Citation: | Li Shaopeng, Du Qingzhang, Song Yuepeng, Li Yunyuan. Planning of capital forest ecotourism area based on MSPA-MCR model and ROS theory[J]. Journal of Beijing Forestry University, 2024, 46(10): 112-124. DOI: 10.12171/j.1000-1522.20220429 |
This study aims to propose scientific planning strategies through coupled analyses and promote ecological protection and sustainable development in forest ecotourism areas of Beijing.
Taking Zhangshanying Township of Yanqing District in Beijing as an example, this study used morphological spatial pattern analysis to identify ecological source areas, applied the minimum cumulative resistance model to identify ecological corridors, and used the gravity model to classify the corridors. Meanwhile, the natural, social and phenomenal factors affecting recreational activities in the study area were identified through literature reading and questionnaire surveys, and the recreational opportunity spectrum was constructed and recreational zoning was delineated. Finally, the results of coupling ecological corridors and recreational zoning were presented, and specific planning strategies for different recreational zoning were proposed.
(1) The area of ecological sources in the study area was 147.19 km2, accounting for 56% of the total area, and 15 potential ecological corridors were identified, with a total length of 63.88 km. (2) Ecological sources were mainly located in the northern woodland of the study area, and the ecological corridors connected the western and eastern ecological sources, which played a key role in maintaining the ecological environment of the study area. (3) Based on the spectrum of recreational opportunities, four types of recreational zones were classified as native, semi-native, intervening, and free zones, accounting for 19.7%, 40.9%, 31.2%, and 8.2%, respectively. (4) Based on the above results, specific forest ecotourism planning strategies for different recreational zones were proposed, including four aspects: community plant configuration, community structure, ecological corridor width, and traffic layout.
From the perspective of ecological protection and tourists’ demand, this paper emphasizes the need for multi-dimensional ecological protection and development around key areas. This study not only enriches the theoretical content of ecotourism research, but also provides substantive theoretical guidance and practical suggestions for the sustainable development of forest ecotourism, which will help to accelerate the process of building Beijing into a “capital of biodiversity”.
[1] |
欧阳志云, 郑华. 生态系统服务的生态学机制研究进展[J]. 生态学报, 2009, 29(11): 6183−6188. doi: 10.3321/j.issn:1000-0933.2009.11.053
Ouyang Z Y, Zheng H. Ecological mechanisms of ecosystem services[J]. Acta Ecologica Sinica, 2009, 29(11): 6183−6188. doi: 10.3321/j.issn:1000-0933.2009.11.053
|
[2] |
王晓琦, 吴承照. 基于InVEST模型的生境质量评价与生态旅游规划应用[J]. 中国城市林业, 2020, 18(4): 73−77, 82. doi: 10.12169/zgcsly.2019.12.11.0002
Wang X Q, Wu C Z. Habitat quality evaluation and ecotourism planning application based on InVEST model[J]. Journal of Chinese Urban Forestry, 2020, 18(4): 73−77, 82. doi: 10.12169/zgcsly.2019.12.11.0002
|
[3] |
赵可极. 基于生态敏感性分析的山地旅游景区生态规划设计研究[D]. 北京: 北京林业大学, 2020.
Zhao K J. Research on ecological planning and design of mountain tourism scenic spots based on ecological sensitivity analysis [D]. Beijing: Beijing Forestry University, 2019.
|
[4] |
姚新涛. 基于多元因子量化评价的山地生态旅游规划理论研究[D]. 天津: 天津大学, 2021.
