• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Xuesen, Li Na, Zhang Xueyun, Xiao Li, Jiang Lü, Luo Le, Yu Chao, Zhang Qixiang. Phenotypic variation and diversity of natural Rosa persica populations in Xinjiang of northwestern China[J]. Journal of Beijing Forestry University, 2024, 46(2): 51-61. DOI: 10.12171/j.1000-1522.20220525
Citation: Liu Xuesen, Li Na, Zhang Xueyun, Xiao Li, Jiang Lü, Luo Le, Yu Chao, Zhang Qixiang. Phenotypic variation and diversity of natural Rosa persica populations in Xinjiang of northwestern China[J]. Journal of Beijing Forestry University, 2024, 46(2): 51-61. DOI: 10.12171/j.1000-1522.20220525

Phenotypic variation and diversity of natural Rosa persica populations in Xinjiang of northwestern China

More Information
  • Received Date: December 28, 2022
  • Revised Date: January 14, 2023
  • Accepted Date: December 19, 2023
  • Available Online: December 26, 2023
  • Objective 

    Rosa persica, the only single-leaf species of Rosa, is an important material for rose breeding. It is mainly distributed in northern Xinjiang of northwestern China, but it is at risk of extinction due to human damage and environmental changes. This study analyzed the phenotypic diversity of Rosa persica and explored the rule of its phenotypic variation, aiming to provide theoretical guidance for better protection and utilization of Rosa persica germplasm resources.

    Method 

    In this study, 270 individual plants from 9 natural populations of Rosa persica were used as research materials, and the data of 19 phenotypic traits were collected. Nested analysis of variance, Pearson correlation analysis, principal component analysis and cluster analysis were used to explore the phenotypic variation and diversity level of the plants.

    Result 

    (1) The phenotypic diversity of 9 natural populations was higher, and the mean coefficient of variation and Shannon diversity index of 19 phenotypic traits was 15.90% and 2.031, respectively. The phenotypic coefficient of variation of 9 populations ranged from 10.32% (P4) to 13.19% (P8), showing moderate variation. The Shannon diversity index ranged from 1.274 (P5) to 1.825 (P8), and the P8 population showed a high diversity level. (2) The 19 phenotypic traits had significant differences between populations and within populations (P < 0.01). The average phenotypic differentiation coefficient between populations was 41.23%, and the phenotypic variation was mainly from within populations. (3) Pearson correlation analysis showed that there were significant correlations between flower diameter and leaf area, petal area and flower spot percentage. (4) A total of 5 principal components were extracted from the principal component analysis, with a cumulative contribution rate of 80.463%, and the two principal components with the largest contribution rate mainly explained the characteristics of flowers and leaves. (5) The 9 populations of Rosa persica could be divided into 2 groups by cluster analysis. The first group was large flower group, including P6, P7 and P8, and the second group was small flower group, including P1, P2, P3, P4, P5 and P9.

    Conclusion 

    The phenotypic diversity and variation level of Rosa persica in Xinjiang are high, and the sources of variation are mainly concentrated in the population.

  • [1]
    张晓龙, 邓童, 罗乐, 等. 单叶蔷薇潜在适宜区预测及其渐危机制研究[J]. 西北植物学报, 2021, 41(9): 1570−1582.

    Zhang X L, Deng T, Luo L, et al. Prediction of potential suitable area of Rosa persica and study on its vulnerable mechanism[J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(9): 1570−1582.
    [2]
    中国科学院中国植物志委员会. 中国植物志[M]. 37卷. 北京: 科学出版社, 1985: 370−371.

    The Flora of China Committee in Chinese Academy of Sciences. Flora of China[M]. Vol. 37. Beijing: Science Press, 1985: 370−371.
    [3]
    国家林业和草原局. 国家重点保护野生动物名录[M]. 北京:林业出版社,2021.

    National Forestry and Grassland Administration. List of wildlife under state key protection[M]. Beijing: China Forestry Publishing House, 2021.
    [4]
    Harkness J. Breeding with Hulthemia persica ( Rosa persica)[J]. The Australian Rose Annual, 1977, 62: 123−130.
    [5]
    刘鑫颖, 冯策婷, 杨晨,等. 带花斑现代月季育种研究进展[J]. 江苏农业学报, 2022, 38(5): 1432−1440.

