• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Niu Danni, Ma Rui, Liu Hujun, Zhang Yuzhong. Wind tunnel test on the windproof effect of Haloxylon ammodendron forests with different planting site configurations[J]. Journal of Beijing Forestry University, 2023, 45(7): 76-87. DOI: 10.12171/j.1000-1522.20220466
Citation: Niu Danni, Ma Rui, Liu Hujun, Zhang Yuzhong. Wind tunnel test on the windproof effect of Haloxylon ammodendron forests with different planting site configurations[J]. Journal of Beijing Forestry University, 2023, 45(7): 76-87. DOI: 10.12171/j.1000-1522.20220466

Wind tunnel test on the windproof effect of Haloxylon ammodendron forests with different planting site configurations

More Information
  • Received Date: November 15, 2022
  • Revised Date: June 19, 2023
  • Available Online: June 26, 2023
  • Published Date: July 24, 2023
  •   Objective  Haloxylon ammodendron is a key tree species for afforestation in arid zones of China, but since wind and sand hazards are frequent in sandy areas, it is important to explore a reasonable planting site configuration to enhance the windbreak effect of forest strips.
      Method  In this study, Haloxylon ammodendron was used as a prototype, and the flow field and wind-proof effect were studied when the planting point disposing changed through wind tunnel simulation test. 4 kinds of forest belts with different disposing, namely A, A, B and B, were designed (A: triangle; B: rectangular; Ⅰ: plant spacing = 34 cm, row spacing = 17 cm; Ⅱ: plant spacing = 17 cm, row spacing = 34 cm).
      Result  (1) The spacing and arrangement of planting points had different effects on the protective effect. For the same arrangement, the area of wind speed deceleration zone of small plant spacing and large row spacing forest belt was larger than that of large plant spacing and small row spacing forest belt, namely A > A, B > B; for the same spacing, the area of wind speed deceleration zone in zigzag forest belt was larger than that in rectangular forest belt, namely A > B, A > B. (2) The effect of spacing on windbreak effect was more obvious than that of arrangement, and the order of windbreak effect from big to small was as follows: A > B > A > B. (3) The windbreak effect of AII forest belt was the best, but the wind speed recovery rate after the belt was the largest.
      Conclusion  The vertical and horizontal flow fields, wind speed variation and wind protection benefits of pokeweed forests with different planting point configurations differ significantly. In production practice, when the planting density is certain, it is recommended to give priority to the “small spacing, large row spacing” “品” shape configuration.
  • [1]
    孙保平. 荒漠化防治工程学[M]. 北京: 中国林业出版社, 2000.

    Sun B P. Engineering of desertification control[M]. Beijing: China Forestry Publishing House, 2000.
    [2]
    李雪琳, 马彦军, 马瑞, 等. 不同带宽的防风固沙林流场结构及防风效能风洞试验[J]. 中国沙漠, 2018, 38(5): 936−944.

    Li X L, Ma Y J, Ma R, et al. Wind flow field and windproof efficiency of shelterbelt in different width[J]. Journal of Desert Research, 2018, 38(5): 936−944.
    [3]
    厉静文, 刘明虎, 郭浩, 等. 防风固沙林研究进展[J]. 世界林业研究, 2019, 32(5): 28−33.

    Li J W, Liu M H, Guo H, et al. Research progress in windbreak and sand fixation forest[J]. World Forestry Research, 2019, 32(5): 28−33.
    [4]
    魏亚娟. 吉兰泰盐湖防护体系功能区生态效益研究及其优化配置[D]. 呼和浩特: 内蒙古农业大学, 2022.

    Wei Y J. Study on ecological benefits and optimal configuration of Jilantai Salt Lake protection system[D]. Hohhot: Inner Mongolia Agricultural University, 2022.
    [5]
    Li H L, Wang Y D, Li S Y, et al. Shelter efficiency of various shelterbelt configurations: a wind tunnel study[J]. Atmosphere, 2022, 13(7): 1022. doi: 10.3390/atmos13071022
    [6]
    闫晴, 李菊艳, 尹忠东, 等. 典型株型沙生灌丛对风沙流场影响的数值模拟[J]. 干旱区研究, 2023, 40(5): 785−797.