Yao X T. Mountain ecotourism based on quantitative evaluation of multivariate factors research on planning theory [D]. Tianjin: Tianjin University, 2019.
|
[5] |
Li P, Cao H, Su W, et al. Quantitative evaluation of the rebuilding costs of ecological corridors in a highly urbanized city: the perspective of land use adjustment[J]. Ecological Indicators, 2022, 141: 109130. doi: 10.1016/j.ecolind.2022.109130
|
[6] |
Ersoy E, Jorgensen A, Warren P H. Identifying multispecies connectivity corridors and the spatial pattern of the landscape[J]. Urban Forestry & Urban Greening, 2019, 40: 308−322.
|
[7] |
Liu C, Newell G, White M, et al. Identifying wildlife corridors for the restoration of regional habitat connectivity: a multispecies approach and comparison of resistance surfaces[J]. PLoS One, 2018, 13(11): e0206071. doi: 10.1371/journal.pone.0206071
|
[8] |
Cui L, Wang J, Sun L, et al. Construction and optimization of green space ecological networks in urban fringe areas: a case study with the urban fringe area of Tongzhou District in Beijing[J]. Journal of Cleaner Production, 2020, 276: 124266. doi: 10.1016/j.jclepro.2020.124266
|
[9] |
张丽, 王晨旭, 徐建英, 等. 面向连通性提升的旱区城市生态网络优化情景: 彦淖尔市及其周边地区为例[J]. 生态学报, 2022, 42(21): 8675−8689.
Zhang L, Wang C X, Xu J Y, et al. Scenario analysis of urban ecological network optimization for connectivity improvement in arid area; a case study of Bayannur City and its surrounding areas[J]. Acta Ecologica Sinica, 2022, 42(21): 8675−8689.
|
[10] |
王晨旭, 刘焱序, 于超月, 等. 面向居民生态福祉的国土空间生态网络构建: 临沂市为例[J]. 生态学报, 2022, 42(21): 8650−8663.
Wang C X, Liu Y X, Yu C Y, et al. Construction of territorial spatial ecological network for residents’ ecological well-being: taking Linyi City as an example[J]. Acta Ecologica Sinica, 2022, 42(21): 8650−8663.
|
[11] |
Luo Y, Zhu Z, Wu J, et al. Exploring habitat patch clusters based on network community detection to identify restored priority areas of ecological networks in urban areas[J]. Urban Forestry & Urban Greening, 2022: 127771.
|
[12] |
Wang Y, Qu Z, Zhong Q, et al. Delimitation of ecological corridors in a highly urbanizing region based on circuit theory and MSPA[J]. Ecological Indicators, 2022, 142: 109258. doi: 10.1016/j.ecolind.2022.109258
|
[13] |
Vogt P, Riitters K H, Esteguil C, et al. Mapping spatial patterns with morphological image processing[J]. Landscape Ecology, 2007, 22(2): 171−177. doi: 10.1007/s10980-006-9013-2
|
[14] |
Wang S, Wu M, Hu M, et al. Promoting landscape connectivity of highly urbanized area: an ecological network approach[J]. Ecological Indicators, 2021, 125: 107487. doi: 10.1016/j.ecolind.2021.107487
|
[15] |
Spear S F, Balkenhol N, Fortin M J, et al. Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis[J]. Molecular Ecology, 2010, 19(17): 3576−3591. doi: 10.1111/j.1365-294X.2010.04657.x
|
[16] |
Morse W C, Stern M, Blahna D, et al. Recreation as a transformative experience: synthesizing the literature on outdoor recreation and recreation ecosystem services into a systems framework[J]. Journal of Outdoor Recreation and Tourism, 2022, 38: 100492. doi: 10.1016/j.jort.2022.100492
|
[17] |
李晓溪, 朱樱, 李丹宁, 等. 基于ROS理论的滨水城市公园活力驱动与营建策略研究[C]// 中国风景园林学会2021年会论文集. 北京: 中国风景园林学会, 2021: 7.
Li X X, Zhu Y, Li D N, et al. Research on the vitality drive and construction strategy of waterfront urban parks based on ROS theory[C]// Proceedings of the 2021 Annual Conference of the Chinese Society of Landscape Architecture. Beijing: Chinese Society of Landscape Architecture, 2021: 7.
|
[18] |
汪勇政, 李久林, 顾康康, 等. 基于形态学空间格局分析法的城市绿色基础设施网络格局优化: 肥市为例[J]. 生态学报, 2022, 42(5): 2022−2032.
