• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Ren Yunmao, Wen Zhiyong, Wang Minnan, Li Fan, Jia Zhongkui. Evaluation of forest carbon sequestration capacity in Beijing[J]. Journal of Beijing Forestry University, 2023, 45(12): 108-119. DOI: 10.12171/j.1000-1522.20220436
Citation: Ren Yunmao, Wen Zhiyong, Wang Minnan, Li Fan, Jia Zhongkui. Evaluation of forest carbon sequestration capacity in Beijing[J]. Journal of Beijing Forestry University, 2023, 45(12): 108-119. DOI: 10.12171/j.1000-1522.20220436

Evaluation of forest carbon sequestration capacity in Beijing

More Information
  • Received Date: October 30, 2022
  • Revised Date: March 04, 2023
  • Accepted Date: July 06, 2023
  • Available Online: July 09, 2023
  • Objective 

    Based on the existing survey data from the 8th Landscape Plant Census of Forest Resources Type Ⅱ survey data, the forest carbon sink capacity of Beijing was assessed to provide a theoretical basis for the scientific management of forest resources in the city.

    Method 

    In this study, we adopted the forest stock expansion method to calculate the overall carbon stock, carbon density and changes in Beijing’s forests, and use the afforestation cost method and carbon tax method to assess the economic value of their carbon stocks.

    Result 

    (1) The total carbon stock of the total forest in Beijing was 1 934.59 ×104 t, and the carbon density was 32.35 t/ha, among the regions, Miyun District, Yanqing District and Shunyi District had larger carbon stocks, accounting for 13.79%, 12.73% and 11.40%, respectively, while those with higher carbon density were Shunyi District, Daxing District and Tongzhou District; the carbon density of both plains and mountains showed broadleaf forests > mixed forests > coniferous forests, and the carbon density of forests in plains was about 3.3 times higher than that in mountains; the carbon stocks in both mountains and plains were dominated by broadleaf trees; protection forests were the main contributors to the forest carbon stock. The carbon stock of protection forest was the main contributor to forest stock, among which soil and water conservation forest had the largest carbon stock of 414.15 ×104 t, while the carbon density of farmland protection forest was the largest at 175.23 t/ha; the carbon stock of dominant species was ranked as follows: other Populus spp. > Quercus spp. > Pinus tabuliformis > broadleaf tree > Platycladus orientalis > Robinia pseudoacacia > Betula spp. > Larix principis-rupprechtii > Populus davidiana, the carbon density was ranked as follows: other Populus spp. > Betula spp. > Larix principis-rupprechtii > Populus davidiana > Pinus tabuliformis > Robinia pseudoacacia > Quercus spp. > broadleaf tree > Platycladus orientalis; the carbon stock and carbon density in different origins were: planted forests > flycasting forests > natural forests; the carbon stock size in age group: middle-aged forest > young forest > mature forest > near-mature forest > over-mature forest, and the overall pattern of carbon density increased with the increase of age class. (2) From the first to the eighth forest resource survey, forest carbon stock and carbon density continued to increase; among the forest species, special-purpose forest had the highest growth rate and the highest carbon density; carbon stock of larch and aspen increased and then decreased, while acacia and birch showed a trend of decreasing and then increasing, and all other tree species showed an increasing trend, while carbon density of oleander, larch and aspen increased and then decreased, side cypress, Quercus spp. and birch decreased and then increased, acacia and broadleaf tree continued to decrease, and poplar continued to increase; both natural and planted forests showed an increasing trend. (3) Based on different carbon prices estimated by the afforestation cost method and the carbon tax method, the economic value of forest carbon stocks in Beijing ranged from 5.414 billion to 23.215 billion RMB, and the economic value of forest carbon stocks under the carbon tax method was higher. The economic value of carbon stock in each region of Beijing under the two calculation methods varied greatly, with Miyun, Yanqing, and Shunyi districts having the largest economic value of carbon stock; among all dominant tree species, poplar had the highest economic value of carbon stock; and among age groups, middle-aged forests had the largest contribution to Beijing.

    Conclusion 

    Beijing’s forests have obvious carbon sequestration potential, but the overall carbon sink is relatively low. In the future, we should pay attention to the matching of forest structure, strengthen the management of forest land cultivation, enhance the function of Beijing’s forest carbon sink, improve the value of carbon sink, and stimulate the vitality of forestry management.

