• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Xu Gexi, Yu Rongbing, Yang Changxu, Liu Huaijun, Zhou Zhuli, Shen Yanjing. Prediction of invasion risk of pine wilt disease based on GIS spatial technology and MaxEnt model in western Sichuan Province of southwestern China[J]. Journal of Beijing Forestry University, 2023, 45(9): 104-115. DOI: 10.12171/j.1000-1522.20220527
Citation: Xu Gexi, Yu Rongbing, Yang Changxu, Liu Huaijun, Zhou Zhuli, Shen Yanjing. Prediction of invasion risk of pine wilt disease based on GIS spatial technology and MaxEnt model in western Sichuan Province of southwestern China[J]. Journal of Beijing Forestry University, 2023, 45(9): 104-115. DOI: 10.12171/j.1000-1522.20220527

Prediction of invasion risk of pine wilt disease based on GIS spatial technology and MaxEnt model in western Sichuan Province of southwestern China

More Information
  • Received Date: December 28, 2022
  • Revised Date: February 19, 2023
  • Available Online: August 03, 2023
  • Published Date: September 24, 2023
  •   Objective  In China, the pine wood nematode (Bursaphelenchus xylophilus) takes Monochamus alternatus and M. saltuarius as propagative materials, leading to catastrophic damage to forests since they infect the forest trees. Predicting the invasion risk of pine wilt disease has critical referred values for forest protection and quality improvement, and as a result, it is related to national ecological security and carbon neutralization.
      Method  Based on the data of 24 distribution points for M. saltuarius and another 55 points for dead pine trees (hosts of M. saltuarius before eclosion) as well as 20 abiotic and biotic variables in Lixian County, Sichuan Province of southwestern China, we predicted the potentially suitable distribution areas for M. saltuarius and dead pine trees using GIS analytical tool and the MaxEnt model. Furthermore, the MaxEnt jack-knife of variable importance was applied to analyze the influence of main factors on the areas of M. saltuarius and dead pine trees, respectively. Considering that the occurrence of pine wilt disease at least requires both elements (i.e., M. saltuarius and pine trees), we evaluated the invasion risk of pine wilt disease by predicting the potential occurred regions of B. xylophilus based on weighting and integrating data of the occurrence of M. saltuarius and dead pine trees generated by MaxEnt models.
      Result  Mean area values under curves of the suitable distribution areas of M. saltuarius and dead pines were 0.993 and 0.969, respectively from the MaxEnt models, which indicated that the model predictions were ideal and can be used to forecast the potential invasion risk of pine wilt disease. Assessing the invasion risk of pine wilt disease demonstrated that the risk was the highest when mean annual temperature ranged from 7.8 ℃ to 10.1 ℃ and the precipitation in the wettest season was 348 mm to 358 mm as well as within 1.5 km from the nearest residential point. The model estimated that the high-risk area of pine wilt disease was 10 616 hm2, accounting for 7.1% of the total area of coniferous forests in the county, which was distributed zonally along the roads across villages and towns.
      Conclusion  Using GIS spatial technology and MaxEnt modelling can benefit the prediction of the invasion risk of pine wilt disease for the forest zones in western Sichuan Province. However, there still exists great uncertainty in the transmission and occurrence of pine wilt disease due to economic construction and climate change. Therefore, it is necessary to strengthen the monitoring of pine wood nematodes (B. xylophilus) and their propagative materials along the residential areas and roads, promoting the preventive and controlled emergency response to ensure the ecological security of forest zones in western Sichuan Province.
  • [1]
    孙红梅, 刘书剑. 黔西南州松材线虫病入侵规律及防范对策探究[J]. 植物检疫, 2019, 33(4): 13−20.

    Sun H M, Liu S J. Research on the invasion rules and prevention measures of pine wilt disease in Qianxinan Prefecture[J]. Plant Quarantine, 2019, 33(4): 13−20.
    [2]
    叶建仁. 松材线虫病在中国的流行现状、防治技术与对策分析[J]. 林业科学, 2019, 55(9): 1−10.

