• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Xiaoshuang, Chen Jungang, Zhang Yunhai, Yu Xinxiao. Effects of seasonal nitrogen addition on soil net nitrogen mineralization in typical temperate grasslands of Inner Mongolia, northern China[J]. Journal of Beijing Forestry University, 2024, 46(12): 63-70. DOI: 10.12171/j.1000-1522.20230018
Citation: Wang Xiaoshuang, Chen Jungang, Zhang Yunhai, Yu Xinxiao. Effects of seasonal nitrogen addition on soil net nitrogen mineralization in typical temperate grasslands of Inner Mongolia, northern China[J]. Journal of Beijing Forestry University, 2024, 46(12): 63-70. DOI: 10.12171/j.1000-1522.20230018

Effects of seasonal nitrogen addition on soil net nitrogen mineralization in typical temperate grasslands of Inner Mongolia, northern China

More Information
  • Received Date: January 31, 2023
  • Revised Date: June 29, 2024
  • Accepted Date: November 26, 2024
  • Available Online: November 28, 2024
  • Objective 

    This study aimed to explore the effects of seasonal nitrogen (N) addition on soil inorganic N pool and N mineralization rates in temperate steppe grasslands. It focused on revealing monthly dynamics, interannual variations, and environmental driving mechanisms to support understanding soil N cycling and its relationship with atmospheric N deposition.

    Method 

    A field experiment was established with N addition applied in different seasons: autumn, winter, and the growing season. Inorganic N content and N mineralization rates were measured by top-cover PVC cylinders method to explore the effects of seasonal N addition on net N mineralization potential.

    Result 

    Compared with control, N addition significantly increased inorganic N pools but declined over time. Compared with N addition in autumn and winter, N addition in growing season significantly increased inorganic N by 226.5%. The response of ammonium N, nitrate N and inorganic N to N addition in different seasons showed obvious seasonal pattern. Meanwhile, N addition in different seasons significantly increased the rate of N mineralization. At the end of growing season, net ammonification rate showed a trend of decreasing first and then increasing after N addition in growing season. N addition in growing season significantly increased net nitrification rate and net N mineralization rate at the end of growing season. N mineralization rate showed significantly monthly and interannual changes to N addition in different seasons. The response of mineralization rate to N addition in different seasons was mainly influenced by environmental factors. It was found that temperature had a negative effect on nitrification rate and net N mineralization rate, while precipitation had a positive effect. N addition in different seasons was main factor causing the difference of N mineralization rate.

    Conclusion 

    Seasonal N addition significantly alter soil inorganic N pools and mineralization rates in temperate grasslands, showing notable seasonal and interannual patterns with experimental time. In conclusion, study of the effects of different seasonal N addition on soil N mineralization provides theoretical support for in-depth understanding of response rule and mechanism of soil N conversion process to atmospheric N deposition. It also helps to comprehensively evaluate the relationship between seasonal effects of atmospheric N deposition and soil N cycle.

  • [1]
    Galloway J N, Dentener F J, Capone D G, et al. Nitrogen cycles: past, present, and future[J]. Biogeochemistry, 2004, 70(2): 153−226. doi: 10.1007/s10533-004-0370-0
    [2]
    Elser J, Bracken M, Cleland E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology Letters, 2008, 10: 1135−1142.
    [3]
    Kuypers M M M, Marchant H K, Kartal B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5): 263−276. doi: 10.1038/nrmicro.2018.9
    [4]
    Mason R E, Craine J M, Lany N K, et al. Evidence, causes, and consequences of declining nitrogen availability in terrestrial ecosystems[J]. Science, 2022, 376: eabh3767. doi: 10.1126/science.abh3767
    [5]
    LeBauer D S, Treseder K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed[J]. Ecology, 2008, 89(2): 371−379. doi: 10.1890/06-2057.1
    [6]
    罗亲普, 龚吉蕊, 徐沙, 等. 氮磷添加对内蒙古温带典型草原净氮矿化的影响[J]. 植物生态学报, 2016, 40(40): 480−492. doi: 10.17521/cjpe.2015.0374