    Liu X Y, Feng C T, Yang C, et al. Research progress on breeding of modern rose cultivars with floral blotches[J]. Jiangsu Journal of Agricultural Sciences, 2022, 38(5): 1432−1440.
    [6]
    Basaki T, Mardil M, Kermani M J, et al. Assessing Rosa persica genetic diversity using amplified fragment length polymorphisms analysis[J]. Scientia Horticulturae, 2009, 120(4): 538−543. doi: 10.1016/j.scienta.2008.12.001
    [7]
    Samiei L, Naderi R, Khalighi A, et al. Genetic diversity and genetic similarities between Iranian rose species[J]. Journal of Horticultural Science & Biotechnology, 2010, 85(3): 231−237.
    [8]
    Amini M, Rineh M K, Yazdani M. Study of the chemical compositions of Iranian rose flower essence oil ( Rosa persica)[J]. Bulgarian Chemical Communications, 2016, 48: 27−29.
    [9]
    Sadraei H, Asghari G, Jalali F. Assessment of hydroalcoholic and hexane extracts of Rosa persica Mich. flower on rat ileum spasm[J]. Research in Pharmaceutical Sciences, 2016, 11(2): 160−167.
    [10]
    Moradkhani S, Rezaei-Dehghanzadeh T, Nili-Ahmadabadi A. Rosa persica hydroalcoholic extract improves cadmium-hepatotoxicity by modulating oxidative damage and tumor necrosis factor-alpha status[J]. Environmental Science and Pollution Research, 2020, 27(25): 31259−31268. doi: 10.1007/s11356-020-09450-4
    [11]
    贺海洋. 单叶蔷薇花形态建成与繁殖生物学研究[D]. 北京: 中国农业大学, 2005.

    He H Y. Reproductive biology and flora morphogenesis of Rosa persica[D]. Beijing: China Agricultural University, 2005.
    [12]
    贺海洋, 朱金启, 高琪洁, 等. 单叶蔷薇的花芽形态分化[J]. 园艺学报, 2005, 32(2): 331−334.

    He H Y, Zhu J Q, Gao Q J, et al. Morphological differentiation of the flower bud of Rosa persica[J]. Acta Horticulturae Sinica, 2005, 32(2): 331−334.
    [13]
    朱金启. 单叶蔷薇生殖生物学及其繁殖方法研究[D]. 乌鲁木齐: 新疆农业大学, 2003.

    Zhu J Q. Studies on reproductive biology and the propagating methods of Rosa persica[D]. Urumqi: Xinjiang Agricultural University, 2003.
    [14]
    惠俊爱, 张霞, 王绍明. 新疆野生单叶蔷薇的显微结构特征[J]. 江苏农业科学, 2014, 42(3): 126−127.

    Hui J A, Zhang X, Wang S M. Microstructure of wild Rosa persica in Xinjiang[J]. Jiangsu Agricultural Sciences, 2014, 42(3): 126−127.
    [15]
    惠俊爱, 张霞, 王绍明. 新疆野生单叶蔷薇的染色体核型分析[J]. 山东林业科技, 2013, 43(4): 58−60.

    Hui J A, Zhang X, Wang S M. Karyotype analysis of Xinjiang wild Rosa persica[J]. Journal of Shandong Forestry Science and Technology, 2013, 43(4): 58−60.
    [16]
    罗乐, 张启翔, 于超, 等. 29个蔷薇属植物的孢粉学研究[J]. 西北植物学报, 2017, 37(5): 885−894.

    Luo L, Zhang Q X, Yu C, et al. Pollen morphology analysis of 29 Rosa germplasm[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(5): 885−894.
    [17]
    张晓龙, 邓童, 刘学森, 等 . 单叶蔷薇幼苗根系对不同潜水埋深的适应机制[J]. 生态学报, 2022, 42(15): 6137−6149.