    Ye J R. Epidemic status of pine wilt didease in China and its prevention and control techniques and counter measures[J]. Scientia Silvae Sinicae, 2019, 55(9): 1−10.
    [3]
    李计顺, 潘佳亮, 刘超, 等. 2020年全国松材线虫病疫情流行情况分析[J]. 中国森林病虫, 2021, 40(4): 1−4.

    Li J S, Pan J L, Liu C, et al. Analysis of the epidemic situation of pine wilt disease in China in 2020[J]. Forest Pest and Disease, 2021, 40(4): 1−4.
    [4]
    张旭臣, 时勇, 范立淳, 等. 大连市松材线虫病疫区天牛种类调查[J]. 中国森林病虫, 2021, 40(3): 36-39.

    Zhang X C, Shi Y, Fan L C, et al. Investigation on long-horned beetle species in pine wilt disease epidemic area in Dalian[J]. Forest Pest and Disease, 2021, 40(3): 36−39.
    [5]
    Brockerhoff E G, Barbaro L, Castagneyrol B, et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services[J]. Biodiversity and Conservation, 2017, 26(13): 3005−3035. doi: 10.1007/s10531-017-1453-2
    [6]
    张旭, 赵京京, 闫峻, 等. 2017年中国大陆松材线虫病灾害经济损失评估[J]. 北京林业大学学报, 2020, 42(10): 96−106.

    Zhang X, Zhao J J, Yan J, et al. Economic loss assessment of pine wilt disease in mainland China in 2017[J]. Journal of Beijing Forestry University, 2020, 42(10): 96−106.
    [7]
    Rutherford T, Mamiya Y, Webster J. Nematode-induced pine wilt disease: factors influencing its occurrence and distribution[J]. Forest Science, 1990, 36(1): 145−155.
    [8]
    Rutherford T, Webster J. Distribution of pine wilt disease with respect to temperature in North America, Japan, and Europe[J]. Canadian Journal of Forest Research, 1987, 17(9): 1050−1059. doi: 10.1139/x87-161
    [9]
    Hirata A, Nakamura K, Nakao K, et al. Potential distribution of pine wilt disease under future climate change scenarios[J/OL]. PLoS One, 2017, 12(8): e0182837[2022−10−20]. https://doi.org/10.1371/journal.pone.0182837.
    [10]
    Hunt D. Pine wilt disease: a worldwide threat to forest ecosystems[J]. Nematology, 2009, 11(2): 315−316. doi: 10.1163/156854109X404553
    [11]
    Takeuchi Y, Futai K. Avirulent isolate of the pinewood nematode Bursaphelenchus xylophilus, survives 7 months in asymptomatic host seedlings[J]. Forest Pathology, 2007, 37(5): 289−291. doi: 10.1111/j.1439-0329.2007.00508.x
    [12]
    陈卫东. 厦门市松材线虫病的危险性评估及松墨天牛的种群动态[J]. 安徽农学通报, 2020, 26(24): 120−123. doi: 10.3969/j.issn.1007-7731.2020.24.044

    Chen W D. Risk assessment of pine wood nematode disease and population dynamics of Monochamus alternatus in Xiamen City[J]. Anhui Agricultural Science Bulletin, 2020, 26(24): 120−123. doi: 10.3969/j.issn.1007-7731.2020.24.044
    [13]
    阮成俊, 谈家金, 叶建仁, 等. 越南枯死松树症状特征和体内寄生线虫种类调查[J]. 南京林业大学学报(自然科学版), 2016, 40(1): 44−52.

    Ruan C J, Tan J J, Ye J R, et al. A survey on the symptoms and endoparasite of the dead pine trees in Vietnam[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40(1): 44−52.
    [14]
    廖太林, 叶建仁. 松树枯梢病的发生与土壤条件的关系[J]. 南京林业大学学报(自然科学版), 2005, 29(6): 126−128.

    Liao T L, Ye J R. Relationship between the epidemic of pine shoot blight and soil element[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2005, 29(6): 126−128.
    [15]
    高瑞贺, 冀卫荣, 李宏, 等. 松材线虫病疫情指数与气候因素之间的关系[J]. 山西农业大学学报(自然科学版), 2019, 39(5): 32−40.

