• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Xu Jianwei, Luo Haifeng, Kan Jiangming, Li Wenbin, Tong Siyuan. Underground self-sealing pressure injection equipment for forest and fruit trees[J]. Journal of Beijing Forestry University, 2023, 45(6): 137-144. DOI: 10.12171/j.1000-1522.20220514
Citation: Xu Jianwei, Luo Haifeng, Kan Jiangming, Li Wenbin, Tong Siyuan. Underground self-sealing pressure injection equipment for forest and fruit trees[J]. Journal of Beijing Forestry University, 2023, 45(6): 137-144. DOI: 10.12171/j.1000-1522.20220514

Underground self-sealing pressure injection equipment for forest and fruit trees

More Information
  • Received Date: December 19, 2022
  • Revised Date: April 18, 2023
  • Available Online: May 30, 2023
  • Published Date: June 24, 2023
  •   Objective  In forest and fruit irrigation operations, the commonly used water-saving irrigation methods, such as dropper and sprinkler irrigation, are easy to produce evaporation loss and salinization because the water and fertilizer are poured on the surface. It is urgent to effectively and directly irrigate the underground roots of fruit trees and ensure the water and fertilizer not overflow to the surface.
      Method  According to the actual application scenario, the design requirements of the device were analyzed, and an underground self-sealing pressure irrigation device was designed, which can guarantee the pressure self-sealing structure to the surface. Single-factor and multi-factor test on this device was designed. Soil type, water supply pressure and injection depth were selected as the influencing factors, with the target of the injection amount. Origin software was used for single-factor test analysis. Design-Expert software was used for multi-factor test analysis, and a regression model was established. The actual appropriate parameters and the parameters of the influence of injection amount were explored. The reliability of the model was verified by comparing the actual trial with the obtained regression model formula.
      Result  The single-factor test results showed that the injection amount increased with the water supply pressure, and decreased with the water injection depth. In multi-factor test, the regression model was optimized, and the suitable water supply pressure of the common soil was 287 kPa, the suitable water injection depth was30 cm, and the deviation between predicted value and the actual value of the injection amount was less than 5%. The parameter optimization results were reliable.
      Conclusion  The device can meet the initial design requirements, realize the effective direct irrigation of fruit trees underground root, and ensure no overflow to the surface. The reliability of the model can support data for the subsequent device practical application, further development, and the development of underground pressure irrigation technology.
  • [1]
    王芳芳, 郭素娟, 廖逸宁, 等. 覆草–施肥模式对板栗叶片功能性状与果实产量品质的影响[J]. 北京林业大学学报, 2022, 44(4): 36−46.

    Wang F F, Guo S J, Liao Y N, et al. Effects of grass mulching-fertilization mode on leaf functional characters and fruit yield as well as quality of Castanea mollissima[J]. Journal of Beijing Forestry University, 2022, 44(4): 36−46.
    [2]
    张亮, 周薇, 李道西. 农业高效节水灌溉模式选择研究进展[J]. 排灌机械工程学报, 2019, 37(5): 447−453.

    Zhang L, Zhou W, Li D X. Research progress in irrigation mode selection of high-efficiency water-saving agriculture[J]. Journal of Drainage and Irrigation Machinery Engineering, 2019, 37(5): 447−453.
    [3]
    袁小环, 武菊英, 孙璐, 等. 不同灌溉水平下石竹的水分蒸散研究[J]. 北京林业大学学报, 2008, 30(2): 77−81. doi: 10.3321/j.issn:1000-1522.2008.02.013

    Yuan X H, Wu J Y, Sun L, et al. Evapotranspiration of Dianthus chinensis at different irrigation levels[J]. Journal of Beijing Forestry University, 2008, 30(2): 77−81. doi: 10.3321/j.issn:1000-1522.2008.02.013
    [4]
    孙钦航, 成中余, 齐贺荣, 等. 枣树根蘖苗根系的分布与形态[J]. 陕西林业科技, 1996(2): 5.