    Luo Q P, Gong J R, Xu S, et al. Effects of N and P additions on net nitrogen mineralization in temperate typical grasslands in Nei Mongol, China[J]. Chinese Journal of Plant Ecology, 2016, 40(40): 480−492. doi: 10.17521/cjpe.2015.0374
    [7]
    Cheng Y, Wang J, Chang S X, et al. Nitrogen deposition affects both net and gross soil nitrogen transformations in forest ecosystems: a review[J]. Environmental Pollution, 2019, 244: 608−616. doi: 10.1016/j.envpol.2018.10.054
    [8]
    张璐, 黄建辉, 白永飞, 等. 氮素添加对内蒙古羊草草原净氮矿化的影响[J]. 植物生态学报, 2009, 33(3): 563−569. doi: 10.3773/j.issn.1005-264x.2009.03.015

    Zhang L, Huang J H, Bai Y F, et al. Effects of nitrogen addition on net nitrogen mineralization in Leymus chinensis grassland, Inner Mongolia, China[J]. Chinese Journal of Plant Ecology, 2009, 33(3): 563−569. doi: 10.3773/j.issn.1005-264x.2009.03.015
    [9]
    王常慧, 邢雪荣, 韩兴国. 温度和湿度对我国内蒙古羊草草原土壤净氮矿化的影响[J]. 生态学报, 2004, 24(11): 2472−2476. doi: 10.3321/j.issn:1000-0933.2004.11.018

    Wang C H, Xing X R, Han X G. The effects of temperature and moisture on the soil net nitrogen mineralization in an Aneulolepidium chinensis grassland, Inner Mongolia, China[J]. Acta Ecological Sinica, 2004, 24(11): 2472−2476. doi: 10.3321/j.issn:1000-0933.2004.11.018
    [10]
    Li Z, Tian D, Wang B, et al. Microbes drive global soil nitrogen mineralization and availability[J]. Global Change Biology, 2019, 25(3): 1078−1088. doi: 10.1111/gcb.14557
    [11]
    Li Z, Zeng Z, Song Z, et al. Vital roles of soil microbes in driving terrestrial nitrogen immobilization[J]. Global Change Biology, 2021, 27(9): 1848−1858. doi: 10.1111/gcb.15552
    [12]
    Reay D S, Dentener F, Smith P, et al. Global nitrogen deposition and carbon sinks[J]. Nature Geoscience, 2008, 1(7): 430−437. doi: 10.1038/ngeo230
    [13]
    Riggs C E, Hobbie S E. Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils[J]. Soil Biology and Biochemistry, 2016, 99: 54−65. doi: 10.1016/j.soilbio.2016.04.023
    [14]
    Lu M, Yang Y, Luo Y, et al. Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis[J]. New Phytologist, 2011, 189(4): 1040−1050. doi: 10.1111/j.1469-8137.2010.03563.x
    [15]
    Allison S D. Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments[J]. Ecology Letters, 2005, 8(6): 626−635. doi: 10.1111/j.1461-0248.2005.00756.x
    [16]
    Chen H, Li D, Zhao J, et al. Effects of nitrogen addition on activities of soil nitrogen acquisition enzymes: a meta-analysis[J]. Agriculture, Ecosystems and Environment, 2018, 252: 126−131. doi: 10.1016/j.agee.2017.09.032
    [17]
    Bowman W D, Cleveland C C, Halada Ĺ, et al. Negative impact of nitrogen deposition on soil buffering capacity[J]. Nature Geoscience, 2008, 1(11): 767−770. doi: 10.1038/ngeo339
    [18]
    Treseder K K. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies[J]. Ecology Letters, 2008, 11(10): 1111−1120. doi: 10.1111/j.1461-0248.2008.01230.x
    [19]
    Jian S, Li J, Chen J, et al. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis[J]. Soil Biology and Biochemistry, 2016, 101: 32−43. doi: 10.1016/j.soilbio.2016.07.003
    [20]
    Carey C J, Dove N C, Beman J M, et al. Meta-analysis reveals ammonia-oxidizing bacteria respond more strongly to nitrogen addition than ammonia-oxidizing archaea[J]. Soil Biology and Biochemistry, 2016, 99: 158−166. doi: 10.1016/j.soilbio.2016.05.014
    [21]
    Cookson W R, Rowarth J S, Cameron K C. The fate of autumn-, late winter- and spring-applied nitrogen fertilizer in a perennial ryegrass (Lolium perenne L.) seed crop on a silt loam soil in Canterbury, New Zealand[J]. Agricultural, Ecosystems and Environment, 2001, 84(1): 67−77. doi: 10.1016/S0167-8809(00)00196-1
    [22]
    Boman R K, Westerman R L, Raun W R, et al. Spring-applied nitrogen fertilizer influence on winter wheat and residual soil nitrate[J]. Journal of Production Agriculture, 1995, 8(4): 584−589. doi: 10.2134/jpa1995.0584
    [23]
    White R P, Murray S, Rohweder M. Pilot analysis of global ecosystems: grassland ecosystems [M]. Washington: World Resources Institute, 2000: 11–12.
    [24]
    陈佐忠, 汪诗平. 中国典型草原生态系统 [M]. 北京: 科学出版社, 2000: 25–26.