    Gao R H, Ji W R, Li H, et al. The relationship between pine wilt disease occurrence and climate variation[J]. Journal of Shanxi Agricultural University (Natural Sciences Edition), 2019, 39(5): 32−40.
    [16]
    Maehara N, Aikawa T, Kanzaki N. Relationship between pine wilt disease development in asymptomatic carrier trees of Bursaphelenchus xylophilus (Nematoda: Apelenchoididae) and their use by Monochamus alternatus (Coleoptera: Cerambycidae)[J]. Applied Entomology and Zoology, 2015, 50(1): 33−39. doi: 10.1007/s13355-014-0299-2
    [17]
    施雯, 朱恩骄, 王宇宸, 等. 基于MaxEnt模型预测戴褐臂金龟在中国的潜在适生区[J]. 生态学杂志, 2021, 40(9): 2936−2944.

    Shi W, Zhu E J, Wang Y C, et al. Prediction of potentially suitable distribution area of Propomacrus davidi Deyrolle in China based on MaxEnt model[J]. Chinese Journal of Ecology, 2021, 40(9): 2936−2944.
    [18]
    吴思俊, 朱天辉, 谯天敏. 基于物种分布模型对未来气候变化下云南松毛虫在四川省适生区的预测[J]. 植物保护学报, 2021, 40(9): 2936−2944.

    Wu S J, Zhu T H, Qiao T M. Projections of Yunnan pine moth Dendrolimus houi in Sichuan Province under future climate change based on species distribution model[J]. Journal of Plant Protection, 2021, 40(9): 2936−2944.
    [19]
    Wittmann M E, Barnes M A, Jerde C L, et al. Confronting species distribution model predictions with species functional traits[J]. Ecology and Evolution, 2016, 6(4): 873−879. doi: 10.1002/ece3.1898
    [20]
    Moreno R, Zamora R, Molina J R, et al. Predictive modeling of microhabitats for endemic birds in South Chilean temperate forests using Maximum entropy (Maxent)[J]. Ecological Informatics, 2011, 6(6): 364−370. doi: 10.1016/j.ecoinf.2011.07.003
    [21]
    Phillips S J, Dudík M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation[J]. Ecography, 2008, 31(2): 161−175. doi: 10.1111/j.0906-7590.2008.5203.x
    [22]
    魏淑婷, 李涛, 林玉成. 基于MaxEnt模型预测四川省松材线虫的潜在适生区[J]. 四川动物, 2019, 38(1): 37−46.

    Wei S T, Li T, Lin Y C. Prediction of the potential distribution of Bursaphelenchus xylophilus in Sichuan Province using MaxEnt model[J]. Sichuan Journal of Zoology, 2019, 38(1): 37−46.
    [23]
    刘晓梅, 蒲永兰, 李宏群, 等. 基于MaxEnt模型的重庆松材线虫病潜在生境分析[J]. 三峡生态环境监测, 2017, 3(3): 75−80.

    Liu X M, Pu Y L, Li H Q, et al. A study on potential biotope of pine wilt disease in Chongqing by using MaxEnt model[J]. Ecology and Environmental Monitoring of Three Gorges, 2017, 3(3): 75−80.
    [24]
    韩阳阳, 王焱, 项杨, 等. 基于Maxent生态位模型的松材线虫在中国的适生区预测分析[J]. 南京林业大学学报(自然科学版), 2015, 39(1): 6−10.

    Han Y Y, Wang Y, Xiang Y, et al. Prediction of potential distribution of Bursaphelenchus xylophilus in China based on Maxent ecological niche model[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2015, 39(1): 6−10.
    [25]
    Xu G X, Chen H H, Shi Z M, et al. Mycorrhizal and rhizospheric fungal community assembly differs during subalpine forest restoration on the eastern Qinghai-Tibetan Plateau[J]. Plant and Soil, 2021, 458(1): 245−259.
    [26]
    杨元合, 石岳, 孙文娟, 等. 中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献[J]. 中国科学: 生命科学, 2022, 52(4): 534−574.