    Zhang X L, Deng T, Liu X S, et al. Adaptability mechanism of Rosa persica seedlings root in different groundwater levels[J]. Acta Ecologica Sinica, 2022, 42(15): 6137−6149.
    [18]
    欧哲, 杨宇, 冯策婷, 等. 单叶蔷薇远缘杂交中花粉管生长的荧光显微观察[J]. 东北农业大学学报, 2022, 53(10): 18−26.

    Ou Z, Yang Y, Feng C T, et al. Fluorescent microscope observation on growth of pollen tube on distant hybridization in Rosa persica[J]. Journal of Northeast Agricultural University, 2022, 53(10): 18−26.
    [19]
    李世超, 杨树华, 刘海星, 等. 新疆天山地区弯刺蔷薇居群表型多样性的研究[J]. 园艺学报, 2014, 41(8): 1723−1730.

    Li S C, Yang S H, Liu H X, et al. Phenotypic diversity of Rosa beggeriana populations in Tianshan Mountains of Xinjiang[J]. Acta Horticulturae Sinica, 2014, 41(8): 1723−1730.
    [20]
    向贵生, 王其刚, 蹇洪英, 等. 云南川滇蔷薇天然居群表型多样性分析[J]. 云南大学学报(自然科学版), 2018, 40(4): 786−794.

    Xiang G S, Wang Q G, Jian H Y, et al. Phenotypic diversity of natural populations of Rosa soulieana in Yunnan[J]. Journal of Yunnan University (Natural Sciences Edition), 2018, 40(4): 786−794.
    [21]
    付荷玲, 王琛瑶, 张晓龙, 等. 梁王山大花香水月季居群表型多样性分析[J]. 西北植物学报, 2021, 41(5): 854−862. doi: 10.7606/j.issn.1000-4025.2021.05.0854

    Fu H L, Wang C Y, Zhang X L, et al. Phenotypic diversity of Rosa odorata var. gigantea populations in Liangwang Mountains[J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(5): 854−862. doi: 10.7606/j.issn.1000-4025.2021.05.0854
    [22]
    国家林业局. 植物新品种特异性、一致性、稳定性测试指南 蔷薇属: LY/T 1868—2010[S]. 北京: 中国标准出版社, 2010.

    State Forestry Administration. Guidelines for testing specificity, consistency and stability of new plant varieties. Rosa: LY/T 1868−2010 [S]. Beijing: Standards Press of China, 2010.
    [23]
    李斌, 顾万春, 卢宝明. 白皮松天然群体种实性状表型多样性研究[J]. 生物多样性, 2002, 10(2): 181−188.

    Li B, Gu W C, Lu B M. A study on phenotypic diversity of seeds and cones characteristics in Pinus bungeana[J]. Biodiversity Science, 2002, 10(2): 181−188.
    [24]
    Zhao X, Li Y, Mi Z, et al. Comparative analysis of growth and photosynthetic characteristics of ( Populus simonii × P. nigra) × ( P. nigra × P. simonii) hybrid clones of different ploidides[J]. PLoS One, 2015, 10(4): e0119259. doi: 10.1371/journal.pone.0119259
    [25]
    秦之旷, 刘娜, 周霞, 等. 中亚热带赤皮青冈天然种群表型多样性分析[J]. 广西植物, 2023, 43(9): 1622−1635.

    Qin Z K, Liu N, Zhou X, et al. Phenotypic diversity of Quercus gilva natural populations in middle subtropical China[J]. Guihaia, 2023, 43(9): 1622−1635.
    [26]
    钱迎倩, 马克平. 生物多样性研究的原理与方法[M]. 北京: 中国科学技术出版社, 1994: 123−140.

    Qian Y Q, Ma K P. Principles and methods of biodiversity research[M]. Beijing: China Science and Technology Press, 1994: 123−140.
    [27]
    周宁宁, 唐开学, 邱显钦,等. 云南峨眉蔷薇天然群体的表型多样性[J]. 西南农业学报, 2009, 22(6): 1732−1736.

