• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Niu Danni, Ma Rui, Liu Hujun, Zhang Yuzhong. Wind tunnel test on the windproof effect of Haloxylon ammodendron forests with different planting site configurations[J]. Journal of Beijing Forestry University, 2023, 45(7): 76-87. DOI: 10.12171/j.1000-1522.20220466
Citation: Niu Danni, Ma Rui, Liu Hujun, Zhang Yuzhong. Wind tunnel test on the windproof effect of Haloxylon ammodendron forests with different planting site configurations[J]. Journal of Beijing Forestry University, 2023, 45(7): 76-87. DOI: 10.12171/j.1000-1522.20220466

Wind tunnel test on the windproof effect of Haloxylon ammodendron forests with different planting site configurations

More Information
  • Received Date: November 15, 2022
  • Revised Date: June 19, 2023
  • Available Online: June 26, 2023
  • Published Date: July 24, 2023
  •   Objective  Haloxylon ammodendron is a key tree species for afforestation in arid zones of China, but since wind and sand hazards are frequent in sandy areas, it is important to explore a reasonable planting site configuration to enhance the windbreak effect of forest strips.
      Method  In this study, Haloxylon ammodendron was used as a prototype, and the flow field and wind-proof effect were studied when the planting point disposing changed through wind tunnel simulation test. 4 kinds of forest belts with different disposing, namely A, A, B and B, were designed (A: triangle; B: rectangular; Ⅰ: plant spacing = 34 cm, row spacing = 17 cm; Ⅱ: plant spacing = 17 cm, row spacing = 34 cm).
      Result  (1) The spacing and arrangement of planting points had different effects on the protective effect. For the same arrangement, the area of wind speed deceleration zone of small plant spacing and large row spacing forest belt was larger than that of large plant spacing and small row spacing forest belt, namely A > A, B > B; for the same spacing, the area of wind speed deceleration zone in zigzag forest belt was larger than that in rectangular forest belt, namely A > B, A > B. (2) The effect of spacing on windbreak effect was more obvious than that of arrangement, and the order of windbreak effect from big to small was as follows: A > B > A > B. (3) The windbreak effect of AII forest belt was the best, but the wind speed recovery rate after the belt was the largest.
      Conclusion  The vertical and horizontal flow fields, wind speed variation and wind protection benefits of pokeweed forests with different planting point configurations differ significantly. In production practice, when the planting density is certain, it is recommended to give priority to the “small spacing, large row spacing” “品” shape configuration.
  • [1]
    孙保平. 荒漠化防治工程学[M]. 北京: 中国林业出版社, 2000.

    Sun B P. Engineering of desertification control[M]. Beijing: China Forestry Publishing House, 2000.
    [2]
    李雪琳, 马彦军, 马瑞, 等. 不同带宽的防风固沙林流场结构及防风效能风洞试验[J]. 中国沙漠, 2018, 38(5): 936−944.

    Li X L, Ma Y J, Ma R, et al. Wind flow field and windproof efficiency of shelterbelt in different width[J]. Journal of Desert Research, 2018, 38(5): 936−944.
    [3]
    厉静文, 刘明虎, 郭浩, 等. 防风固沙林研究进展[J]. 世界林业研究, 2019, 32(5): 28−33.

    Li J W, Liu M H, Guo H, et al. Research progress in windbreak and sand fixation forest[J]. World Forestry Research, 2019, 32(5): 28−33.
    [4]
    魏亚娟. 吉兰泰盐湖防护体系功能区生态效益研究及其优化配置[D]. 呼和浩特: 内蒙古农业大学, 2022.

    Wei Y J. Study on ecological benefits and optimal configuration of Jilantai Salt Lake protection system[D]. Hohhot: Inner Mongolia Agricultural University, 2022.
    [5]
    Li H L, Wang Y D, Li S Y, et al. Shelter efficiency of various shelterbelt configurations: a wind tunnel study[J]. Atmosphere, 2022, 13(7): 1022. doi: 10.3390/atmos13071022
    [6]
    闫晴, 李菊艳, 尹忠东, 等. 典型株型沙生灌丛对风沙流场影响的数值模拟[J]. 干旱区研究, 2023, 40(5): 785−797.

