• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Chunling, Fan Yilin, Pang Yong, Jia Wen. Extraction of deciduous coniferous forest based on Google earth engine (GEE) and Sentinel-2 image[J]. Journal of Beijing Forestry University, 2023, 45(8): 1-15. DOI: 10.12171/j.1000-1522.20220422
Citation: Wang Chunling, Fan Yilin, Pang Yong, Jia Wen. Extraction of deciduous coniferous forest based on Google earth engine (GEE) and Sentinel-2 image[J]. Journal of Beijing Forestry University, 2023, 45(8): 1-15. DOI: 10.12171/j.1000-1522.20220422

Extraction of deciduous coniferous forest based on Google earth engine (GEE) and Sentinel-2 image

More Information
  • Received Date: October 21, 2022
  • Revised Date: November 06, 2022
  • Available Online: July 18, 2023
  • Published Date: August 24, 2023
  •   Objective  In view of fine monitoring and evaluation needs of forest resources, the application potential of multi-temporal and multi-feature Sentinel-2 images in the identification of deciduous coniferous forests was exploratively studied, and a classification model was built according to the phenological characteristics of deciduous coniferous forests to provide method reference for identifying deciduous coniferous forests on a large scale.
      Method  Based on the GEE platform, the difference between deciduous coniferous forests and other forests in different seasons was analyzed by taking Mengjiagang Forest Farm in Heilongjiang Province of northeastern China as the research area. In this study, four seasonal Sentinel-2 images of spring (May 7 and May 27), summer (August 9), and autumn (October 19) in 2020 were used to construct a multi-feature dataset by extracting spectral features, texture features, and topographic features. Feature optimization was carried out according to feature importance scores. Finally, the optimal model for identifying deciduous coniferous forests was established by a random forest classifier to achieve rapid extraction of deciduous coniferous forest in Mengjiagang Forest Farm.
      Result  The experimental results showed that deciduous coniferous forests displayed obvious vegetation spectral features and seasonal characteristics. The multi-temporal image data contained more phenological period information on deciduous coniferous forests, and the images in spring and autumn can enable better differentiation between deciduous coniferous forests and other forests. In addition, near-infrared and short-wave infrared spectral information can greatly help identify deciduous coniferous forests. By the GEE platform and multi-temporal Sentinel-2 images, it is possible to extract vegetation information efficiently and quickly. The overall extraction accuracy and Kappa coefficient of deciduous coniferous forest reached 91.20% and 0.82, respectively.
      Conclusion  The classification model constructed based on the GEE platform and Sentinel-2 image has certain feasibility and applicability for the rapid extraction of deciduous coniferous forest information, and the research results provide a certain reference value for the large-scale extraction of spatial location distribution information of deciduous coniferous forest.
  • [1]
    周以良. 中国的几种植被类型(Ⅵ)落叶针叶林[J]. 生物学通报, 1988(5): 6−10.

    Zhou Y L. Several types of vegetation in China (Ⅵ) deciduous coniferous forest[J]. Bulletin of Biology, 1988(5): 6−10.
    [2]
    刘旭升, 张晓丽. 森林植被遥感分类研究进展与对策[J]. 林业资源管理, 2004(1): 61−64.

    Liu X S, Zhang X L. Research advances and counter measures of remote sensing classification of forest vegetation[J]. Forest Resources Management, 2004(1): 61−64.
    [3]
    Teluguntla P, Thenkabail P S, Oliphant A, et al. A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144: 325−340. doi: 10.1016/j.isprsjprs.2018.07.017
    [4]
    Gorelick N, Hancher M, Dixon M, et al. Google Earth Engine: planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment, 2017, 202: 18−27. doi: 10.1016/j.rse.2017.06.031
    [5]
    李斌, 李崇贵, 李煜. 基于Sentinel-2数据的塞罕坝机械林场落叶松人工林提取[J]. 林业资源管理, 2021(2): 117−123.

    Li B, Li C G, Li Y. Research on larch extraction in Saihanba Mechanical Forest Farm based on Sentinel-2 data[J]. Forest Resources Management, 2021(2): 117−123.
    [6]
    Immitzer M, Vuolo F, Atzberger C. First experience with Sentinel-2 data for crop and tree species classifications in central Europe[J/OL]. Remote Sensing, 2016, 8(3): 166[2023−01−22]. https://doi.org/10.3390/rs8030166.
    [7]
    Persson M, Lindberg E, Reese H. Tree species classification with multi-temporal Sentinel-2 data[J/OL]. Remote Sensing, 2018, 10(11): 1794[2023−01−02]. https://doi.org/10.3390/rs10111794.
    [8]
    姚茂林, 江洪, 张丽玉. 基于Sentinel-2影像红边光谱指数与特征优选的竹林提取研究[J]. 海南大学学报(自然科学版), 2022, 40(4): 373−381.