    Yang Y H, Shi Y, Sun W J, et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality[J]. Science China Life Science, 2022, 52(4): 534−574.
    [27]
    Zhou P, Luukkanen O, Tokola T, et al. Vegetation dynamics and forest landscape restoration in the upper Min River Watershed, Sichuan, China[J]. Restoration Ecology, 2008, 16(2): 348−358. doi: 10.1111/j.1526-100X.2007.00307.x
    [28]
    程功, 吕全, 冯益明, 等. 气候变化背景下松材线虫在中国分布的时空变化预测[J]. 林业科学, 2015, 51(6): 119−126.

    Cheng G, Lü Q, Feng Y M, et al. Temporal and spatial dynamic pattern of pine wilt disease distribution in China predicted under climate change scenario[J]. Scientia Silvae Sinicae, 2015, 51(6): 119−126.
    [29]
    陈欢欢, 许格希, 马凡强, 等. 川西亚高山暗针叶林及其采伐次生林林下分层谱系结构[J]. 林业科学, 2020, 56(7): 1−11.

    Chen H H, Xu G X, Ma F Q, et al. Phylogenetic structure of undergrowth layers across subalpine dark coniferous forests and their post-harvesting secondary forests in western Sichuan[J]. Scientia Silvae Sinicae, 2020, 56(7): 1−11.
    [30]
    杨楠, 马东源, 钟雪. 基于MaxEnt模型的四川王朗国家级自然保护区蓝马鸡栖息地适宜性评价[J]. 生态学报, 2020, 40(19): 7064−7072.

    Yang N, Ma D Y, Zhong X. Habitat suitability assessment of blue eared-pheasant based on MaxEnt modeling in Wanglang National Nature Reserve, Sichuan Province[J]. Acta Ecologica Sinica, 2020, 40(19): 7064−7072.
    [31]
    苏比奴尔·艾力, 热木图拉·阿卜杜克热木, 于苏云江·吗米提敏, 等. 基于MaxEnt模型的新疆鹅喉羚生境适宜性评价[J]. 野生动物学报, 2019, 40(1): 27−32.

    Eli S, Abdukerim R, Mamtimin Y, et al. Assessment of habitat suitability for Gazella subgutturosa in the Xinjiang based on the MaxEnt modeling[J]. Chinese Journal of Widelife, 2019, 40(1): 27−32.
    [32]
    王鑫, 任亦钊, 黄琴, 等. 基于GIS和Maxent模型的赤水河地区濒危植物桫椤生境适宜性评价[J]. 生态学报, 2021, 41(15): 6123−6133.

    Wang X, Ren Y Z, Huang Q, et al. Habitat suitability assessment of endangered plant Alsophila spinulosa in Chishui River area based on GIS and Maxent model[J]. Acta Ecologica Sinica, 2021, 41(15): 6123−6133.
    [33]
    吴曼菲, 胡湛波, 周岐海, 等. 基于MaxEnt模式的白头叶猴栖息地评价: 以广西崇左白头叶猴保护区为例[J]. 兽类学报, 2021, 41(1): 20−31.

    Wu M F, Hu Z B, Zhou Q H, et al. Habitat suitability assessment of the white-headed langur (Trachypithecus leucocephalus) based on MaxEnt modeling: a case study of the Chongzuo White-Headed Langur Nature Reserve, Guangxi[J]. Acta Theriologica Sinica, 2021, 41(1): 20−31.
    [34]
    季英超, 张秋梅, 周成刚, 等. 松材线虫病在山东省的风险分析[J]. 山东农业大学学报(自然科学版), 2021, 52(2): 219−223.

    Ji Y C, Zhang Q M, Zhou C G, et al. Risk analysis of pine wilt disease in Shandong Province[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2021, 52(2): 219−223.
    [35]
    喻三鹏, 田茂娟, 张念念, 等. 入侵植物飞机草在贵州的适生区预测及风险分析[J]. 西部林业科学, 2021, 50(4): 125−130.