    Chen Z Z, Wang S P. Typical grassland ecosystems in China [M]. Beijing: Science Press, 2000: 25–26.
    [25]
    Gu B, Zhang X, Lam S K, et al. Cost-effective mitigation of nitrogen pollution from global croplands[J]. Nature, 2023, 613: 77−84. doi: 10.1038/s41586-022-05481-8
    [26]
    Yu G, Jia Y, He N, et al. Stabilization of atmospheric nitrogen deposition in China over the past decade[J]. Nature Geoscience, 2019, 12(6): 424−429. doi: 10.1038/s41561-019-0352-4
    [27]
    Raison R J, Connell M J, Khanna P K. Methodology for studying fluxes of soil mineral-N in situ[J]. Soil Biology and Biochemistry, 1987, 19(5): 521−530. doi: 10.1016/0038-0717(87)90094-0
    [28]
    Zhang T, Chen H Y H, Ruan H. Global negative effects of nitrogen deposition on soil microbes[J]. The ISME Journal, 2018, 12(7): 1817−1825. doi: 10.1038/s41396-018-0096-y
    [29]
    刘碧荣, 王常慧, 张丽华, 等. 氮素添加和刈割对内蒙古弃耕草地土壤氮矿化的影响[J]. 生态学报, 2015, 35(19): 6335−6343.

    Liu B R, Wang C H, Zhang L H, et al. Effect of nitrogen addition and mowing on soil nitrogen mineralization in abandoned grasslands in Inner Mongolia[J]. Acta Ecologica Sinica, 2015, 35(19): 6335−6343.
    [30]
    邹亚丽, 牛得草, 杨益, 等. 氮素添加对黄土高原典型草原土壤氮矿化的影响[J]. 草地学报, 2014, 22(3): 461−468.

    Zou Y L, Niu D C, Yang Y, et al. The effects of nitrogen addition on soil nitrogen mineralization in the semi-arid typical grassland of Loess Plateau[J]. Acta Agrestia Sinica, 2014, 22(3): 461−468.
    [31]
    徐小惠, 刁华杰, 覃楚仪, 等. 华北盐渍化草地土壤净氮矿化速率对不同水平氮添加的响应[J]. 植物生态学报, 2021, 45(1): 85−95. doi: 10.17521/cjpe.2020.0153

    Xu X H, Diao H J, Qin C Y, et al. Response of soil net nitrogen mineralization to different levels of nitrogen addition in a saline-alkaline grassland of northern China[J]. Chinese Journal of Plant Ecology, 2021, 45(1): 85−95. doi: 10.17521/cjpe.2020.0153
    [32]
    Hao T, Zhang Y, Zhang J, et al. Chronic nitrogen addition differentially affects gross nitrogen transformations in alpine and temperate grassland soils[J]. Soil Biology and Biochemistry, 2020, 149: 107962. doi: 10.1016/j.soilbio.2020.107962
    [33]
    Wang C, Butterbach-Bahl K, Han Y, et al. The effects of biomass removal and N additions on microbial N transformations and biomass at different vegetation types in an old-field ecosystem in northern China[J]. Plant and Soil, 2011, 340(1−2): 397−411. doi: 10.1007/s11104-010-0611-z
    [34]
    杨仕明, 蔡乾坤, 刘文飞, 等. 杉木人工林土壤氮矿化对长期氮添加和季节的响应[J]. 浙江农林大学学报, 2021, 38(5): 945−952. doi: 10.11833/j.issn.2095-0756.20210403

