Processing math: 100%
  • Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Baoying, Liang Ruiting, Xie Yunhong, Qiu Siyu, Sun Yujun. Construction of Cunninghamia lanceolata tree height curve model based on nonlinear quantile mixed effect[J]. Journal of Beijing Forestry University, 2023, 45(11): 33-41. DOI: 10.12171/j.1000-1522.20220496
Citation: Wang Baoying, Liang Ruiting, Xie Yunhong, Qiu Siyu, Sun Yujun. Construction of Cunninghamia lanceolata tree height curve model based on nonlinear quantile mixed effect[J]. Journal of Beijing Forestry University, 2023, 45(11): 33-41. DOI: 10.12171/j.1000-1522.20220496

Construction of Cunninghamia lanceolata tree height curve model based on nonlinear quantile mixed effect

More Information
  • Received Date: December 06, 2022
  • Revised Date: December 26, 2022
  • Available Online: November 05, 2023
  • Objective 

    This paper aims to explore a new method for constructing tree height-DBH model, and combine quantile regression with nonlinear mixed effect method to construct tree height-DBH model, so as to improve the fitting accuracy of the model.

    Method 

    Based on the measured tree height and DBH data of 1 306 Cunninghamia lanceolata trees in the 30 m × 30 m fixed sample plot of C. lanceolata in Jiangle State-Owned Forest Farm of Fujian Province, eastern China in 2018, the basic model with the best fitting effect was selected from four tree height-DBH models. Based on the basic model, the tree height-DBH model was constructed by nonlinear mixed effect, quantile regression and nonlinear quantile mixed effect. The evaluation indexes of RMSE, R2adj and MSE were used to evaluate and compare the fitting results of each model. Akaike information criterion(AIC), Bayesian information criterion(BIC) and log likelihood (Loglik) were used to compare the fitting accuracy and prediction accuracy of each optimal model.

    Result 

    According to the comparison of evaluation indicators, the Logistic model was the basic model. The fitting effect of nonlinear mixed effect model was the best (AIC = 3 953.986, BIC = 3 988.199, Loglik = −1 969.993), and the fitting effect of the nonlinear quantile mixed effect model (AIC = 3 979.418, BIC = 4 028.293, Loglik = −1 979.709) was only slightly lower than that of the nonlinear mixed effect model. The order of model fitting effect was nonlinear mixed effect model > nonlinear quantile mixed effect model > basic model > quantile regression model. By comparing the residual sample plots of each model, it can be seen that there was no heteroscedasticity. The order of prediction effect was nonlinear mixed effect model > nonlinear quantile mixed effect model > basic model > quantile regression model.

    Conclusion 

    This study combines quantile regression with nonlinear mixed effect method. This method explains the differences and associations between individuals at different quantiles in the grouped data structure, and improves the stability and fitting accuracy of the model. It is a feasible idea to apply this method to the study of tree height-diameter relationship, and provides a new method for constructing tree height-DBH model.

  • [1]
    杜志, 陈振雄, 李锐, 等. 气候敏感的杉木树高−胸径非线性混合效应模型研建[J]. 北京林业大学学报, 2023, 45(9): 52−61. doi: 10.12171/j.1000-1522.20230052

    Du Z, Chen Z X, Li R, et al. Development of climate-sensitive nonlinear mixed-effects tree height-DBH model for Cunninghamia lanceolata[J]. Journal of Beijing Forestry University, 2023, 45(9): 52−61. doi: 10.12171/j.1000-1522.20230052
    [2]
    陈浩, 罗扬. 马尾松树高−胸径非线性混合效应模型构建[J]. 森林与环境学报, 2021, 41(4): 439−448.

    Chen H, Luo Y. Construction of nonlinear mixed effect height-diameter model for Pinus massoniana[J]. Journal of Forest and Environment, 2021, 41(4): 439−448.
    [3]
    沈子奕, 林杰. 基于哑变量回归和混合效应的杉树树高−胸径模型[J]. 济南大学学报(自然科学版), 2022, 36(1): 80−85.

    Shen Z Y, Lin J. Height-diameter at breast height model for Cunninghamia lanceolate based on dummy variable regression and mixed effects[J]. Journal of University of Jinan (Science and Technology), 2022, 36(1): 80−85.
    [4]
    梁瑞婷, 孙玉军, 李芸. 深度学习和传统方法模拟杉木树高−胸径模型比较[J]. 林业科学研究, 2021, 34(6): 65−72.

    Liang R T, Sun Y J, Li Y. Comparison of deep learning and traditional models to simulate the height-DBH relationship of Chinese fir[J]. Forest Research, 2021, 34(6): 65−72.
    [5]
    孙拥康, 汤景明, 王怡. 基于分位数回归的马尾松青冈栎混交林树高−胸径模型[J]. 中南林业科技大学学报, 2021, 41(12): 18−25.