    Yao M L, Jiang H, Zhang L Y. Bamboo information extraction from Sentinel-2 image based on improved spectral indices and random forest Gini index[J]. Natural Science Journal of Hainan University, 2022, 40(4): 373−381.
    [9]
    Immitzer M, Neuwirth M, Böck S, et al. Optimal input features for tree species classification in central Europe based on multi-temporal Sentinel-2 data[J/OL]. Remote Sensing, 2019, 11(22): 2599[2023−01−02]. https://doi.org/10.3390/rs11222599.
    [10]
    Grabska E, Frantz D, Ostapowicz K. Evaluation of machine learning algorithms for forest stand species mapping using Sentinel-2 imagery and environmental data in the Polish Carpathians[J/OL]. Remote Sensing of Environment, 2020, 251: 112103[2023−01−23]. https://doi.org/10.1016/j.rse.2020.112103.
    [11]
    郑杨, 董利虎, 李凤日. 黑龙江省红松人工林枝条分布数量模拟[J]. 应用生态学报, 2016, 27(7): 2172−2180.

    Zheng Y, Dong L H, Li F R. Branch quantity distribution simulation for Pinus koraiensis plantation in Heilongjiang Province, China[J]. Chinese Journal of Applied Ecology, 2016, 27(7): 2172−2180.
    [12]
    Shoko C, Mutanga O. Examining the strength of the newly-launched Sentinel 2 MSI sensor in detecting and discriminating subtle differences between C3 and C4 grass species[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 129: 32−40. doi: 10.1016/j.isprsjprs.2017.04.016
    [13]
    吴炳方, 苑全治, 颜长珍, 等. 21世纪前十年的中国土地覆盖变化[J]. 第四纪研究, 2014, 34(4): 723−731.

    Wu B F, Yuan Q Z, Yan C Z, et al. Land cover changes of China from 2000 to 2010[J]. Quaternary Sciences, 2014, 34(4): 723−731.
    [14]
    吴炳方. 中华人民共和国土地覆被地图集(1∶1 000 000)[M]. 北京: 中国地图出版社, 2017.

    Wu B F. Land cover atlas of the People’s Republic of China (1∶1 000 000)[M]. Beijing: China Cartographic Publishing House, 2017.
    [15]
    Zhang X, Liu L, Chen X, et al. Fine land-cover mapping in China using Landsat datacube and an operational SPECLib-based approach[J/OL]. Remote Sensing, 2019, 11(9): 1056[2023−01−02]. https://doi.org/10.3390/rs11091056.
    [16]
    Zhang X, Liu L, Chen X, et al. GLC_FCS30: Global Land-Cover product with fine classification system at 30m using time-series Landsat imagery[J]. Earth System Science Data, 2021, 13(6): 2753−2776. doi: 10.5194/essd-13-2753-2021
    [17]
    庞勇, 蒙诗栎, 史锴源, 等. 中国天然林保护工程区森林覆盖遥感监测[J]. 生态学报, 2021, 41(13): 5080−5092.

    Pang Y, Meng S L, Shi K Y, et al. Forest coverage monitoring in the Natural Forest Protection Project area of China[J]. Acta Ecologica Sinica, 2021, 41(13): 5080−5092.
    [18]
    Pang Y, Li Z, Ju H, et al. LiCHy: the CAF’s LiDAR, CCD and hyperspectral integrated airborne observation system[J/OL]. Remote Sensing, 2016, 8(5): 398[2023−01−02]. https://doi.org/10.3390/rs8050398.
    [19]
    池毓锋, 赖日文, 余莉莉, 等. 基于Landsat 8 OLI数据的树种类型分布提取[J]. 自然资源学报, 2017, 32(7): 1193−1203.

    Chi Y F, Lai R W, Yu L L, et al. Extracting tree species distribution with Landsat 8 OLI data[J]. Journal of Natural Resources, 2017, 32(7): 1193−1203.
    [20]
    Tucker C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment, 1979, 8(2): 127−150. doi: 10.1016/0034-4257(79)90013-0
    [21]
    Huete A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment, 1988, 25(3): 295−309. doi: 10.1016/0034-4257(88)90106-X
    [22]
    董灵波, 梁凯富, 张一帆,等. 基于Landsat 8时间序列数据的翠岗林场森林类型划分[J]. 应用生态学报, 2022, 33(9): 2339−2346.

    Dong L B, Liang K F, Zhang Y F, et al. Classification of forest types in Cuigang Forest Farm based on time series data of Landsat 8[J]. Chinese Journal of Applied Ecology, 2022, 33(9): 2339−2346.
    [23]
    尹芬, 丁美青. 运用 ENVI 实现 SPOT-5 卫星影像的 RVI 提取[J]. 测绘与空间地理信息, 2016, 39(1): 47−48.

    Yin F, Ding M Q. RVI extraction of SPOT-5 satellite images using ENVI[J]. Geomatics & Spatial Information Technology, 2016, 39(1): 47−48.
    [24]
    周晓双. 基于高光谱的稻麦叶面积指数监测研究[D]. 南京: 南京农业大学, 2015.

    Zhou X S. Monitoring leaf area index in rice and wheat with hyperspectral remote sensing[D]. Nanjing: Nanjing Agricultural University, 2015.
    [25]
    李智峰, 朱谷昌, 董泰锋. 基于灰度共生矩阵的图像纹理特征地物分类应用[J]. 地质与勘探, 2011, 47(3): 456−461.