    Sun Q H, Cheng Z Y, Qi H R, et al. Distribution and morphology of tiller seedling roots in jujube trees[J]. Shaanxi Forest Science and Technology, 1996(2): 5.
    [5]
    秦昌旭. 简析农业渗灌技术进展与应用[J]. 南方农机, 2021, 52(11): 78−79. doi: 10.3969/j.issn.1672-3872.2021.11.034

    Qin C X. Brief analysis of the progress and application of agricultural seepage irrigation technology[J]. Southern Agricultural Machinery, 2021, 52(11): 78−79. doi: 10.3969/j.issn.1672-3872.2021.11.034
    [6]
    何振嘉, 范王涛, 杜宜春, 等. 涌泉根灌节水灌溉技术特点、应用及展望[J]. 农业工程学报, 2020, 36(8): 287−298. doi: 10.11975/j.issn.1002-6819.2020.08.035

    He Z J, Fan W T, Du Y C, et al. Characteristics, application and prospects of bubbled-root irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(8): 287−298. doi: 10.11975/j.issn.1002-6819.2020.08.035
    [7]
    杜虎林, 冯起, 石新根, 等. 直插式根灌节水装置设计及应用示例[J]. 灌溉排水学报, 2021, 40(增刊 1): 65−71.

    Du H L, Feng Q, Shi X G, et al. Water-saving device design and application examples of straight-tube root irrigation[J]. Journal of Irrigation and Drainage, 2021, 40(Suppl. 1): 65−71.
    [8]
    盛国成, 王博炜, 袁明华. GZQ-A1L/A1N7系列节水注灌器[J]. 农业机械, 2009(8): 53. doi: 10.16167/j.cnki.1000-9868.2009.08.003

    Sheng G C, Wang B W, Yuan M H. GZQ-A1L/A1N7 series water-saving irrigation device[J]. Farm Machinery, 2009(8): 53. doi: 10.16167/j.cnki.1000-9868.2009.08.003
    [9]
    孙彦君, 周宙, 李芳花, 等. 8ZS-2型中耕作物注水机[J]. 农业机械, 2000(1): 29. doi: 10.16167/j.cnki.1000-9868.2000.01.012

    Sun Y J, Zhou Z, Li F H, et al. 8ZS-2 type tillage crop water injection machine[J]. Farm Machinery, 2000(1): 29. doi: 10.16167/j.cnki.1000-9868.2000.01.012
    [10]
    王伟, 唐传茵, 张宏. 果树根区补水注灌器设计[J]. 中国农机化, 2010, 227(1): 75−78.

    Wang W, Tang C Y, Zhang H. Design of variable-rate spraying system[J]. Journal of Chinese Agricultural Mechanization, 2010, 227(1): 75−78.
    [11]
    邓文君, 王蓉, 王磊, 等. 中国南方地区10 cm土壤湿度分析[J]. 广东气象, 2011, 33(6): 51−53. doi: 10.3969/j.issn.1007-6190.2011.06.015

    Deng W J, Wang R, Wang L, et al. Analysis of 10 cm soil moisture in southern China[J]. Guangdong Meteorology, 2011, 33(6): 51−53. doi: 10.3969/j.issn.1007-6190.2011.06.015
    [12]
    阎凌云. 农业气象[M]. 北京: 中国农业出版社, 2001: 854−855.

    Yan L Y. Agricultural forecast[M]. Beijing: China Agricultural Publishing House, 2001: 854−855.
    [13]
    孙三民, 安巧霞, 杨培岭, 等. 间接地下滴灌灌溉深度对枣树根系和水分的影响[J]. 农业机械学报, 2016, 47(8): 81−90. doi: 10.6041/j.issn.1000-1298.2016.08.012

    Sun S M, An Q X, Yang P L, et al. Effect of irrigation depth on root distribution and water use efficiency of jujube under indirect subsurface drip irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(8): 81−90. doi: 10.6041/j.issn.1000-1298.2016.08.012
    [14]
    康峰, 仝思源, 张汉石, 等. 苹果枝条往复式切割剪枝参数分析与试验[J]. 农业工程学报, 2020, 36(16): 8.