    Sun Y K, Tang J M, Wang Y. Height-diameter model of Pinus massoniana and Cyclobalanopsis glauca mixed forest based on quantile regression[J]. Journal of Central South University of Forestry & Technology, 2021, 41(12): 18−25.
    [6]
    Misik T, Antal K, Kárász I, et al. Nonlinear height–diameter models for three woody, understory species in a temperate oak forest in Hungary[J]. Canadian Journal of Forest Research, 2015: 46(11): 1337−1342.
    [7]
    Huang S S, Titus S J, Wiens D P. Comparison of nonlinear height-diameter functions for major Alberta tree species[J]. Canadian Journal of Forest Research, 1992, 22(9): 1297−1304. doi: 10.1139/x92-172
    [8]
    佟艺玟, 陈东升, 冯健, 等. 基于线性分位数混合效应的辽东山区红松冠幅模型[J]. 应用生态学报, 2022, 33(9): 2321−2330. doi: 10.13287/j.1001-9332.202209.002

    Tong Y W, Chen D S, Feng J, et al. Crown width model for planted Korean pine in eastern Liaoning mountains based on mixed effect linear quantile[J]. Chinese Journal of Applied Ecology, 2022, 33(9): 2321−2330. doi: 10.13287/j.1001-9332.202209.002
    [9]
    Raptis D I, Kazana V, Kechagioglou S, et al. Nonlinear quantile mixed-effects models for prediction of the maximum crown width of Fagus sylvatica L., Pinus nigra Arn. and Pinus brutia Ten[J/OL]. Forests, 2022, 13(4): 499. [2022−10−31]. https://doi.org/10.3390/f13040499.
    [10]
    李海奎, 法蕾. 基于分级的全国主要树种树高−胸径曲线模型[J]. 林业科学, 2011, 47(10): 83−90. doi: 10.11707/j.1001-7488.20111013

    Li H K, Fa L. Height-diameter model for major tree species in China using the classified height method[J]. Scientia Silvae Sinicae, 2011, 47(10): 83−90. doi: 10.11707/j.1001-7488.20111013
    [11]
    Grégoire T G, Schabenberger O, Barrett J P. Linear modelling of irregularly spaced, unbalanced, longitudinal data from permanent-plot measurements[J]. Canadian Journal of Forest Research, 2011, 25(1): 137−156.
    [12]
    Pinheiro J C, Bates D M. Mixed-effects models in S and S-Plus[M]. New York: Springer, 2000.
    [13]
    Koenker R, Bassett G. Regression quantiles[J]. Econometrica, 1978, 46(1): 33−50. doi: 10.2307/1913643
    [14]
    田德超, 李凤日, 董利虎. 依据分位数回归建立的长白落叶松潜在最大冠幅预测模型[J]. 东北林业大学学报, 2019, 47(8): 41−46. doi: 10.3969/j.issn.1000-5382.2019.08.008

    Tian D C, Li F R, Dong L H. Potential maximum crown width prediction model of Larix olgensis by quantile regression[J]. Journal of Northeast Forestry University, 2019, 47(8): 41−46. doi: 10.3969/j.issn.1000-5382.2019.08.008
    [15]
    Delyon B, Lavielle M, Moulines E. Convergence of a stochastic approximation version of EM algorithm[J]. The Annals of Statistics, 1999, 27(1): 94−128.
    [16]
    Akaike H. A new look at the statistical model identification[J]. IEEE Transactions on Automatic Control, 1974, 19(6): 716−723. doi: 10.1109/TAC.1974.1100705
    [17]
    王冬至, 张冬燕, 李永宁, 等. 基于贝叶斯法的针阔混交林树高与胸径混合效应模型[J]. 林业科学, 2019, 55(11): 85−94. doi: 10.11707/j.1001-7488.20191110

    Wang D Z, Zhang D Y, Li Y N, et al. Height-diameter relationship for conifer mixed forest based on Bayesian nonlinear mixed-effects model[J]. Scientia Silvae Sinicae, 2019, 55(11): 85−94. doi: 10.11707/j.1001-7488.20191110
    [18]
    Xu H, Sun Y J, Wang X J, et al. Height-diameter models of Chinese fir ( Cunninghamia lanceolata) based on nonlinear mixed effects models in southeast China[J]. Advance Journal of Food Science and Technology, 2014, 6(4): 445−452. doi: 10.19026/ajfst.6.53
    [19]
    Sun Y X, Gao H L, Li F R. Using linear mixed-effects models with quantile regression to simulate the crown profile of planted Pinus sylvestris var. Mongolica trees[J/OL]. Forests, 2017, 8(11): 446 [2022−11−02]. https://doi.org/10.3390/f8110446.
    [20]
    邓祥鹏, 许芳泽, 赵善超, 等. 基于贝叶斯法的新疆天山云杉树高−胸径模型研究[J]. 北京林业大学学报, 2023, 45(1): 11−20. doi: 10.12171/j.1000-1522.20220318

