• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Ji Ziyu, Liu Yanhong, Qin Qianqian. Photosynthetic response and physiological and biochemical adaptability characteristics of Fraxinus velutinus to urban nighttime lighting[J]. Journal of Beijing Forestry University, 2025, 47(2): 58-65. DOI: 10.12171/j.1000-1522.20230028
Citation: Ji Ziyu, Liu Yanhong, Qin Qianqian. Photosynthetic response and physiological and biochemical adaptability characteristics of Fraxinus velutinus to urban nighttime lighting[J]. Journal of Beijing Forestry University, 2025, 47(2): 58-65. DOI: 10.12171/j.1000-1522.20230028

Photosynthetic response and physiological and biochemical adaptability characteristics of Fraxinus velutinus to urban nighttime lighting

More Information
  • Received Date: February 06, 2023
  • Revised Date: April 03, 2023
  • Accepted Date: January 06, 2025
  • Available Online: January 19, 2025
  • Objective 

    Exploring the response characteristics of landscape plants to different intensities of urban nighttime lighting can assess their tolerance and adaptability to light pollution in urban environments. The study aimed to reveal the photosynthetic response and physiological and biochemical adaptability of Fraxinus velutinoides to different intensities of urban nighttime lighting. This will provide a scientific basis for the selection of urban landscape tree species and scientific regulation of streetlight duration, and promote the sustainable development of urban ecological environments.

    Method 

    Using the commonly used tree species F. velutina as the experimental material for roadside trees in Beijing, the changes and adaptation characteristics of leaf photosynthetic parameters, photosynthetic pigment content, and stress resistance physiological and biochemical indicators under different lighting intensity gradients at night in the city were studied through field monitoring and laboratory analysis.

    Result 

    (1) The net photosynthetic rate, stomatal conductance, and transpiration rate of F. velutina leaves can actively respond to urban nighttime lighting and are positively correlated with nighttime lighting intensity. (2) With the increase of nighttime lighting intensity, the total amount of chlorophyll significantly increased, while chlorophyll a/b significantly decreased. (3) With the increase of nighttime lighting intensity in urban areas, the soluble sugar content, superoxide dismutase activity, and peroxidase activity of F. velutina leaves all increased, which to some extent alleviated the stress caused by urban nighttime lighting on leaves.

    Conclusion 

    F. velutina can actively respond to nighttime lighting by adjusting the activity of superoxide dismutase, peroxidase, and soluble sugar content, ensuring normal photosynthesis. F. velutina exhibits adaptability and response to nighttime lighting, and can be used as a tree species for urban road greening.

  • [1]
    张来, 张显强. 城市典型绿化植物释氧与降温的生态效应-贵州安顺城区实例研究[J]. 基因组学与应用生物学, 2012(31): 78−83.

    Zhang L, Zhang X Q. Ecological effects of typical urban greening plants releasing oxygen and cooling temperature: a case study of Anshun City in Guizhou[J]. Genomics and Applied Biology, 2012(31): 78−83.
    [2]
    Longcore T, Rich C. Ecological light pollution[J]. Frontiers in Ecology and the Environment, 2004, 2: 191−198. doi: 10.1890/1540-9295(2004)002[0191:ELP]2.0.CO;2
    [3]
    Gaston K J, Visser M E, Franz H. The biological impacts of artificial light at night: the research chal- lenge[J]. Philosophical Transactions of the Royal Society B Biological Sciences, 2015, 370: 133−140.
    [4]
    Holker F, Wolter C, Perkin E K, et al. Light pollution as a biodiversity threat[J]. Trends in Ecology & Evolution, 2010, 25: 681−682.
    [5]
    Gaston K J, Gaston S, Bennie J, et al. Benefits and costs of artificial nighttime lighting of the environment[J]. Environmental Reviews, 2014, 23: 14−23.
    [6]
    Landis T D, Pinto J R, Dumroese R K, et al. Light emitting diodes ( LED) : applications in forest and native plant nurseries[J]. Forest Nursery Notes, 2013, 33: 5−13.
    [7]
    Bennie J, Davies T W, Cruse D, et al. Ecological effects of artificial light at night on wild plants[J]. Journal of Ecology, 2016, 104: 611−620. doi: 10.1111/1365-2745.12551
    [8]
    李小婷, 陈斌, 王海军, 等. 城市夜间灯光对香樟生长的影响[J]. 应用生态学报, 2019, 30(7): 2284−2290.

    Li X T, Chen B, Wang H J, et al. Effects of urban nighttime light on the growth of Cinnamomum camphora[J]. Chinese Journal of Applied Ecology, 2019, 30(7): 2284−2290.
    [9]
    王博轶, 冯玉龙. 生长环境光强对两种热带雨林树种幼苗光合作用的影响 [J] 生态学报, 2005, 25(1): 23−30.