    Li Z F, Zhu G C, Dong T F. Application of GLCM-based texture features to remote sensing image classification[J]. Geology and Exploration, 2011, 47(3): 456−461.
    [26]
    Huang D, Xu S, Sun J, et al. Accuracy assessment model for classification result of remote sensing image based on spatial sampling[J/OL]. Journal of Applied Remote Sensing, 2017, 11(4): 046023[2023−01−02]. https://doi.org/10.1117/1.JRS.11.046023.
    [27]
    Qu L, Chen Z, Li M, et al. Accuracy improvements to pixel-based and object-based lulc classification with auxiliary datasets from Google earth engine[J/OL]. Remote Sensing, 2021, 13(3): 453[2023−01−02]. https://doi.org/10.3390/rs13030453.
    [28]
    Hill R A, Wilson A K, George M, et al. Mapping tree species in temperate deciduous woodland using time-series multi-spectral data[J]. Applied Vegetation Science, 2010, 13(1): 86−99. doi: 10.1111/j.1654-109X.2009.01053.x
    [29]
    Nelson M. Evaluating multitemporal sentinel-2 data for forest mapping using random forest[J/OL]. Environmental Science, Mathematics, 2017[2023−01−02]. https://core.ac.uk/display/132537655.
  • Related Articles

    [1]Wang Xin, Liu Xinyue, Mu Yanmei, Liu Peng, Jia Xin. Changes in vegetation phenology and its responses to climatic factors in the Mu Us Desert[J]. Journal of Beijing Forestry University, 2023, 45(7): 61-75. DOI: 10.12171/j.1000-1522.20220443
    [2]Yu Peiyang, Tong Xiaojuan, Li Jun, Zhang Jingru, Liu Peirong, Xie Han. Simulation analysis on phenology of woody plants in the warm-temperate region of China[J]. Journal of Beijing Forestry University, 2021, 43(11): 28-39. DOI: 10.12171/j.1000-1522.20200367
    [3]Zhang Jingru, Tong Xiaojuan, Meng Ping, Zhang Jinsong, Liu Peirong. Comparative study on phenology in a mountainous plantation in northern China based on vegetation index, chlorophyll fluorescence and carbon flux[J]. Journal of Beijing Forestry University, 2020, 42(11): 17-26. DOI: 10.12171/j.1000-1522.20200113
    [4]Zhang Xu, Song Wenqi, Zhao Huiying, Zhu Liangjun, Wang Xiaochun. Variation of July NDVI recorded by tree-ring index of Pinus koraiensis and Abies nephrolepis forests in the southern Xiaoxing'an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(12): 9-17. DOI: 10.13332/j.1000-1522.20180295
    [5]Zhu Yakun, Qin Shugao, Zhang Yuqing, Zhang Jutao, Shao Yanying, Gao Yan. Vegetation phenology dynamic and its responses to meteorological factor changes in the Mu Us Desert of northern China[J]. Journal of Beijing Forestry University, 2018, 40(9): 98-106. DOI: 10.13332/j.1000-1522.20180020
    [6]YANG Shu-ping, ZHANG De-shun, LI Yue-zhong, JU Rui-ting, LIU Ming. Evaluation system for the resistance of landscape tree to diseases and pests and its application in Shanghai under climate warming[J]. Journal of Beijing Forestry University, 2017, 39(8): 87-97. DOI: 10.13332/j.1000-1522.20160346
    [7]CHEN Jing-ru, DU Yan-jun, ZHANG Yu-hong, PAN Jie, CHEN Fei-fei, DAI Wu-jun, LIU Tong, ZHOU Zhi-qiang. Peak flowering responses to the global warming of woody species in Heilongjiang Province,northeastern China.[J]. Journal of Beijing Forestry University, 2016, 38(11): 50-56. DOI: 10.13332/j.1000-1522.20160186
    [8]WANG Ge, HAN Lin, ZHANG Yu, . Temporal variation and spatial distribution of NDVI in northeastern China.[J]. Journal of Beijing Forestry University, 2012, 34(6): 86-91.
    [9]SONG Fu-qiang, KANG Mu-yi, YANG Peng, CHEN Ya-ru, LIU Yang, XING Kai-xiong.. Comparison and validation of GIMMS, SPOT-VGT and MODIS global NDVI products in the Loess Plateau of northern Shaanxi Province, northwestern China[J]. Journal of Beijing Forestry University, 2010, 32(4): 72-80.
    [10]SONG Yan, JI Jing-jun, ZHU Lin-hong, ZHANG Shi-ying. Characteristics of Asian-African summer monsoon pre-and post-global warming in mid-1980s[J]. Journal of Beijing Forestry University, 2007, 29(2): 24-33.
  • Cited by

    Periodical cited type(1)

    1. 杨博文,刘凤莲,陈洪敏. 三江并流区森林植被时空演变及驱动因素. 森林工程. 2025(01): 108-125 .

    Other cited types(6)

Catalog

    Article views (706) PDF downloads (145) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return