    Yan Q, Li J Y, Yin Z D, et al. Numerical simulation of the influence of typical shrub types on wind -sand flow field[J]. Arid Zone Research, 2023, 40(5): 785−797.
    [7]
    Santiago J L, Martin F, Cuerva A, et al. Experimental and numerical study of wind flow behind windbreaks-ScienceDirect[J]. Atmospheric Environment, 2007, 41(30): 6406−6420. doi: 10.1016/j.atmosenv.2007.01.014
    [8]
    Cheng H, He W, Liu C, et al. Transition model for airflow fields from single plants to multiple plants[J]. Agricultural and Forest Meteorology, 2019, 266–267: 29−42.
    [9]
    Ma R, Li J R, Ma Y J, et al. A wind tunnel study of the airflow field and shelter efficiency of mixed windbreaks[J/OL]. Aeolian Research, 2019, 41: 100544[2022−10−21]. https://doi.org/10.1016/j.aeolia.2019.100544.
    [10]
    包岩峰, 郝玉光, 赵英铭, 等. 基于风速流场分析的乌兰布和沙漠绿洲防护林防风效果研究[J]. 北京林业大学学报, 2020, 42(8): 122−131. doi: 10.12171/j.1000-1522.20190122

    Bao Y F, Hao Y G, Zhao Y M, et al. Windbreak effects of shelterbelts in oases of the Uland Buh Desert based on the analysis of wind speed field[J]. Journal of Beijing Forestry University, 2020, 42(8): 122−131. doi: 10.12171/j.1000-1522.20190122
    [11]
    朱乐奎, 刘彤, 郑波, 等. 基于防护保证率的农田防护林林带间距调控[J]. 农业工程学报, 2016, 32(4): 185−190. doi: 10.11975/j.issn.1002-6819.2016.04.026

    Zhu L K, Liu T, Zheng B, et al. Farmland shelterbelt interval setting based on protection insurance rate[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(4): 185−190. doi: 10.11975/j.issn.1002-6819.2016.04.026
    [12]
    Pommerening A. Approaches to quantifying forest structures[J]. Forestry, 2002, 75(3): 305−324. doi: 10.1093/forestry/75.3.305
    [13]
    林学名词审定委员会. 林学名词[M]. 2版. 北京: 科学出版社, 2016: 86.

    Forestry Terminology Review Committee. Forestry terminology [M]. 2nd ed. Beijing: Science Press, 2016: 86.
    [14]
    曹鹏鹤. 栽植密度和种植点配置对苏北杨树人工林非结构性碳水化合物的影响[D]. 南京: 南京林业大学, 2021.

    Cao P H. Effects of planting density and spacing configuration on nonstructural carbohydrates of poplar forests in northern Jiangsu[D]. Nanjing: Nanjing Forestry University, 2021.
    [15]
    翟明普, 马履一, 森林培育学[M]. 4版. 北京: 中国林业出版社, 2021.

    Zhai M P, Ma L Y. Silviculture[M]. 4th Ed. Beijing: China Forestry Publishing House, 2021.
    [16]
    厉静文, Dosmanbetov D A, 郭浩, 等. 不同配置乔灌混交林防风效益的风洞试验[J]. 农业工程学报, 2020, 36(11): 95−102. doi: 10.11975/j.issn.1002-6819.2020.11.011

    Li J W, Dosmanbetov D A, Guo H, et al. Wind tunnel experiment on protection benefits of arbor-shrub mixed forest belts in different configurations[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(11): 95−102. doi: 10.11975/j.issn.1002-6819.2020.11.011
    [17]
    赛克, 赵媛媛, 包岩峰, 等. 干旱半干旱区落叶期农田防护林防风效果的风洞试验研究[J]. 农业工程学报, 2021, 37(5): 157−165. doi: 10.11975/j.issn.1002-6819.2021.05.018