    Yan Q, Li J Y, Yin Z D, et al. Numerical simulation of the influence of typical shrub types on wind -sand flow field[J]. Arid Zone Research, 2023, 40(5): 785−797.
    [7]
    Santiago J L, Martin F, Cuerva A, et al. Experimental and numerical study of wind flow behind windbreaks-ScienceDirect[J]. Atmospheric Environment, 2007, 41(30): 6406−6420. doi: 10.1016/j.atmosenv.2007.01.014
    [8]
    Cheng H, He W, Liu C, et al. Transition model for airflow fields from single plants to multiple plants[J]. Agricultural and Forest Meteorology, 2019, 266–267: 29−42.
    [9]
    Ma R, Li J R, Ma Y J, et al. A wind tunnel study of the airflow field and shelter efficiency of mixed windbreaks[J/OL]. Aeolian Research, 2019, 41: 100544[2022−10−21]. https://doi.org/10.1016/j.aeolia.2019.100544.
    [10]
    包岩峰, 郝玉光, 赵英铭, 等. 基于风速流场分析的乌兰布和沙漠绿洲防护林防风效果研究[J]. 北京林业大学学报, 2020, 42(8): 122−131. doi: 10.12171/j.1000-1522.20190122

    Bao Y F, Hao Y G, Zhao Y M, et al. Windbreak effects of shelterbelts in oases of the Uland Buh Desert based on the analysis of wind speed field[J]. Journal of Beijing Forestry University, 2020, 42(8): 122−131. doi: 10.12171/j.1000-1522.20190122
    [11]
    朱乐奎, 刘彤, 郑波, 等. 基于防护保证率的农田防护林林带间距调控[J]. 农业工程学报, 2016, 32(4): 185−190. doi: 10.11975/j.issn.1002-6819.2016.04.026

    Zhu L K, Liu T, Zheng B, et al. Farmland shelterbelt interval setting based on protection insurance rate[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(4): 185−190. doi: 10.11975/j.issn.1002-6819.2016.04.026
    [12]
    Pommerening A. Approaches to quantifying forest structures[J]. Forestry, 2002, 75(3): 305−324. doi: 10.1093/forestry/75.3.305
    [13]
    林学名词审定委员会. 林学名词[M]. 2版. 北京: 科学出版社, 2016: 86.

    Forestry Terminology Review Committee. Forestry terminology [M]. 2nd ed. Beijing: Science Press, 2016: 86.
    [14]
    曹鹏鹤. 栽植密度和种植点配置对苏北杨树人工林非结构性碳水化合物的影响[D]. 南京: 南京林业大学, 2021.

    Cao P H. Effects of planting density and spacing configuration on nonstructural carbohydrates of poplar forests in northern Jiangsu[D]. Nanjing: Nanjing Forestry University, 2021.
    [15]
    翟明普, 马履一, 森林培育学[M]. 4版. 北京: 中国林业出版社, 2021.

    Zhai M P, Ma L Y. Silviculture[M]. 4th Ed. Beijing: China Forestry Publishing House, 2021.
    [16]
    厉静文, Dosmanbetov D A, 郭浩, 等. 不同配置乔灌混交林防风效益的风洞试验[J]. 农业工程学报, 2020, 36(11): 95−102. doi: 10.11975/j.issn.1002-6819.2020.11.011

    Li J W, Dosmanbetov D A, Guo H, et al. Wind tunnel experiment on protection benefits of arbor-shrub mixed forest belts in different configurations[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(11): 95−102. doi: 10.11975/j.issn.1002-6819.2020.11.011
    [17]
    赛克, 赵媛媛, 包岩峰, 等. 干旱半干旱区落叶期农田防护林防风效果的风洞试验研究[J]. 农业工程学报, 2021, 37(5): 157−165. doi: 10.11975/j.issn.1002-6819.2021.05.018

    Sai K, Zhao Y Y, Bao Y F, et al. Wind-tunnel test study of shelter effects of deciduous farmland shelterbelts in arid and semi-arid areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(5): 157−165. doi: 10.11975/j.issn.1002-6819.2021.05.018
    [18]
    Wu X X, Zou X Y, Zhou N, et al. Deceleration efficiencies of shrub windbreaks in a wind tunnel[J]. Aeolian Research, 2015, 16: 11−23. doi: 10.1016/j.aeolia.2014.10.004
    [19]
    Ma R, Wang J H, Qu J J, et al. Effectiveness of shelterbelt with a non-uniform density distribution[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(12): 767−771. doi: 10.1016/j.jweia.2010.07.001
    [20]
    李晓烨. 落叶松防风林林带结构防风效能模拟研究[D]. 石家庄: 河北农业大学, 2020.