    Kang F, Tong S Y, Zhang H S, et al. Analysis and experiments of reciprocating cutting parameters for apple tree branches[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(16): 8.
  • Related Articles

    [1]Zou Xuge, Wang Yin, Wang Jianming, Qu Mengjun, Zhu Weilin, Zhao Hang, Si Jianhua, Li Jingwen. Coordination and trade-off of leaf functional traits in Populus euphratica and their response to tree age and soil factors[J]. Journal of Beijing Forestry University, 2024, 46(5): 82-92. DOI: 10.12171/j.1000-1522.20220522
    [2]Zhang Yue, Tian Qing, Huang Rong. Responses of typical plant functional traits among summer-flowering tree species in heterogeneous city habitats in Lanzhou City of northwestern China[J]. Journal of Beijing Forestry University, 2023, 45(10): 90-99. DOI: 10.12171/j.1000-1522.20210476
    [3]Zhang Rishi, Huang Zhenge, He Bin, Xie Minyang, Zhou Gang, Wei Mingbao. Biomass accumulation and productivity changes of Taiwania flousiana plantation at different age stages in northwestern Guangxi, southern China[J]. Journal of Beijing Forestry University, 2021, 43(11): 20-27. DOI: 10.12171/j.1000-1522.20200107
    [4]Ren Hao, Gao Guoqiang, Ma Yaoyuan, Li Zuwang, Gu Jiacun. Root nitrogen uptake and its relationship with root morphological and chemical traits in Pinus koraiensis at different ages[J]. Journal of Beijing Forestry University, 2021, 43(10): 65-72. DOI: 10.12171/j.1000-1522.20200385
    [5]YAN Bo-qian, LIN Wan-zhong, LIU Qi-jing, YU Jian. Age-dependent radial growth responses of Larix chinensis to climatic factors in Qinling Mountains, northwestern China[J]. Journal of Beijing Forestry University, 2017, 39(9): 58-65. DOI: 10.13332/j.1000-1522.20170161
    [6]YANG Li-xue, WANG Hai-nan, FAN Jing. Effects of donor tree ages and plant growth regulators on the softwood cutting propagation of Hippophae rhamnoides[J]. Journal of Beijing Forestry University, 2011, 33(6): 107-111.
    [7]HU Yun-yun, KANG Xin-gang, GAO Yan, FENG Qi-xiang, YAO Jing-chun3, WANG Zhuo-hui. Variation of tree age for natural spruce-fir-broadleaved forests and estimation precision.[J]. Journal of Beijing Forestry University, 2011, 33(4): 22-27.
    [8]XING Mei-jun, YANG Gang, HUANG Xin-yuan, WANG Zhong-zhi. Defining physiological age of plant organs[J]. Journal of Beijing Forestry University, 2010, 32(4): 181-185.
    [9]HOU Zheng-yang, , XU Qing, FENG Zhong-ke. New framework of forest management in the new age.[J]. Journal of Beijing Forestry University, 2008, 30(增刊1): 300-305.
    [10]ZHOU Dan-hui, HE Hong-shi, LI Xiu-zhen, ZHOU Chun-hua, WANG Xu-gao, CHEN Hong-wei. Potential responses of different stand age classes to climate changes in the Xiaoxinganling Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2007, 29(4): 110-117. DOI: 10.13332/j.1000-1522.2007.04.024
  • Cited by

    Periodical cited type(27)