    Sai K, Zhao Y Y, Bao Y F, et al. Wind-tunnel test study of shelter effects of deciduous farmland shelterbelts in arid and semi-arid areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(5): 157−165. doi: 10.11975/j.issn.1002-6819.2021.05.018
    [18]
    Wu X X, Zou X Y, Zhou N, et al. Deceleration efficiencies of shrub windbreaks in a wind tunnel[J]. Aeolian Research, 2015, 16: 11−23. doi: 10.1016/j.aeolia.2014.10.004
    [19]
    Ma R, Wang J H, Qu J J, et al. Effectiveness of shelterbelt with a non-uniform density distribution[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(12): 767−771. doi: 10.1016/j.jweia.2010.07.001
    [20]
    李晓烨. 落叶松防风林林带结构防风效能模拟研究[D]. 石家庄: 河北农业大学, 2020.

    Li X Y. Simulation study on the windproof effectiveness of the larch windbreak forest structure[D]. Shijiazhuang: Hebei Agricultural University, 2020.
    [21]
    马彦军, 李雪琳, 马瑞, 等. 前高后低型防风固沙林防风效应及其对风向的响应[J]. 水土保持通报, 2018, 38(5): 28−33, 39.

    Ma Y J, Li X L, Ma R, et al. Windproof efficiency of shelterbelt in high-low pattern and its response to wind directions[J]. Bulletin of Soil and Water Conservation, 2018, 38(5): 28−33, 39.
    [22]
    牛丹妮, 韩蓉, 马瑞, 等. 林分密度和种植点配置对梭梭人工林防风效应的影响[J]. 干旱区研究, 2023, 40(1): 143−151.

    Niu D N, Han R, Ma R, et al. Effects of density and plant point distribution on shelter efficiency of artificial Haloxylon ammodendron forest[J]. Arid Zone Research, 2023, 40(1): 143−151.
    [23]
    刘媖心. 中国沙漠植物志(第一卷)[M]. 北京: 科学出版社, 1987: 343.

    Liu Y X. Flora of desert plants in China (Vol. 1)[M]. Beijing: Science Press, 1987: 343.
    [24]
    徐高兴, 徐先英, 王立, 等. 梭梭不同密度与配置固沙效果风洞模拟试验[J]. 干旱区资源与环境, 2019, 33(9): 189−195.

    Xu G X, Xu X Y, Wang L, et al. Sand-fix effects of Haloxylon ammodendron forests under the different densities and patterns under wind tunnel test[J]. Journal of Arid Land Resources on Environment, 2019, 33(9): 189−195.
    [25]
    闫敏, 左合君, 郭跃, 等. 风沙环境下防风挡沙墙复变作用规律的风洞模拟[J]. 北京林业大学学报, 2021, 43(5): 108−117.

    Yan M, Zuo H J, Guo Y, et al. Wind tunnel simulation of complex deformation law on retaining wall under aeolian sand environment[J]. Journal of Beijing Forestry University, 2021, 43(5): 108−117.
    [26]
    厉静文, 包岩峰, 郭浩, 等. 梭梭(Haloxylon anmodendron)林带防风效果的风洞试验[J]. 中国沙漠, 2020, 40(3): 77−84.

    Li J W, Bao Y F, Guo H, et al. Wind tunnel test of wind speed reduction of Haloxylon anmodendron forests with different configuration[J]. Journal of Desert Research, 2020, 40(3): 77−84.
    [27]
    王雄. 阿拉尔垦区农田防护林结构特征及其防护效益研究[D]. 阿拉尔: 塔里木大学, 2020.

    Wang X. Study on the structural characteristics and protection benefits of farmland shelter forest in alar reclamation areas[D]. Alaer: Tarim University, 2020.
    [28]
    金子皓, 王京学, 任一凡, 等. 不同林带结构的刺槐林防风效应[J]. 北京林业大学学报, 2022, 44(8): 39−47.

    Jin Z H, Wang J X, Ren Y F, et al. Windproof effect of Robinia pseudoacacia forest in different forest belts[J]. Journal of Beijing Forestry University, 2022, 44(8): 39−47.
    [29]
    张世成, 许雪妮. 民勤干旱荒漠区梭梭的育苗和造林技术[J]. 甘肃科技, 2022, 38(11): 145−148.

