plants in the warm-temperate region of China[J]. Journal of Beijing Forestry University, 2021, 43(11): 28-39. DOI: 10.12171/j.1000-1522.20200367 |
[3] | Zhang Jingru, Tong Xiaojuan, Meng Ping, Zhang Jinsong, Liu Peirong. Comparative study on phenology in a mountainous plantation in northern China based on vegetation index, chlorophyll fluorescence and carbon flux[J]. Journal of Beijing Forestry University, 2020, 42(11): 17-26. DOI: 10.12171/j.1000-1522.20200113 |
[4] | Zhang Xu, Song Wenqi, Zhao Huiying, Zhu Liangjun, Wang Xiaochun. Variation of July NDVI recorded by tree-ring index of Pinus koraiensis and Abies nephrolepis forests in the southern Xiaoxing'an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(12): 9-17. DOI: 10.13332/j.1000-1522.20180295 |
[5] | Zhu Yakun, Qin Shugao, Zhang Yuqing, Zhang Jutao, Shao Yanying, Gao Yan. Vegetation phenology dynamic and its responses to meteorological factor changes in the Mu Us Desert of northern China[J]. Journal of Beijing Forestry University, 2018, 40(9): 98-106. DOI: 10.13332/j.1000-1522.20180020 |
[6] | YANG Shu-ping, ZHANG De-shun, LI Yue-zhong, JU Rui-ting, LIU Ming. Evaluation system for the resistance of landscape tree to diseases and pests and its application in Shanghai under climate warming[J]. Journal of Beijing Forestry University, 2017, 39(8): 87-97. DOI: 10.13332/j.1000-1522.20160346 |
[7] | CHEN Jing-ru, DU Yan-jun, ZHANG Yu-hong, PAN Jie, CHEN Fei-fei, DAI Wu-jun, LIU Tong, ZHOU Zhi-qiang. Peak flowering responses to the global warming of woody species in Heilongjiang Province,northeastern China.[J]. Journal of Beijing Forestry University, 2016, 38(11): 50-56. DOI: 10.13332/j.1000-1522.20160186 |
[8] | WANG Ge, HAN Lin, ZHANG Yu, . Temporal variation and spatial distribution of NDVI in northeastern China.[J]. Journal of Beijing Forestry University, 2012, 34(6): 86-91. |
[9] | SONG Fu-qiang, KANG Mu-yi, YANG Peng, CHEN Ya-ru, LIU Yang, XING Kai-xiong.. Comparison and validation of GIMMS, SPOT-VGT and MODIS global NDVI products in the Loess Plateau of northern Shaanxi Province, northwestern China[J]. Journal of Beijing Forestry University, 2010, 32(4): 72-80. |
[10] | SONG Yan, JI Jing-jun, ZHU Lin-hong, ZHANG Shi-ying. Characteristics of Asian-African summer monsoon pre-and post-global warming in mid-1980s[J]. Journal of Beijing Forestry University, 2007, 29(2): 24-33. |
1. |
杨博文,刘凤莲,陈洪敏. 三江并流区森林植被时空演变及驱动因素. 森林工程. 2025(01): 108-125 .
![]() |