    Yang S M, Cai Q K, Liu W F, et al. Response of soil N mineralization to long-term N addition and season in Cunninghamia lanceolata plantation[J]. Journal of Zhejiang A&F University, 2021, 38(5): 945−952. doi: 10.11833/j.issn.2095-0756.20210403
    [35]
    于占源, 曾德慧, 艾桂艳, 等. 添加氮素对沙质草地土壤氮素有效性的影响[J]. 生态学杂志, 2007, 26(11): 1894−1897.

    Yu Z Y, Zeng D H, Ai G Y, et al. Effects of nitrogen addition on soil nitrogen availability in sandy grassland[J]. Chinese Journal of Ecology, 2007, 26(11): 1894−1897.
    [36]
    Li S, Jiang F, Han Y, et al. Comparison of nitrogen uptake in the roots and rhizomes of Leymus chinensis[J]. Biologia Plantarum, 2018, 62(1): 149−156. doi: 10.1007/s10535-017-0748-1
    [37]
    Kwak J H, Naeth M A, Chang S X. Microbial activities and gross nitrogen transformation unaffected by ten-year nitrogen and sulfur addition[J]. Soil Biology and Biochemistry, 2018, 82(2): 362−370.
    [38]
    Mao C, Kou D, Peng Y F, et al. Soil nitrogen transformations respond diversely to multiple levels of nitrogen addition in a Tibetan Alpine Steppe[J]. Journal of Geophysical Research-Biogeosciences, 2021, 126: e2020JG006211. doi: 10.1029/2020JG006211
    [39]
    李阳, 徐小惠, 孙伟, 等. 不同形态和水平的氮添加对内蒙古草甸草原土壤净氮矿化潜力的影响[J]. 植物生态学报, 2019, 43(2): 174−184. doi: 10.17521/cjpe.2018.0245

    Li Y, Xu X H, Sun W, et al. Effects of different forms and levels of N additions on soil potential net N mineralization rate in meadow steppe, Nei Mongol, China[J]. Chinese Journal of Plant Ecology, 2019, 43(2): 174−184. doi: 10.17521/cjpe.2018.0245
    [40]
    Dai Z, Yu M, Chen H, et al. Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems[J]. Global Change Biology, 2020, 26(9): 5267−5276. doi: 10.1111/gcb.15211
    [41]
    王岩, 刁华杰, 董宽虎, 等. 降水变化与氮添加对晋北盐碱化草地土壤净氮矿化的影响[J]. 应用生态学报, 2021, 32(7): 2389−2396.

    Wang Y, Diao H J, Dong K H, et al. Effects of precipitation change and nitrogen addition on soil net N mineralization in a salinealkaline grassland of northern Shanxi Province, China[J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2389−2396.
    [42]
    杨浩, 胡中民, 郭群, 等. 增雨和氮添加对内蒙古草原土壤氮矿化潜力的影响[J]. 自然资源学报, 2017, 26(11): 2034−2042. doi: 10.11849/zrzyxb.20161084

    Yang H, Hu Z M, Guo Q, et al. Influences of precipitation increase and N addition on soil potential N mineralization in Inner Mongolia grassland[J]. Journal of Natural Resources, 2017, 26(11): 2034−2042. doi: 10.11849/zrzyxb.20161084
    [43]
    孙志高, 刘景双. 三江平原典型小叶章湿地土壤氮素净矿化与硝化作用[J]. 应用生态学报, 2007, 18(8): 1771−1777.