  • [1]
    文勇军, 杨韩. 云南省“十三五”期间森林碳储量动态变化及碳汇潜力分析[J]. 林业建设, 2022(4): 22−25.

    Wen Y J, Yang H. Carbon sink potential analysis and dynamic changes of forest carbon storage in Yunnan Province during the 13th five-year plan period[J]. Forestry Construction, 2022(4): 22−25.
    [2]
    陆霁, 张颖, 李怒云. 林业碳汇交易可借鉴的国际经验[J]. 中国人口资源与环境, 2013, 23(12): 22−27.

    Lu J, Zhang Y, Li N Y. Forest carbon sink trade referenced to overseas experiences[J]. China Population, Resources and Environment, 2013, 23(12): 22−27.
    [3]
    Magnussen S, Köhl M, Olschofsky K. Error propagation in stock-difference and gain-loss estimates of a forest biomass carbon balance[J]. European Journal of Forest Research, 2014, 133(6): 1137−1155. doi: 10.1007/s10342-014-0828-0
    [4]
    Houghton R A. Aboveground forest biomass and the global carbon balance[J]. Global Change Biology, 2010, 11(6): 945−958.
    [5]
    Fang J. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science, 2001, 292: 2320−2322. doi: 10.1126/science.1058629
    [6]
    朱建华, 田宇, 李奇, 等. 中国森林生态系统碳汇现状与潜力[J]. 生态学报, 2023, 43(9): 1−16.

    Zhu J H, Tian Y, Li Q, et al. The current and potential carbon sink in forest ecosystem in China[J]. Acta Ecologica Sinica, 2023, 43(9): 1−16.
    [7]
    李德润, 彭红军. 碳中和背景下基于森林质量的中国碳汇潜力评估[J]. 中国林业经济, 2023(3): 83−88. doi: 10.13691/j.cnki.cn23-1539/f.2023.03.016

    Li D R, Peng H J. Assessment of China carbon sink potential based on forest quality in a carbon neutral context[J]. China Forestry Economics, 2023(3): 83−88. doi: 10.13691/j.cnki.cn23-1539/f.2023.03.016
    [8]
    张峰, 彭祚登. 北京市森林碳储量和碳汇经济价值研究[J]. 林业资源管理, 2021(6): 52−58.

    Zhang F, Peng Z D. Biomass carbon stocks and carbon stock economic value of forests in Beijing[J]. Forest Resources Management, 2021(6): 52−58.
    [9]
    续珊珊. 森林碳储量估算方法综述[J]. 林业调查规划, 2014, 39(6): 28−33. doi: 10.3969/j.issn.1671-3168.2014.06.007

    Xu S S. A review of forest carbon storage estimation methods[J]. Forest Inventory and Planning, 2014, 39(6): 28−33. doi: 10.3969/j.issn.1671-3168.2014.06.007
    [10]
    范冶. 武汉市森林碳汇能力评价研究[D]. 武汉: 武汉轻工大学, 2019.

    Fan Y. Assessment of forest carbon sequestration capacity in Wuhan City[D]. Wuhan: Wuhan University of Light Industry, 2019.
    [11]
    Zhang H, Feng Z, Chen P, et al. Development of a tree growth dierence equation and its application in forecasting the biomass carbon stocks of Chinese forests in 2050[J]. Forests, 2019, 7(10): 582.
    [12]
    王会荣, 李爱琴, 王晶晶, 等. 基于第8次森林资源清查数据的安徽森林碳储量特征研究[J]. 西北农林科技大学学报(自然科学版), 2019, 47(7): 78−86.

    Wang H R, Li A Q, Wang J J, et al. Characteristics of forest carbon storage in Anhui based on the 8th forest inventory data[J]. Journal of Northwest A&F University (Natural Science Edition), 2019, 47(7): 78−86.
    [13]
    褚宏洋. 森林碳汇经济价值评估及影响因素研究[D]. 泰安: 山东农业大学, 2016.