    Yu S P, Tian M J, Zhang N N, et al. Prediction and risk analysis of suitable growth area ofinvasive plant Chromolaena odorata in Guizhou[J]. Journal of West China Forestry Science, 2021, 50(4): 125−130.
    [36]
    沈鹏, 李功权. 基于生态位因子模型的湖北省松材线虫病风险评估[J]. 浙江农林大学学报, 2021, 38(3): 560−566.

    Shen P, Li G Q. Risk assessment of Bursaphelenchus xylophilus in Hubei Province based on ecological niche factor analysis model[J]. Journal of Zhejiang A&F University, 2021, 38(3): 560−566.
    [37]
    理永霞, 张星耀. 松材线虫入侵扩张趋势分析[J]. 中国森林病虫, 2018, 37(5): 1−4.

    Li Y X, Zhang X Y. Analysis on the trend of invasion and expansion of Bursaphelenchus xylophilus[J]. Forest Pest and Disease, 2018, 37(5): 1−4.
    [38]
    李静. 林业典型病虫害的分析与预测: 以四川省阿坝州理县、茂县为例[D]. 成都: 电子科技大学, 2017.

    Li J. Analysis and forecast of typical forestry disease: taking Sichuan Province’s Lixian County and Maoxian County as examples [D]. Chengdu: University of Electronic Science and Technology of China, 2017.
    [39]
    潘佳亮, 姚翰文, 董赢谦, 等. 2019年全国松材线虫病疫情分析[J]. 中国森林病虫, 2021, 40(1): 32−37.

    Pan J L, Yao H W, Dong Y Q, et al. Analysis of the epidemic situation of pine wilt disease in China in 2019[J]. Forest Pest and Disease, 2021, 40(1): 32−37.
    [40]
    陈红艳. 林业典型病虫害遥感监测: 以四川省阿坝州理县、茂县为例[D]. 成都: 电子科技大学, 2017.

    Chen H Y. Remote sensing monitoring of typical pests and diseases in forstry: a case study in Lixian and Maoxian, Aba State of Sichuan Province[D]. Chengdu: University of Electronic Science and Technology of China, 2017.
    [41]
    叶江霞, 周汝良, 吴明山, 等. 云南省松墨天牛适生性空间模拟[J]. 林业科学研究, 2013, 26(4): 420−425.

    Ye J X, Zhou R L, Wu M S, et al. Spatial simulation of the adaptability of Monochamus alternatus Hope in Yunnan Pronvince[J]. Forest Research, 2013, 26(4): 420−425.
    [42]
    庞帅, 陈本文, 陈桂芳, 等. 基于松墨天牛种群动态及其影响因素分析的松材线虫病风险评价[J]. 西北农林科技大学学报(自然科学版), 2018, 46(9): 81−90.

    Pan S, Chen B W, Chen G F, et al. Risk assessment of pine wood nematode disease based on population dynamics and impact factors of Monochamus alternatus[J]. Journal of Northwest A&F University (Natural Science Edition), 2018, 46(9): 81−90.
    [43]
    徐瑞钧, 周汝良, 刘乾飞, 等. 气候变暖趋势下松墨天牛适生区分布模拟与预测[J]. 林业资源管理, 2020, 3(4): 109−116, 168.

    Xu R J, Zhou R L, Liu Q F, et al. Prediction and simulation of the suitable habitat of Monochamus alternatus under climate warming[J]. Forest Resources and Management, 2020, 3(4): 109−116, 168.
    [44]
    何善勇, 骆有庆, 温俊宝, 等. 气候变暖对油松毛虫幼虫越冬及上下树发生期的影响[J]. 应用昆虫学报, 2012, 49(5): 1231−1242. doi: 10.7679/j.issn.2095-1353.2012.181

    He S Y, Luo Y Q, Wen J B, et al. Influence of climate warming on overwintering behaviour of the larva of Dendrolimus tabuliformis[J]. Chinese Journal of Applied Entomology, 2012, 49(5): 1231−1242. doi: 10.7679/j.issn.2095-1353.2012.181
    [45]
    黄桂英, 贾丽萍, 王宏勋, 等. 红塔山自然保护区林业有害生物普查结果分析[J]. 林业调查规划, 2019, 44(5): 46−49.