    Sun Z G, Liu J S. Soil nitrogen net mineralization and nitrification in typical Calamagrostis angustifolia wetlands in Sanjiang Plain[J]. Chinese Journal of Applied Ecology, 2007, 18(8): 1771−1777.
    [44]
    Corre M D, Brumme R, Veldkamp E, et al. Changes in nitrogen cycling and retention processes in soils under spruce forests along a nitrogen enrichment gradient in Germany[J]. Global Change Biology, 2007, 13(7): 1509−1527. doi: 10.1111/j.1365-2486.2007.01371.x
    [45]
    Zhou W, Chen H, Zhou L, et al. Effect of freezing-thawing on nitrogen mineralization in vegetation soils of four landscape zones of Changbai Mountain[J]. Annals of Forest Science, 2011, 68(5): 943−951. doi: 10.1007/s13595-011-0100-4
    [46]
    Bengtsson G, Bengtson P, Mansson K F. Gross nitrogen mineralization-, immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity[J]. Soil Biology and Biochemistry, 2003, 35(1): 143−154. doi: 10.1016/S0038-0717(02)00248-1
    [47]
    Cheng Y, Wang J, Mary B, et al. Soil pH has contrasting effects on gross and net nitrogen mineralizations in adjacent forest and grassland soils in central Alberta, Canada[J]. Soil Biology and Biochemistry, 2013, 57: 848−857. doi: 10.1016/j.soilbio.2012.08.021
    [48]
    Zaman M, Chang S X. Substrate type, temperature, and moisture content affect gross and net N mineralization and nitrification rates in agroforestry systems[J]. Biology and Fertility of Soils, 2004, 39(4): 269−279. doi: 10.1007/s00374-003-0716-0
    [49]
    Wang C, Wan S, Xing X, et al. Temperature and soil moisture interactively affected soil net N mineralization in temperate grassland in northern China[J]. Soil Biology and Biochemistry, 2006, 38(5): 1101−1110. doi: 10.1016/j.soilbio.2005.09.009
    [50]
    Lang M, Cai Z C, Mary B, et al. Land-use type and temperature affect gross nitrogen transformation rates in Chinese and Canadian soils[J]. Plant and Soil, 2010, 334(1−2): 377−389. doi: 10.1007/s11104-010-0389-z
    [51]
    Stottlemyer R, Toczydlowski D. Nitrogen mineralization in a mature boreal forest, Isle Royale, Michigan[J]. Journal of Environmental Quality, 1999, 28(2): 709−720.
  • Cited by

    Periodical cited type(9)

    1. 陈婷婷,马均鹏,黄盈萤,梁桂槟,周浩,高乞. 基于流式细胞术的蜘蛛抱蛋属植物倍性检测和核DNA含量测定体系的建立. 西北农业学报. 2024(10): 1948-1957 .
    2. 王莉飞,徐佳洁,黄晓霞,李淑斌,程小毛. 现代月季品种间杂交亲和性评价. 分子植物育种. 2023(12): 3973-3985 .
    3. 马策,阮芳,叶福民,赵小慧,李振涛,李成俊. 中国古老月季的形态多样性分析. 辽宁农业科学. 2022(03): 1-5 .
    4. 王珧,邓逸桐,戴习彬,张安,曹清河,陈艳丽. 甘薯近缘种Ipomoea cordatotriloba基因组大小测定及高通量调查测序. 热带作物学报. 2020(06): 1154-1159 .
    5. 吉乃喆,冯慧,李纳新,赵惠恩,赵世伟. 三倍体古老月季在月季育种中的应用及其子代倍性分析. 分子植物育种. 2019(19): 6424-6433 .
    6. 苏一钧,王珧,戴习彬,赵路宽,张安,曹清河. 25份甘薯登记品种基因组大小测定. 江苏师范大学学报(自然科学版). 2019(03): 31-34 .
    7. 张誉稳,李孟南,赵雁. 月季品种波塞尼娜变异株的发现与初步认定. 黑龙江农业科学. 2018(04): 85-88 .
    8. 尤禄祥,谢梦梦,伊贤贵,王华辰,段一凡,王贤荣. 早樱种系基因组大小的研究. 安徽农业大学学报. 2017(06): 1093-1097 .
    9. 李诗琦,张程,高信芬. 应用流式细胞术测定17种中国野生蔷薇核DNA含量. 植物科学学报. 2017(04): 558-565 .

    Other cited types(6)

Catalog

    Article views (173) PDF downloads (59) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return