Wang Y Z, Li J L, Gu K K, et al. Optimization of urban green infrastructure network layout based on MSPA-CIRCUIT: case of Hefei[J]. Acta Ecologica Sinica, 2022, 42(5): 2022−2032.
|
[19] |
Luo J, Zhu L, Fu H. Construction of wetland ecological network based on MSPA-conefor-MCR: a case study of Haikou City[J]. Ecological Indicators, 2024, 166: 112329. doi: 10.1016/j.ecolind.2024.112329
|
[20] |
Zhai T, Huang L. Linking MSPA and circuit theory to identify the spatial range of ecological networks and its priority areas for conservation and restoration in urban agglomeration[J]. Frontiers in Ecology and Evolution, 2022, 10: 828979.
|
[21] |
陈泓宇, 李雄. 基于MSPA-InVEST模型的北京中心城区绿色空间生境网络优化[J]. 风景园林, 2021, 28(2): 16−21.
Chen H Y, Li X. The optimization of green space habitat network in the central city of Beijing based on the MSPA-InVEST model[J]. Landscape Architecture, 2021, 28(2): 16−21.
|
[22] |
Wei Q, Halike A, Yai K, et al. Construction and optimization of ecological security pattern in Ebinur Lake basin based on MSPA-MCR models[J]. Ecological Indicators, 2022, 138: 108857. doi: 10.1016/j.ecolind.2022.108857
|
[23] |
Liao L, Chen M, An R, et al. Identifying three-dimensional swimming corridors for fish to match their swimming characteristics under different hydropower plant operations: optimization of entrance location for fish-passing facilities[J]. Science of the Total Environment, 2022, 822: 153599. doi: 10.1016/j.scitotenv.2022.153599
|
[24] |
Wang X, Sun Y, Liu Q, et al. Construction and optimization of ecological network based on landscape ecological risk assessment: a case study in Jinan[J]. Land, 2023, 12(4): 743. doi: 10.3390/land12040743
|
[25] |
Clark R N, Stankey G H. The recreation opportunity spectrum: a framework for planning, management, and research[J]. Journal of Travel Research, 1979, 19(2): 26 .
|
[26] |
林广思, 李雪丹, 茌文秀. 城市公园的环境–活动游憩机会谱模型研究: 广州珠江公园为例[J]. 风景园林, 2019, 26(6): 72−78.
Lin G S, Li X D, Chi W X. Research on environment-activity recreation opportunity spectrum modelling in urban parks - taking Guangzhou Zhujiang Park as an example[J]. Landscape Architecture, 2019, 26(6): 72−78.
|
[27] |
肖随丽, 贾黎明, 汪平, 等. 北京城郊山地森林游憩机会谱构建[J]. 地理科学进展, 2011, 30(6): 746−752. doi: 10.11820/dlkxjz.2011.06.013
Xiao S L, Jia L M, Wang P, et al. Construction of recreation opportunity spectrum in suburban mountain region of Beijing[J]. Progress in Geography, 2011, 30(6): 746−752. doi: 10.11820/dlkxjz.2011.06.013
|
[28] |
刘明丽, 张玉钧. 游憩机会谱(ros)在游憩资源管理中的应用[J]. 世界林业研究, 2008, 21(3): 28−33.
Liu M L, Zhang Y J. Application of recreation opportunity spectrum (ros) in recreation resource management[J]. World Forestry Research, 2008, 21(3): 28−33.
|
[29] |
何颖. 基于游憩机会谱的城市森林公园优化设计研究[D]. 重庆: 重庆大学, 2018.
He Y. Study on optimisation design of urban forestpark based on recreational opportunity spectrum[D]. Chongqing: Chongqing University, 2018.
|
[30] |
Driver B L, Brown P J, Stankey G H, et al. The ROS planning system: evolution, basic concepts, and research needed[J]. Leisure Sciences, 1987, 9(3): 201−212. doi: 10.1080/01490408709512160
|
[31] |
Peng J, Pan Y, Liu Y, et al. Linking ecological degradation risk to identify ecological security patterns in a rapidly urbanizing landscape[J]. Habitat International, 2018, 71: 110−124. doi: 10.1016/j.habitatint.2017.11.010
|
[32] |
王子涵. 基于小型哺乳动物栖息地构建的郊野公园设计研究[D]. 北京: 北京林业大学, 2022.