    Huang G Y, Jia L P, Wang H X, et al. Analysis on survey results of forestry pests in Hongtashan Nature Reserve[J]. Forest Inventory and Planning, 2019, 44(5): 46−49.
    [46]
    Pennekamp F, Pontarp M, Tabi A, et al. Biodiversity increases and decreases ecosystem stability[J]. Nature, 2018, 563: 109−112. doi: 10.1038/s41586-018-0627-8
  • Cited by

    Periodical cited type(17)

    1. 袁慧兰,郑甜甜,林佳敏,鲍雪莲,闵凯凯,朱雪峰,解宏图,梁超. 农林土壤置换对植物残体分解过程的影响. 生态学杂志. 2024(04): 1017-1024 .
    2. 李慧璇,马红亮,尹云锋,高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征. 植物生态学报. 2023(05): 618-628 .
    3. 罗国娜,车震宇. 马尾松凋落物对土壤氮循环与微生物的影响. 山东农业大学学报(自然科学版). 2023(04): 553-561 .
    4. 韦昌林,李毅,单立山,解婷婷,张鹏. 降水变化对典型荒漠植物凋落物分解的影响. 草地学报. 2022(05): 1280-1289 .
    5. Hao Qu,XueYong Zhao,XiaoAn Zuo,ShaoKun Wang,XuJun Ma,Xia Tang,XinYuan Wang,Eduardo Medina-Roldán. Litter decomposition in fragile ecosystems: A review. Sciences in Cold and Arid Regions. 2022(03): 151-161 .
    6. 王文秀,栾军伟,王一,杨怀,赵阳,李丝雨,梁昌强,孔祥河,刘世荣. 模拟干旱和磷添加对热带低地雨林叶凋落物分解的影响. 生态学报. 2022(15): 6160-6174 .
    7. 李慧业,林永慧,何兴兵. 4种内源真菌对马尾松凋落叶分解的影响. 西南农业学报. 2021(03): 618-625 .
    8. 王光燚,上官周平,方燕. 氮沉降对细根分解影响的研究进展. 水土保持研究. 2020(02): 383-391 .
    9. 舒韦维,陈琳,刘世荣,曾冀,李华,郑路,陈文军. 减雨对南亚热带马尾松人工林凋落物分解的影响. 生态学报. 2020(13): 4538-4545 .
    10. 叶贺,红梅,赵巴音那木拉,李静,闫瑾,张宇晨,梁志伟. 水氮控制对短花针茅荒漠草原根系分解的影响. 应用与环境生物学报. 2020(05): 1169-1175 .
    11. 杨晶晶,周正立,吕瑞恒,梁继业,王雄. 干旱生境下3种植物叶凋落物分解动态特征. 干旱区研究. 2019(04): 916-923 .
    12. 周书玉,袁川,王景燕,龚伟,唐海龙. 菌剂和外源氮素添加对青花椒采收剩余物分解的影响. 四川农业大学学报. 2019(06): 799-806 .
    13. 王欣,郭延朋,赵辉,孟凡军,刘国萍. 华北落叶松与白桦叶凋落物混合分解及其养分动态. 林业与生态科学. 2018(01): 29-36 .
    14. 郑欣颖,佘汉基,薛立,蔡金桓. 外源性氮和磷添加对马尾松凋落叶分解及土壤特性的影响. 生态环境学报. 2017(10): 1710-1718 .
    15. 佘汉基,蔡金桓,薛立,郑欣颖. 模拟外源性氮磷对尾叶桉和马占相思混合凋落叶分解的影响. 西北林学院学报. 2017(06): 45-52 .
    16. 蔡金桓,郑欣颖,薛立,佘汉基. 外源性氮和磷对杉木和藜蒴锥混合凋落叶分解的影响. 西南林业大学学报(自然科学). 2017(04): 103-112 .
    17. 蔡金桓,王卓敏,薛立,郑欣颖,佘汉基. 外源性氮和磷对藜蒴林凋落叶分解的影响. 中南林业科技大学学报. 2017(07): 105-111 .

    Other cited types(16)

Catalog

    Article views (585) PDF downloads (116) Cited by(33)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return