    Li X Y. Simulation study on the windproof effectiveness of the larch windbreak forest structure[D]. Shijiazhuang: Hebei Agricultural University, 2020.
    [21]
    马彦军, 李雪琳, 马瑞, 等. 前高后低型防风固沙林防风效应及其对风向的响应[J]. 水土保持通报, 2018, 38(5): 28−33, 39.

    Ma Y J, Li X L, Ma R, et al. Windproof efficiency of shelterbelt in high-low pattern and its response to wind directions[J]. Bulletin of Soil and Water Conservation, 2018, 38(5): 28−33, 39.
    [22]
    牛丹妮, 韩蓉, 马瑞, 等. 林分密度和种植点配置对梭梭人工林防风效应的影响[J]. 干旱区研究, 2023, 40(1): 143−151.

    Niu D N, Han R, Ma R, et al. Effects of density and plant point distribution on shelter efficiency of artificial Haloxylon ammodendron forest[J]. Arid Zone Research, 2023, 40(1): 143−151.
    [23]
    刘媖心. 中国沙漠植物志(第一卷)[M]. 北京: 科学出版社, 1987: 343.

    Liu Y X. Flora of desert plants in China (Vol. 1)[M]. Beijing: Science Press, 1987: 343.
    [24]
    徐高兴, 徐先英, 王立, 等. 梭梭不同密度与配置固沙效果风洞模拟试验[J]. 干旱区资源与环境, 2019, 33(9): 189−195.

    Xu G X, Xu X Y, Wang L, et al. Sand-fix effects of Haloxylon ammodendron forests under the different densities and patterns under wind tunnel test[J]. Journal of Arid Land Resources on Environment, 2019, 33(9): 189−195.
    [25]
    闫敏, 左合君, 郭跃, 等. 风沙环境下防风挡沙墙复变作用规律的风洞模拟[J]. 北京林业大学学报, 2021, 43(5): 108−117.

    Yan M, Zuo H J, Guo Y, et al. Wind tunnel simulation of complex deformation law on retaining wall under aeolian sand environment[J]. Journal of Beijing Forestry University, 2021, 43(5): 108−117.
    [26]
    厉静文, 包岩峰, 郭浩, 等. 梭梭(Haloxylon anmodendron)林带防风效果的风洞试验[J]. 中国沙漠, 2020, 40(3): 77−84.

    Li J W, Bao Y F, Guo H, et al. Wind tunnel test of wind speed reduction of Haloxylon anmodendron forests with different configuration[J]. Journal of Desert Research, 2020, 40(3): 77−84.
    [27]
    王雄. 阿拉尔垦区农田防护林结构特征及其防护效益研究[D]. 阿拉尔: 塔里木大学, 2020.

    Wang X. Study on the structural characteristics and protection benefits of farmland shelter forest in alar reclamation areas[D]. Alaer: Tarim University, 2020.
    [28]
    金子皓, 王京学, 任一凡, 等. 不同林带结构的刺槐林防风效应[J]. 北京林业大学学报, 2022, 44(8): 39−47.

    Jin Z H, Wang J X, Ren Y F, et al. Windproof effect of Robinia pseudoacacia forest in different forest belts[J]. Journal of Beijing Forestry University, 2022, 44(8): 39−47.
    [29]
    张世成, 许雪妮. 民勤干旱荒漠区梭梭的育苗和造林技术[J]. 甘肃科技, 2022, 38(11): 145−148.

    Zhang S C, Xu X N. Seedling and silvicultural technology of pokeweed in Minqin arid desert area[J]. Gansu Science and Technology, 2022, 38(11): 145−148.
  • Related Articles