    Chu H Y. Research on economic value assessment and influencing factors of forest carbon sinks: a case study in Shandong Province[D]. Tai’an: Shandong Agricultural University, 2016.
    [14]
    张娟, 陈钦. 森林碳汇经济价值评估研究: 以福建省为例[J]. 西南大学学报(自然科学版), 2021, 43(5): 121−128.

    Zhang J, Chen Q. Study on economic value assessment of forest carbon sequestration: taking Fujian Province as an example[J]. Journal of Southwest University (Natural Science Edition), 2021, 43(5): 121−128.
    [15]
    陈晓凤. 北京市乔木林碳储量及其固碳潜力研究[D]. 北京: 北京林业大学, 2020.

    Chen X F. Study on carbon storage and carbon sequestration potential of arbor forest in Beijing[D]. Beijing: Beijing Forestry University, 2020.
    [16]
    樊登星, 余新晓, 岳永杰, 等. 北京市森林碳储量及其动态变化[J]. 北京林业大学学报, 2008, 30(增刊 2): 117−120. doi: 10.13332/j.1000-1522.2008.s2.024

    Fan D X, Yu X X, Yue Y J, et al. Forest carbon storage and its dynamics in Beijing[J]. Journal of Beijing Forestry University, 2008, 30(Suppl. 2): 117−120. doi: 10.13332/j.1000-1522.2008.s2.024
    [17]
    张颖, 李晓格. 碳达峰碳中和目标下北京市森林碳汇潜力分析[J]. 资源与产业, 2022, 24(1): 15−25.

    Zhang Y, Li X G. Carbon sink potential of Beijing’s forest under carbon peak and carbon neutrality[J]. Resources and Industry, 2022, 24(1): 15−25.
    [18]
    杨美丽, 褚宏洋, 庄皓明, 等. 森林碳汇经济价值评估研究: 以山东省为例[J]. 山东农业大学学报(社会科学版), 2017, 19(2): 77−84.

    Yang M L, Chu H Y, Zhuang H M, et al. Research on the economic value evaluation of forest carbon sinks: based on mountains: taking Eastern Province as an example[J]. Journal of Shandong Agricultural University (Social Sciences Edition), 2017, 19(2): 77−84.
    [19]
    施溯筠, 李光, 张三焕. 长白山区森林固定CO2价值的评估[J]. 延边大学学报(自然科学版), 2002(2): 134−137.

    Shi S Y, Li G, Zhang S H. Valuing the forestry of carbon fixation in Changbai Mountain[J]. Journal of Yanbian University (Natural Science), 2002(2): 134−137.
    [20]
    成克武, 崔国发, 王建中, 等. 北京喇叭沟门林区森林生物多样性经济价值评价[J]. 北京林业大学学报, 2000, 22(4): 66−71. doi: 10.3321/j.issn:1000-1522.2000.04.013

    Cheng K W, Cui G F, Wang J Z, et al. Evaluation on the economic value of the forest biodiversity in Labagoumen forest region[J]. Journal of Beijing Forestry University, 2000, 22(4): 66−71. doi: 10.3321/j.issn:1000-1522.2000.04.013
    [21]
    李奇, 朱建华, 冯源, 等. 中国森林乔木林碳储量及其固碳潜力预测[J]. 气候变化研究进展, 2018, 14(3): 287−294.

    Li Q, Zhu J H, Feng Y, et al. Carbon storage and carbon sequestration potential of the forest in China[J]. Climate Change Research, 2018, 14(3): 287−294.
    [22]
    刘淑琴, 夏朝宗, 冯薇, 等. 西藏森林植被乔木层碳储量与碳密度估算[J]. 应用生态学报, 2017, 28(10): 3127−3134. doi: 10.13287/j.1001-9332.201710.023

    Liu S Q, Xia C Z, Feng W, et al. Estimation of vegetation carbon storage and density of forests at tree layer in Tibet, China[J]. Chinese Journal of Applied Ecology, 2017, 28(10): 3127−3134. doi: 10.13287/j.1001-9332.201710.023
    [23]
    邵波, 燕腾. 四川省森林植被碳储量及碳密度估算[J]. 西南林业大学学报(自然科学), 2017, 37(2): 179−183.