    Zhou N N, Tang K X, Qiu X Q, et al. Phenotypic diversity of natural populations in Rosa omeiensis Rolfe in Yunnan Province[J]. Southwest China Journal of Agricultural Sciences, 2009, 22(6): 1732−1736.
    [28]
    杨树华, 郭宁, 葛维亚,等. 新疆东天山地区宽刺蔷薇居群表型多样性分析[J]. 植物遗传资源学报, 2013, 14(3): 455−461.

    Yang S H, Guo N, Ge W Y, et al. Phenotypic diversity of Rosa platyacantha populations in eastern Tianshan Mountains of Xinjiang[J]. Journal of Plant Genetic Resources, 2013, 14(3): 455−461.
    [29]
    郭宁, 杨树华, 葛维亚,等. 新疆天山山脉地区疏花蔷薇天然居群表型多样性分析[J]. 园艺学报, 2011, 38(3): 495−502.

    Guo N, Yang S H, Ge W Y, et al. Phenotypic diversity of natural polulations of Rosa laxa in Tianshan Mountains of Xinjiang[J]. Acta Horticulturae Sinica, 2011, 38(3): 495−502.
    [30]
    李树发, 李纯佳, 蹇洪英,等. 云南香格里拉特有易危植物中甸刺玫的表型多样性[J]. 园艺学报, 2013, 40(5): 924−932.

    Li S F, Li C J, Jian H Y, et al. Studies on phenotypic diversity of vulnerable Rosa praelucens endemic to Shangrila, Yunnan[J]. Acta Horticulturae Sinica, 2013, 40(5): 924−932.
    [31]
    童冉. 野生玫瑰表型多样性研究[D]. 泰安: 山东农业大学, 2017.

    Tong R. The study on phenotypic diversity in Rosa rugosa[D]. Tai’an: Shandong Agricultural University, 2017.
    [32]
    徐豪, 刘明国, 董胜君,等. 东北杏种质资源多样性及其地理变化[J]. 植物生态学报, 2019, 43(7): 585−600. doi: 10.17521/cjpe.2019.0060

    Xu H, Liu M G, Dong S J, et al. Diversity and geographical variations of germplasm resources of Armeniaca mandshurica[J]. Chinese Journal of Plant Ecology, 2019, 43(7): 585−600. doi: 10.17521/cjpe.2019.0060
    [33]
    邓童, 张晓龙, 刘学森,等. 单叶蔷薇居群叶功能性状变异特征分析[J/OL]. 分子植物育种, 1−26[2023−12−19]. http://kns.cnki.net/kcms/detail/46.1068.S.20220304.1000.002.html.

    Deng T, Zhang X L, Liu X S, et al. Variation characteristics of leaf functional trait in Rosa persica populations[J/OL]. Molecular Plant Breeding, 1−26[2023−12−19]. http://kns.cnki.net/kcms/detail/46.1068.S.20220304.1000.002.html.
    [34]
    杨维泽, 金航, 李晚谊,等. 濒危植物云南黄连不同居群表型多样性研究[J]. 云南大学学报(自然科学版), 2013, 35(5): 719−726.

    Yang W Z, Jin H, Li W Y, et al. Phenotypic diversity of different populations of the endangered plant Coptis teeta[J]. Journal of Yunnan University, 2013, 35(5): 719−726.
    [35]
    李洪果, 陈达镇, 许靖诗,等. 濒危植物格木天然种群的表型多样性及变异[J]. 林业科学, 2019, 55(4): 69−83.