    [1]Ma Erni, Wang Yuyao, Li Jingyu, Zhong Xiang. Research progress on the effect of water on pore structure of wood cell wall[J]. Journal of Beijing Forestry University, 2024, 46(2): 1-8. DOI: 10.12171/j.1000-1522.20230243
    [2]Wang Kaiqing, Zhou Ziyi, Ma Erni. Effects of cell wall pore changes on water of wood modified by furfuryl alcohol[J]. Journal of Beijing Forestry University, 2023, 45(9): 127-136. DOI: 10.12171/j.1000-1522.20230156
    [3]Wu Haiyan, Zhao Yuanyuan, Du Linfang, Chi Wenfeng, Ding Guodong, Gao Guanglei. Effects of land use/cover changes on water retention services in the Beijing-Tianjin Sandstorm Source Control Project Area[J]. Journal of Beijing Forestry University, 2023, 45(4): 88-100. DOI: 10.12171/j.1000-1522.20220245
    [4]Meng Chen, Niu Jianzhi, Yu Hailong, Du Lingtong, Yin Zhengcong. Research progress in influencing factors and measuring methods of three-dimensional characteristics of soil macropores[J]. Journal of Beijing Forestry University, 2020, 42(11): 9-16. DOI: 10.12171/j.1000-1522.20190158
    [5]Lü Jiao, Mustaq Shah, Cui Yi, Xu Chengyang. Effects of soil compactness and litter covering on soil water holding capacity and water infiltration ability in urban forest[J]. Journal of Beijing Forestry University, 2020, 42(8): 102-111. DOI: 10.12171/j.1000-1522.20190476
    [6]Liu Junting, Zhang Jianjun, Sun Ruoxiu, Li Liang. Effects of the conversion time of cropland into forestry on soil physical properties in loess area of western Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2020, 42(1): 94-103. DOI: 10.12171/j.1000-1522.20180376
    [7]Ma Yuan-yuan, Dai Xian-qing, Peng Shao-hao, Yang Guang, Ji Xiao-dong. Effects of natural zeolite on physical and chemical properties and water retention capacity of chernozem in Songnen Plain of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(2): 51-57. DOI: 10.13332/j.1000-1522.20170218
    [8]XIA Xiang-you, WANG En-heng, YANG Xiao-yan, CHEN Xiang-wei. Pore characteristics of mollisol argillic horizon under simulated freeze-thaw cycles[J]. Journal of Beijing Forestry University, 2015, 37(6): 70-76. DOI: 10.13332/j.1000-1522.20140474
    [9]CHEN Shi-chao, LIN Jian-hui, SUN Yu-rui, Peter Schulze Lammers. Predicting topsoil porosity using soil surface roughness under rainfall influence.[J]. Journal of Beijing Forestry University, 2013, 35(2): 69-74.
    [10]FANG Wei-dong, KANG Xin-gang, ZHAO Hao-yan, HUANG Xin-feng, GONG Zhi-wen, GAO Yan, FENG Qi-xiang. Soil characteristics and water conservation of different forest types in Changbai Mountain[J]. Journal of Beijing Forestry University, 2011, 33(4): 40-47.
  • Cited by

    Periodical cited type(8)

    1. 陈志琪,张海娜,刘佳丽,鲁向晖,杨宝城. 氮添加对稀土尾砂地猴樟幼苗根系生长、生物量分配及非结构性碳水化合物的影响. 植物研究. 2024(01): 86-95 .
    2. 王志保,路兴慧,张演义,王宏骄,谢宪,江洪,韩婧雅,王艺合,梁晶. 氮磷添加对滨海新围垦区大叶女贞细根形态特征和生物量的影响. 广西植物. 2024(08): 1438-1447 .
    3. 孙薇,王斌,楚秀丽,王秀花,张东北,吴小林,周志春. 马尾松容器苗生长和养分性状对磷添加和接种菌根菌的响应及关联. 南京林业大学学报(自然科学版). 2023(01): 226-233 .
    4. 吴莹. 生物炭和氮肥配施对榉树幼苗生长的影响. 绿色科技. 2023(05): 101-103+108 .
    5. 何至杭,刘丽,彭钟通,陈轶群,王艺颖,刘悦,曾曙才,莫其锋. 水氮耦合对辣木幼苗根系形态特征的影响. 广西植物. 2023(05): 936-946 .
    6. 赵玉红. 樟子松种植技术要点. 中国林副特产. 2022(03): 59-61 .
    7. 高文礼 ,陈晓楠 ,伊力努尔·艾力 ,马晓东 . 干旱及复水条件下接种AMF和根瘤菌对疏叶骆驼刺根系生长的影响. 西北植物学报. 2022(07): 1189-1197 .
    8. 郝龙飞,小红,邵东华,刘婷岩,许吉康,张之月,于凡舒. 接种菌根真菌和氮添加处理对樟子松苗木根际微生态环境的影响. 西北林学院学报. 2022(05): 135-140+154 .

    Other cited types(8)

Catalog

    Article views (402) PDF downloads (70) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return