    Shao B, Yan T. Study on carbon storage and carbon density of forest in Sichuan Province[J]. Journal of Southwest Forestry University, 2017, 37(2): 179−183.
    [24]
    王敏, 石乔莎. 城市绿色碳汇效能影响因素及优化研究[J]. 中国城市林业, 2015, 13(4): 1−5. doi: 10.3969/j.issn.1672-4925.2015.04.001

    Wang M, Shi Q S. A study of influencing factors to urban green carbon sequestration and its efficiency optimization[J]. Journal of Chinese Urban Forestry, 2015, 13(4): 1−5. doi: 10.3969/j.issn.1672-4925.2015.04.001
    [25]
    曹晓阳. 山西中南部主要造林树种固碳能力研究[D]. 北京: 北京林业大学, 2013.

    Cao X Y. Research on carbon sequestration ability of main afforestation tree species in central and southern Shanxi Province, China[D]. Beijing: Beijing Forestry University, 2013.
    [26]
    于海群. 华北地区平原造林工程碳汇能力及碳汇价值研究: 以北京市东郊森林公园为例[J]. 生态经济, 2022, 38(2): 110−115.

    Yu H Q. Carbon accounting for afforestation project in the plain area of Beijing: a case study of eastern suburb forest park, Beijing[J]. Ecological Economy, 2022, 38(2): 110−115.
    [27]
    李轶涛. 山西省森林生态系统碳汇特征及提升措施[J]. 山西林业, 2022(4): 10−11. doi: 10.3969/j.issn.1005-4707.2022.04.004

    Li Y T. Carbon sequestration characteristics and promotion measures of forest ecosystem in Shanxi Province[J]. Shanxi Forestry, 2022(4): 10−11. doi: 10.3969/j.issn.1005-4707.2022.04.004
    [28]
    郭忠升. 水资源紧缺地区土壤水分植被承载力论述[J]. 林业科学, 2011, 47(5): 140−144. doi: 10.11707/j.1001-7488.20110522

    Guo Z S. A review of soil water carrying capacity for vegetation in water-limited regions[J]. Scientia Silvae Sinicae, 2011, 47(5): 140−144. doi: 10.11707/j.1001-7488.20110522
    [29]
    兰秀, 杜虎, 宋同清, 等. 广西主要森林植被碳储量及其影响因素[J]. 生态学报, 2019, 39(6): 2043−2053.

    Lan X, Du H, Song T Q, et al. Vegetation carbon storage in the main forest types in Guangxi and the related influencing factors[J]. Acta Ecologica Sinica, 2019, 39(6): 2043−2053.
    [30]
    陈周光, 龙飞, 祁慧博. 浙江省森林碳汇潜力及经济价值研究[J]. 黑龙江八一农垦大学学报, 2022, 34(4): 126−133. doi: 10.3969/j.issn.1002-2090.2022.04.018

    Chen Z G, Long F, Qi H B. Study on forest carbon sink potential and economic value in Zhejiang Province[J]. Journal of Heilongjiang Bayi Agricultural University, 2022, 34(4): 126−133. doi: 10.3969/j.issn.1002-2090.2022.04.018
    [31]
    杜好. 丽水市森林碳储量和碳汇经济价值研究[J]. 浙江林业科技, 2023, 43(3): 87−93. doi: 10.3969/j.issn.1001-3776.2023.03.012

    Du H. Study on forest carbon stock and carbon sink value in Lishui[J]. Journal of Zhejiang Forestry Science and Technology, 2023, 43(3): 87−93. doi: 10.3969/j.issn.1001-3776.2023.03.012
    [32]
    侯元兆, 王琦. 中国森林资源核算研究[J]. 世界林业研究, 1995(3): 51−56. doi: 10.13348/j.cnki.sjlyyj.1995.03.008

    Hou Y Z, Wang Q. A study on forest resource accounting in China[J]. World Forestry Research, 1995(3): 51−56. doi: 10.13348/j.cnki.sjlyyj.1995.03.008
    [33]
    刘凤芹, 陈波, 高琛, 等. 降水对沙地杨树人工林水分利用的影响[J]. 干旱区资源与环境, 2016, 30(10): 165−170. doi: 10.13448/j.cnki.jalre.2016.335