    Deng X P, Xu F Z, Zhao S C, et al. Tree height-DBH model for Picea schrenkiana in Tianshan Mountain, Xinjiang of northwestern China based on Bayesian method[J]. Journal of Beijing Forestry University, 2023, 45(1): 11−20. doi: 10.12171/j.1000-1522.20220318
    [21]
    Wang J. Bayesian quantile regression for parametric nonlinear mixed effects models[J]. Statistical Methods and Applications, 2012, 21(3): 279−295. doi: 10.1007/s10260-012-0190-7
    [22]
    Özçelik R, Cao Q V, Trincado G, et al. Predicting tree height from tree diameter and dominant height using mixed-effects and quantile regression models for two species in Turkey[J]. Forest Ecology and Management, 2018, 419: 240−248.
  • Related Articles

    [1]Wang Shuo, Han Daxiao, Wang Qianxue, Cong Rizheng, Wang Xiaohong, Yang Guang, Wang Lizhong, Zhang Jili. Effects of different forest fire intensities on the spatial distribution pattern of natural Larix gmelinii forests in the Great Xing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(2): 87-95. DOI: 10.12171/j.1000-1522.20210367
    [2]Li Yanli, Yang Hua, Deng Huafeng. Spatial distribution patterns of Quercus mongolica and Tilia mandshurica natural mixed forests[J]. Journal of Beijing Forestry University, 2019, 41(3): 33-41. DOI: 10.13332/j.1000-1522.20180236
    [3]GAO Jie, ZHANG Jun, CHENG Yan-xia, SUN Guo-wen. Multi-scale analysis on spatial patterns and tree species diversity in different forest types in Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2014, 36(6): 99-105. DOI: 10.13332/j.cnki.jbfu.2014.06.019
    [4]HU Yang, TIAN Cheng-ming, CAIRANGDANZHOU, LI Zhou-yuan, LI Tao, HU Yue, LI Ji-run. Spatial distribution pattern of Arceuthobium sichuanense and its correlation with environment in Xianmi forest region of Qinghai, northwestern China.[J]. Journal of Beijing Forestry University, 2014, 36(1): 102-108.
    [5]LIU Pu-xing, LU Chen-yu, YAO Xiao-jun, CAO Li-guo. Structure and spatial distribution patterns of Populus euphratica populations from different habitats in the Dunhuang Oasis[J]. Journal of Beijing Forestry University, 2011, 33(2): 48-52.
    [6]ZHAO Li-qiong, HUANG Hua-guo, LIANG Da-shuang, ZHANG Xiao-li.. Spatial distribution pattern of Picea crassifolia population in Dayekou, Gansu Province[J]. Journal of Beijing Forestry University, 2010, 32(4): 59-64.
    [7]MA Qin-yan. Analysis of the negative binomial distribution and test of population pattern.[J]. Journal of Beijing Forestry University, 2009, 31(3): 1-5.
    [8]NIU Li-li, YU Xin-xiao, LIU Yan, YUE Yong-jie, LI Jin-hai, WU Jun. Effects of minimum measured diameter on determining spatial distribution patterns of Pinus tabulaeformis forest trees.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 12-16.
    [9]CHEN Xing. Spatial pattern modelling of ecological security assessment in a region[J]. Journal of Beijing Forestry University, 2008, 30(1): 21-28.
    [10]ZHANG Yun-chun, ZHANG Qiao-ying, LUO Peng, GAO Xian-ming, WU Ning. Spatial pattern analysis of the clonal tree Symplocos laurina[J]. Journal of Beijing Forestry University, 2007, 29(3): 67-73. DOI: 10.13332/j.1000-1522.2007.03.011
  • Cited by

    Periodical cited type(9)

    1. 葛伟淇,胡安,王德钢,许正红,刘长月,何梦雅,唐永清,王朴,王少山. 不同林分类型下白蜡窄吉丁空间格局分析. 新疆农业科学. 2024(04): 964-970 .
    2. 李硕,周在豹,闫国增,柳絮飞,胡阳,姚圣忠,李凯. 不同程度受害白蜡林分的白蜡窄吉丁发生特点. 中南林业科技大学学报. 2021(06): 71-80 .
    3. 邹日恒. 桉树病虫害发生特点及防治策略. 南方农业. 2021(15): 86-87 .
    4. 梁志勤,张丽萍. 桉树桉蝙蛾虫害发生特点及防治措施. 绿色科技. 2020(21): 165-166 .
    5. 高丙涛,任利利,蒋琦,刘漪舟,俞琳锋,骆有庆. 不同受害油松林内红脂大小蠹空间格局的地统计学研究. 应用昆虫学报. 2020(06): 1427-1435 .
    6. 刘奎,何正峰,莫日彬,杨梅. 酸雨胁迫对桉树纯林及混交林土壤pH和酶活性的影响. 防护林科技. 2018(08): 5-8 .
    7. 秦江林,符合,杨秀好,杨忠武,罗同基,雷秀峰. 林业病虫害气象服务系统的创新设计与应用. 气象研究与应用. 2017(02): 57-60 .
    8. 邹华南. 油桐尺蠖幼虫种群空间分布格局及其抽样技术. 园艺与种苗. 2016(07): 48-50 .
    9. 邹华南. 油桐尺蠖幼虫种群空间分布格局及其抽样技术. 青海农林科技. 2016(03): 29-31 .

    Other cited types(6)

Catalog

    Article views (550) PDF downloads (71) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return