    Li H G, Chen D Z, Xu J S, et al. Phenotypic diversity and variation in natural populations of Erythrophleum fordii, an endangered plant species[J]. Scientia Silvae Sinicae, 2019, 55(4): 69−83.
  • Related Articles

    [1]Xu Jingya, Liu Tian, Zang Guozhang, Zheng Yiqi. Prediction of suitable areas of Eremochloa ophiuroides in China under different climate scenarios based on MaxEnt model[J]. Journal of Beijing Forestry University, 2024, 46(3): 91-102. DOI: 10.12171/j.1000-1522.20230022
    [2]He Xin, Ma Wenxu, Zhao Tiantian, Yang Xiaohong, Ma Qinghua, Liang Lisong, Wang Guixi, Yang Zhen. Ecological differentiation and changes in historical distribution of Corylus heterophylla species complex since the last interglacial[J]. Journal of Beijing Forestry University, 2023, 45(4): 11-23. DOI: 10.12171/j.1000-1522.20210350
    [3]Zhou Yuting, Ge Xuezhen, Zou Ya, Guo Siwei, Wang Tao, Tao Jing, Zong Shixiang. Prediction of the potential geographical distribution of Hylurgus ligniperda at the global scale and in China using the Maxent model[J]. Journal of Beijing Forestry University, 2022, 44(11): 90-99. DOI: 10.12171/j.1000-1522.20210345
    [4]Liu Wei, Zhao Runan, Sheng Qianqian, Geng Xingmin, Zhu Zunling. Geographical distribution and potential distribution area prediction of Paeonia jishanensis in China[J]. Journal of Beijing Forestry University, 2021, 43(12): 83-92. DOI: 10.12171/j.1000-1522.20200360
    [5]Wang Yanjun, Gao Tai, Shi Juan. Prediction and analysis of the global suitability of Lymantria dispar based on MaxEnt[J]. Journal of Beijing Forestry University, 2021, 43(9): 59-69. DOI: 10.12171/j.1000-1522.20200416
    [6]Huang Ruizhi, Yu Tao, Zhao Hui, Zhang Shengkai, Jing Yang, Li Junqing. Prediction of suitable distribution area of the endangered plant Acer catalpifolium under the background of climate change in China[J]. Journal of Beijing Forestry University, 2021, 43(5): 33-43. DOI: 10.12171/j.1000-1522.20200254
    [7]Huang Mengyi, Zhao Jiaqiang, Shi Juan. Predicting occurrence tendency of Leptocybe invasa in China based on MaxEnt[J]. Journal of Beijing Forestry University, 2020, 42(11): 64-71. DOI: 10.12171/j.1000-1522.20190053
    [8]Yang Furong, Qi Yaodong, Liu Haitao, Xie Caixiang, Song Jingyuan. Global potential suitable area and ecological characteristics of Moringa oleifera[J]. Journal of Beijing Forestry University, 2020, 42(10): 45-54. DOI: 10.12171/j.1000-1522.20190375
    [9]ZHANG Chao, CHEN Lei, TIAN Cheng-ming, LI Tao, WANG Rong, YANG Qi-qing. Predicting the distribution of dwarf mistletoe (Arceuthobium sichuanense) with GARP and MaxEnt models[J]. Journal of Beijing Forestry University, 2016, 38(5): 23-32. DOI: 10.13332/j.1000-1522.20150516
    [10]SONG Yan, JI Jing-jun, ZHU Lin-hong, ZHANG Shi-ying. Characteristics of Asian-African summer monsoon pre-and post-global warming in mid-1980s[J]. Journal of Beijing Forestry University, 2007, 29(2): 24-33.
  • Cited by

    Periodical cited type(4)

    1. 齐婉芯,陈婷婷,宋佳力,安新民. 基于转基因741杨与新疆杨杂交创制抗虫非整倍体毛白杨新种质. 北京林业大学学报. 2024(12): 92-102 . 本站查看
    2. 汪格格,邱诗蕊,张琳晗,杨国伟,徐小云,汪爱羚,曾淑华,刘雅洁. 异源三倍体普通烟草(SST)减数分裂期的分子细胞学研究. 生物技术通报. 2023(02): 183-192 .
    3. 刘宣晨,刘彩霞,张世凯,李开隆,曲冠证. 大青杨×小黑杨异源三倍体新种质创制. 东北林业大学学报. 2023(10): 19-27 .
    4. 庞俊秀,薛惠芬,刘婉秋,龙鸿. 三倍体丹参杂交种的花粉形态研究. 广西植物. 2021(12): 1996-2003 .

    Other cited types(3)

Catalog

    Article views (333) PDF downloads (52) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return