    Zhang S C, Xu X N. Seedling and silvicultural technology of pokeweed in Minqin arid desert area[J]. Gansu Science and Technology, 2022, 38(11): 145−148.
  • Related Articles

    [1]Chen Beibei, Jiang Jun, Lu Yuanchang, Liu Xianzhao, Jia Hongyan, Ming Angang, Zhang Xianqiang. Effects of thinning intensity on the growth of interplanting broadleaved trees under Pinus massoniana plantation[J]. Journal of Beijing Forestry University, 2021, 43(1): 58-65. DOI: 10.12171/j.1000-1522.20200086
    [2]Zhang Xiaoyan, Li Yufei, Liu Guihua, Xu Zaoshi, Deng Bo. Effects of nitrogen application on growth and triterpenoids accumulation of 1-year-old Cyclocarya paliurus[J]. Journal of Beijing Forestry University, 2020, 42(4): 60-68. DOI: 10.12171/j.1000-1522.20190294
    [3]Chang Xiaochao, Liu Yong, Li Jinyu, Li Shian, Sun Minghui, Wan Fangfang, Zhang Jin, Song Xiehai. Effects of different nitrogen forms and ratios on growth of male Populus tomentosa seedlings[J]. Journal of Beijing Forestry University, 2018, 40(9): 63-71. DOI: 10.13332/j.1000-1522.20180178
    [4]Wang Junxiu, Zhou Yangyan, Han Xiao, An Yi, Guo Huihong, Xia Xinli, Yin Weilun, Liu Chao. Overexpression of Populus SBPase gene promoting photosynthesis and vegetative growth in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2018, 40(3): 26-33. DOI: 10.13332/j.1000-1522.20170436
    [5]Yan Ya-ping, Liu Yong, He Guo-xin, Xue Dun-meng, Li Cheng. Coupling effects of water and fertilizer on seedling growth and nutrient status of Catalpa bungei[J]. Journal of Beijing Forestry University, 2018, 40(2): 58-67. DOI: 10.13332/j.1000-1522.20170251
    [6]ZHAO Yang, QIAO Jie, WANG Bao-ping, FENG Yan-zhi, ZHOU Hai-jiang, CUI Ling-jun, WANG Wei-wei, YANG Dai-gui. Comprehensive selection of growth and stem form of superior paulownia clones in the hilly region of southern China[J]. Journal of Beijing Forestry University, 2017, 39(9): 32-40. DOI: 10.13332/j.1000-1522.20160372
    [7]REN Shi-qi, CHEN Jian-bo, DENG Zi-yu, GUO Dong-qiang, LIU Yuan, HUANG Ming-jun, MENG Jiang-long, XIAO Wen-fa, XIANG Dong-yun. Effects of pruning on growth dynamic and veneer quality of Eucalyptus urophylla×E. grandis[J]. Journal of Beijing Forestry University, 2015, 37(3): 126-132. DOI: 10.13332/j.1000-1522.20140228
    [8]YANG Teng, DUAN Jie, MA L&uuml, -yi, JIA Li-ming, PENG Zuo-deng, CHEN Chuang, CHEN Jing. Effects of N application rates on growth, nutrient accumulation and translocation of Xanthoceras sorbifolia[J]. Journal of Beijing Forestry University, 2014, 36(3): 57-62. DOI: 10.13332/j.cnki.jbfu.2014.03.008
    [9]YANG Li-xue, WANG Hai-nan, FAN Jing. Effects of donor tree ages and plant growth regulators on the softwood cutting propagation of Hippophae rhamnoides[J]. Journal of Beijing Forestry University, 2011, 33(6): 107-111.
    [10]HAN Lie-bao, WANG Chang-jun, SU De-rong, JIANG Yan-ling, XU Jun, ZHOU Jun. Accumulation and comparison of greenbelt nutrients under different water irrigating ways[J]. Journal of Beijing Forestry University, 2005, 27(6): 62-66.

Catalog

    Article views (402) PDF downloads (70) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return