    1. 佟富春,吴智华,林瑞雪,吴晓君,邓惠方,黄子峻,李仁杰,栾军伟. 毛竹扩张对南亚热带常绿阔叶林土壤跳虫群落特征的影响. 中南林业调查规划. 2024(01): 51-57+70 .
    2. 应益山,凡莉莉,陈双林,郭子武,胡瑞财. 苦竹扩张茶园过程中茶树叶片性状及其异速生长关系变化特征. 竹子学报. 2024(02): 50-57 .
    3. 汪忠华,陈双林,胡瑞财,郭子武,江秀琴,凡莉莉. 苦竹向茶园扩张后不同年龄立竹叶片的功能性状变化特征研究. 西南林业大学学报(自然科学). 2024(05): 25-34 .
    4. 陈禹锦,于芬,国春策,杨光耀,张文根. 基于MaxEnt生态位模型的毛竹全球潜在适生区预测与分析. 世界竹藤通讯. 2024(05): 47-58 .
    5. 董亚文,谢燕燕,陈双林,郭子武,张景润,汪舍平. 林下植被演替过程中毛竹枝叶形态质量和抽枝展叶效率变化特征. 植物科学学报. 2023(04): 437-446 .
    6. 周德中,周小枫,王绍剑,刘骏,王涓,李怡. 基于文献计量学的毛竹扩张研究现状可视化分析. 生物灾害科学. 2023(04): 519-528 .
    7. 蔡世锋. 木荷与杉木混交对林木生长及叶功能性状的影响. 福建林业科技. 2023(04): 55-61 .
    8. 佟富春,吴智华,林瑞雪,吴晓君,邓惠方,袁千允,栾军伟,肖以华. 毛竹扩张对土壤甲螨群落结构的影响. 东北林业大学学报. 2022(02): 59-64 .
    9. 阮宇,胡景涛,肖国生,李俊清,任凭. 中山杉功能性状适应三峡库区消落带研究. 生态学报. 2022(07): 2921-2930 .
    10. 夏恩龙,农珺清,魏松坡,刘希珍,刘广路. 毛竹向阔叶林扩展过程中土壤养分变化特征. 生态环境学报. 2022(06): 1110-1117 .
    11. 程明圣,邹娜. 毛竹扩张对森林生态的影响及其管控研究进展. 江汉大学学报(自然科学版). 2021(03): 49-55 .
    12. 陈禹锦,罗喻才,于芬,杨光耀,张文根. 气候变化情景下毛竹潜在分布及动态预测. 世界竹藤通讯. 2021(03): 5-14 .
    13. 何玉友,陈双林,郭子武,张玮,汪舍平. 不同弃管年限毛竹林立竹叶片功能性状的变化特征. 福建农林大学学报(自然科学版). 2021(05): 641-648 .
    14. 黄彪,刘广路,范少辉,刘希珍,冯云,农珺清,申景昕. 毛竹向阔叶林扩展过程细根可塑性变化. 中南林业科技大学学报. 2021(10): 11-19 .
    15. 王敬哲,陈志强,陈志彪,潘宗涛. 南方红壤侵蚀区不同植被恢复年限下芒萁叶功能性状对土壤因子的响应. 生态学报. 2020(03): 900-909 .
    16. 郭雯,张建,漆良华,商泽安,王锐,杨畅. 毛竹及其变种叶功能性状与影响因素. 森林与环境学报. 2020(03): 260-268 .
    17. 张秀芳,穆振北,林美娇,江淼华,巩嘉欣,游巍斌. 琅岐岛4种优势植物叶功能性状及其影响因子. 应用与环境生物学报. 2020(03): 667-673 .
    18. 池鑫晨,宋超,朱向涛,王楠,王晓雨,白尚斌. 毛竹入侵常绿阔叶林对土壤活性有机碳氮的动态影响. 生态学杂志. 2020(07): 2263-2272 .
    19. 钟雅琪,钟全林,李宝银,余华,徐朝斌,程栋梁,乐新贵,郑文婷. 毛竹扩张对亚热带常绿阔叶林主要树种叶结构型性状的影响. 生态学报. 2020(14): 5018-5028 .
    20. 张秀梅,许建新,何新杰,张朝铖,沈彦会,张竞元. 高温胁迫对洋竹草生长及部分生理指标的影响. 江西农业学报. 2019(06): 40-44 .
    21. 童冉,周本智,姜丽娜,曹永慧,葛晓改,杨振亚. 毛竹入侵对森林植物和土壤的影响研究进展. 生态学报. 2019(11): 3808-3815 .
    22. 范少辉,申景昕,刘广路,冯云,刘希珍,蔡春菊. 毛竹向杉木林扩展对土壤养分含量及计量比的影响. 西北植物学报. 2019(08): 1455-1462 .
    23. 喻阳华,钟欣平,程雯. 黔西北地区优势树种叶片功能性状与经济谱分析. 森林与环境学报. 2018(02): 196-201 .
    24. 郭雯,徐瑞晶,漆良华,胡璇,丁霞,程昌锦,张建,雷刚. 竹类植物光合特性与叶片功能性状研究. 世界林业研究. 2018(04): 29-35 .
    25. 刘广路,范少辉,唐晓鹿,刘希珍. 毛竹向杉木林扩展过程中叶功能性状的适应策略. 林业科学. 2017(08): 17-25 .
    26. 刘广路,范少辉,蔡春菊,刘希珍. 毛竹向撂荒地扩展过程中叶功能性状变化. 南京林业大学学报(自然科学版). 2017(02): 41-46 .
    27. 刘广路,刘希珍,李雁冰,罗天磊,蔡春菊,范少辉. 毛竹向撂荒地扩展过程中细根性状变化特征. 热带作物学报. 2017(07): 1204-1209 .

    Other cited types(14)

Catalog

    Article views (367) PDF downloads (57) Cited by(41)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return