    Liu F Q, Chen B, Gao C, et al. Effects of precipitation on water use strategy of poplar plantation in sandy area[J]. Journal of Arid Land Resources and Environment, 2016, 30(10): 165−170. doi: 10.13448/j.cnki.jalre.2016.335
  • Related Articles

    [1]Zhou Cheng, Liu Tong, Wang Qinggui, Han Shijie. Effects of long-term nitrogen addition on fine root morphological, anatomical structure and stoichiometry of broadleaved Korean pine forest[J]. Journal of Beijing Forestry University, 2022, 44(11): 31-40. DOI: 10.12171/j.1000-1522.20210212
    [2]Wu Chunbing, Wang Jingxue, Ji Xiaodong, Jiang Qian, He Jianjun, Liang Yushi. Spatial and temporal statistical characteristics of air density and its influence on basic wind pressure: a case study of Shandong Province, eastern China[J]. Journal of Beijing Forestry University, 2021, 43(5): 99-107. DOI: 10.12171/j.1000-1522.20210064
    [3]Zeng Aicong, Guo Xinbin, Zheng Wenxia, Wei Mao, Jin Quanfeng, Guo Futao. Temporal and spatial dynamic characteristics of forest fire in Zhejiang Province of eastern China based on MODIS satellite hot spot data[J]. Journal of Beijing Forestry University, 2020, 42(11): 39-46. DOI: 10.12171/j.1000-1522.20190483
    [4]Guan Zhuizhui, Zhang Yandong. Spatial and temporal distribution characteristics and discoloration law of Fraxinus mandshurica knot[J]. Journal of Beijing Forestry University, 2020, 42(8): 53-60. DOI: 10.12171/j.1000-1522.20200004
    [5]Zhang Jianjun, Chen Liqi, Li Jianguang, Sun Miao, Fan Yongming, Yu Xiaonan. Anatomical structure characteristics and growth ring analysis of underground rhizome of herbaceous peony[J]. Journal of Beijing Forestry University, 2020, 42(5): 124-131. DOI: 10.12171/j.1000-1522.20190096
    [6]Zhang Yichi, Guo Sujuan, Sun Chuanhao. Effects of growth retardants on anatomy and non-structural carbohydrates of chestnut leaves[J]. Journal of Beijing Forestry University, 2020, 42(1): 46-53. DOI: 10.12171/j.1000-1522.20180437
    [7]ZHONG Yue-ming, DONG Fang-yu, WANG Wen-juan, WANG Jian-ming, LI Jing-wen, WU Bo, JIA Xiao hong. Anatomical characteristics and adaptability plasticity of Populus euphratica in different habitats[J]. Journal of Beijing Forestry University, 2017, 39(10): 53-61. DOI: 10.13332/j.1000-1522.20170089
    [8]YAN Guo-yong, WANG Xiao-chun, XING Ya-juan, HAN Shi-jie, WANG Qing-gui. Response of root anatomy and tissue chemistry to nitrogen deposition in larch forest in the Great Xing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(4): 36-43. DOI: 10.13332/j.1000-1522.20150433
    [9]WANG Ge, HAN Lin, ZHANG Yu, . Temporal variation and spatial distribution of NDVI in northeastern China.[J]. Journal of Beijing Forestry University, 2012, 34(6): 86-91.
    [10]ZHAO Yan-xia, LUO You-qing, ZONG Shi-xiang, WANG Rong1, LUO Hong-mei. Comparison in leaf anatomical structure and drought resistance of different sex and varieties of sea buckthorn[J]. Journal of Beijing Forestry University, 2012, 34(6): 34-41.
  • Cited by

    Periodical cited type(3)

    1. 胡馨丹,李瑶,张小花,梁娟红,张腾国. 外源ATP对油菜幼苗耐寒性的影响. 植物研究. 2021(02): 302-311 .
    2. 武永强,杨帆. 干扰Arf6抑制人前列腺癌细胞系DU145增殖、迁移及侵袭. 基础医学与临床. 2019(09): 1310-1315 .
    3. 王浩然,吕雪芹,张越,满奕,荆艳萍. eATP在植物生长发育及逆境胁迫中的作用. 电子显微学报. 2017(01): 83-90 .

    Other cited types(0)

Catalog

    Article views (884) PDF downloads (209) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return