Wang Z H. Country park design based on habitat of small mammals [D]. Beijing: Beijing Forestry University, 2021.
|
[33] |
郭金辉, 王争, 李艳辉, 等. 园林植物在动物运动场环境丰容中的应用: 北京动物园猩猩馆为例[J]. 安徽农业科学, 2022, 50(12): 110−113. doi: 10.3969/j.issn.0517-6611.2022.12.027
Guo J H, Wang Z, Li Y H, et al. Application of landscape plantings in enriching the environment of animal outdoor enclosure-a case of orangutan house in Beijing Zoo[J]. Journal of Anhui Agricultural Sciences, 2022, 50(12): 110−113. doi: 10.3969/j.issn.0517-6611.2022.12.027
|
[34] |
田璐瑶. 基于生境多样性营建的城市公园规划设计[D]. 北京: 北京林业大学, 2021.
Tian L Y. Urban park planning and design based on habitat diversity creation[D]. Beijing: Beijing Forestry University, 2021.
|
[35] |
巨龙飞. 2022年北京冬奥会及冬残奥会延庆赛区野生动物多样性监测[D]. 北京: 北京林业大学, 2022.
Ju L F. Wildlife diversity monitoring in Yanging Area of Beijing 2022 Olympic and Paralympics Winter Games [D]. Beijing: Beijing Forestry University, 2021.
|
[36] |
吉晟男, 刘雅欣, 赵志平, 等. 北京市延庆区哺乳动物多样性、分布及影响因素[J]. 动物学杂志, 2020, 55(1): 9−19.
Ji S N, Liu Y X, Zhao Z P, et al. Diversity, distribution, and influencing factor of mammal in Yanqing District, Beijing[J]. Chinese Journal of Zoology, 2020, 55(1): 9−19.
|
[37] |
俞孔坚, 李迪华, 段铁武. 生物多样性保护的景观规划途径[J]. 生物多样性, 1998(3): 45−52. doi: 10.3321/j.issn:1005-0094.1998.03.008
Yu K J, Li D H, Duan T W. Landscape approaches in biodiversity conservation[J]. Biodiversity Science, 1998(3): 45−52. doi: 10.3321/j.issn:1005-0094.1998.03.008
|
[38] |
康敏明. 基于不同生物多样性支撑功能需求的森林廊道宽度[J]. 林业与环境科学, 2018, 34(3): 42−46. doi: 10.3969/j.issn.1006-4427.2018.03.007
Kang M M. The adopt width of forest corridor for different species biodiversity service[J]. Forestry and Environmental Science, 2018, 34(3): 42−46. doi: 10.3969/j.issn.1006-4427.2018.03.007
|
[39] |
王彦平, 陈水华, 丁平. 惊飞距离: 州常见鸟类对人为侵扰的适应性[J]. 动物学研究, 2004(3): 214−220. doi: 10.3321/j.issn:0254-5853.2004.03.005
Wang Y P, Chen S H, Ding P. Distance of startled flight-adaptation of common birds to anthropogenic intrusion in Hangzhou[J]. Zoological Research, 2004(3): 214−220. doi: 10.3321/j.issn:0254-5853.2004.03.005
|
[40] |
Harris L D. The fragmented forest: island biogeography theory and the preservation of biotic diversity[M]. Chicago: University of Chicago Press, 1984: 112−114.
|
[41] |
时薏. 生态与游憩双重导向下的市域绿道网络选线方法研究[D]. 北京: 北京林业大学, 2021.
Shi Y. A study on route selection methods of municipal greenway networks under the dual orientation of ecology and recreation [D]. Beijing: Beijing Forestry University, 2021.
|
[42] |
Dai L, Liu Y, Luo X. Integrating the MCR and DOI models to construct an ecological security network for the urban agglomeration around Poyang Lake, China[J]. Science of the Total Environment, 2021, 754: 141868. doi: 10.1016/j.scitotenv.2020.141868
|
[43] |
曾文静, 钟永德, 李达立, 等. 基于ros的湖南省自然游憩资源县域区划[J]. 中南林业科技大学学报, 2022, 42(5): 181−192.
Zeng W J, Zhong Y D, Li D L, et al. A ros-based county zoning of natural recreation resources in Hunan Province[J]. Journal of Central South University of Forestry Science and Technology, 2022, 42(5): 181−192.
|
1. |
黄鑫,徐国祺,马耀辉. 制备具有荧光示踪功能的硼掺杂银杏叶碳量子点木材防腐剂. 北京林业大学学报. 2025(01): 116-125 .
![]() | |
2. |
张景朋,邵闯,蒋明亮. 高效液相色谱法测定防腐材中嘧菌酯含量的方法研究. 木材科学与技术. 2025(01): 64-70 .
![]() | |
3. |
吴喆虹,王文志,罗玲卓,袁超峰,苏勇,朱万泽. 贡嘎山健康与腐朽峨眉冷杉径向生长分异及其气候响应. 生态学报. 2024(23): 10897-10905 .
![]() | |
4. |
储炜,徐明,许琪,李婷,崔兆彦. 加速腐朽环境下重组竹力学及耐腐性能研究. 建筑科学与工程学报. 2023(03): 30-39 .
![]() | |
5. |
宋丽琴,宋太泽,祝席文,程芳超,孙建平. 木材花斑真菌对木材的影响及应用研究进展. 应用与环境生物学报. 2022(03): 805-812 .
![]() | |
6. |
谢启芳,张保壮,张利朋,苗壮. 自然干裂木柱受力性能试验与退化模型研究. 建筑结构学报. 2022(12): 210-222 .
![]() | |
7. |
常旭东,金光泽. 地形和土壤因子对红松活立木腐朽的影响. 林业科学. 2022(11): 71-82 .
![]() | |
8. |
张景朋,蒋明亮,马星霞,张斌. 甲氧基丙烯酸酯类制剂的木材防腐性能研究. 北京林业大学学报. 2021(03): 131-137 .
![]() | |
9. |
王玉娇,彭尧,曹金珍. 褐腐初期南方松木材微观形貌与化学成分分析. 北京林业大学学报. 2021(03): 138-144 .
![]() | |
10. |
王湘茹,曾飞扬,吕嘉宇,乔宇欣,闫丽. 硅烷偶联剂对水杨酸/二氧化硅微胶囊改性杨木耐腐性的影响. 林产工业. 2021(05): 54-59 .
![]() | |
11. |
贾茹,孙海燕,王玉荣,汪睿,赵荣军,任海青. 杉木无性系新品种‘洋020’和‘洋061’10年生幼龄材微观结构与力学性能的相关性. 林业科学. 2021(05): 165-175 .
![]() | |
12. |
赵艳,张泽宇,金宇乔,庞久寅,孙耀星. 木材表面仿制类玫瑰花超疏水结构研究. 林产工业. 2020(12): 32-34+39 .
![]() | |
13. |
赵博识,于志明,漆楚生,唐睿琳,张扬. 木材微生物变色与调控研究现状和展望. 林产工业. 2019(08): 1-4 .
![]() | |
14. |
郭宇,李超,李英洁,王哲,姚利宏. 木材细胞壁与木材力学性能及水分特性之间关系研究进展. 林产工业. 2019(08): 14-18 .
![]() | |
15. |
徐华东,狄亚楠,邢涛,徐群. 褐腐对白杨木材固碳量的影响规律及机理. 中南林业科技大学学报. 2019(11): 104-109 .
![]() | |
16. |
孙恒,冀晓东,赵红华,杨茂林,丛旭. 人工林刺槐木材物理力学性质研究. 北京林业大学学报. 2018(07): 104-112 .
![]() | |
17. |
孙海燕,苏明垒,王玉荣. 木材细胞壁力学性能与细胞壁组分和构造的相关性研究. 林产工业. 2018(10): 22-27 .
![]() | |
18. |
陈继超,姜维娜,曹文静,周徐亮,周晓燕,徐莉. 杨木纤维/Si-B复合材料制备及其防腐性能研究. 南京林业大学学报(自然科学版). 2018(05): 206-210 .
![]() |