    Wang B Y, Feng Y L. Effects of growth light intensities on photosynthesis in seedlings of two tropical rain forest species [J] Acta Ecologica Sinica, 2005, 25(1): 23−30.
    [10]
    Demming-Adams B, Adams W. Photoprotection and other response of plant to high light stress[J]. Annual Review Plant Physiology and Plant Molecular Biology, 1992, 43: 599. doi: 10.1146/annurev.pp.43.060192.003123
    [11]
    Boardman N K. Comparative photosynthesis of sun and shade plants [J]. Annual Review Plant Physiology and Plant Molecular Biology, 1977, 28: 355−377.
    [12]
    Bertamini M, Muthuchelian K, Nedunchezhian N. Photoinhibition of photosynthesisin sun and shade grown leaves of grapevine (Vitis vinifera L. )[J]. Photosynthetica, 2004, 42: 7−14. doi: 10.1023/B:PHOT.0000040563.64215.63
    [13]
    Maxwell K, Marrison J L, Leech R M, et al. Chloroplast acclimation in leaves of Guzmania monostachia response to high light[J]. Plant Physiology, 1999, 121: 89−95. doi: 10.1104/pp.121.1.89
    [14]
    Yang D H, Webster J, Adam Z, et al. Induction of acclimative proteolysis of the light-harvesting chlorophyll a/b protein of photosystem Ⅱ inresponse to elevated light intensities[J]. Plant Physiology, 1998, 118: 827−834. doi: 10.1104/pp.118.3.827
    [15]
    周瑞莲, 赵哈林, 程国栋. 高寒山区植物根抗氧化酶系统的季节变化与抗冷冻关系[J]. 生态学报, 2001, 21(6): 865−870. doi: 10.3321/j.issn:1000-0933.2001.06.001

    Zhou R L, Zhao H L, Cheng G D. Seasonal changes in enzymatic antioxidant system in roots of alpine perennial forage grasses related to freezing tolerance[J]. Acta Ecologica Sinica, 2001, 21(6): 865−870. doi: 10.3321/j.issn:1000-0933.2001.06.001
    [16]
    王磊, 隆小华, 孟宪法,等. 水杨酸对NaCl胁迫下菊芋幼苗光合作用及离子吸收的影响[J]. 生态学杂志, 2011, 30(9): 1901−1907.

    Wang L, Long X H, Meng X F, et al. Effects of salicylic acid on photosynthesis and ion absorption Helianthus tuberosus seedlings under NaCl stress[J]. Chinese Journal of Ecology, 2011, 30(9): 1901−1907.
    [17]
    Fan X X, Xu Z G, Liu X Y, et al. Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light[J]. Scientia Horticulturae, 2013, 153(4): 50−55.
    [18]
    陈良华, 曹艺, 杨万勤, 等. 三种园林植物对夜间光照的响应与适应特征[J]. 生态学报, 2017, 37(2): 549−556.

    Chen L H, Cao Y, Yang W Q, et al. Responses and adaptive status of three garden plants exposed to night illumination[J]. Acta Ecologica Sinica, 2017, 37(2): 549−556.
    [19]
    燕丽萍, 吴德军, 王因花, 等. 绒毛白蜡耐盐生理与解剖结构研究[J]. 中国农学通报, 2024, 40(2): 16−24. doi: 10.11924/j.issn.1000-6850.casb2023-0063

    Yan L P, Wu D J, Wang Y H, et al. Salt tolerance physiology and anatomical structure of Fraxinus velutina[J]. Chinese Agricultural Science Bulletin, 2024, 40(2): 16−24. doi: 10.11924/j.issn.1000-6850.casb2023-0063
    [20]
    高明辉, 吴汇元, 周兆平, 等. 夜间照明对紫丁香光合作用的影响[J]. 吉林林业科技, 2012, 41(5): 7−10, 22.

    Gao M H, Wu H Y, Zhou Z P, et al. Effect of night lighting on the photosynthesis of Syringa oblata[J]. Jilin Forestry Scicnce and Technology, 2012, 41(5): 7−10, 22.
    [21]
    王旭东, 许晶, 徐慧, 等. 城市道路夜间照明与行道树相互影响探析[J]. 中国园林, 2019, 35(9): 120−123.

    Wang X D, Xu J, Xu H, et al. Discussion of the interactive influence between the night lighting and road trees on urban roads[J]. Chinese Landscape Architecture, 2019, 35(9): 120−123.
    [22]
    段然, 刘星滟. 园林植物光合节律对夜间光照响应的研究[J]. 重庆工商大学学报(自然科学版), 2021, 38(2): 108−115.

    Duan R, Liu X Y. Response of photosynthetic rhythm of landscape plants to urban nighttime illumination[J]. Journal of Chongqing Technology and Business (Natural Sciences Edition), 2021, 38(2): 108−115.
    [23]
    黄莉, 王欣宇, 陈斌. 夜间人工照明对两种常见城市杂草光合特性及生长的影响[J]. 安徽农业大学学报, 2021, 48(6): 934−939.

    Huang L, Wang X Y, Chen B. Effects of artificial lighting at night on the photosynthesis and growth of two typical urban weed species[J]. Journal of Anhui Agricultural University, 2021, 48(6): 934−939.
    [24]
    Tayloy S H, Franks P J, Hulme S P, et al. Photosynthetic pathway and ecological adaptation explain stomatal trait diversity amongst grasses[J]. New Phytologist, 2012, 193(2): 387−396. doi: 10.1111/j.1469-8137.2011.03935.x
    [25]
    温婧雯, 陈昊轩, 滕一平, 等. 太白山栎属树种气孔特征沿海拔梯度的变化规律[J]. 生态学报, 2018, 38(18): 6712−6721.

    Wen J W, Chen H X, Teng Y P, et al. Variation of leaf stomatal traits in Quercus species along the altitudinal gradient in Taibai Mountain, China[J]. Acta Ecologica Sinica, 2018, 38(18): 6712−6721.
    [26]
    许大全, 高伟, 阮军. 光质对植物生长发育的影响[J]. 植物生理学报, 2015, 51(8): 1217−1234.

    Xu D Q, Gao W, Ruan J. Effects of light quality on plant growth and development[J]. Plant Physiology Journal, 2015, 51(8): 1217−1234.
    [27]
    周成波, 张旭, 刘彬彬, 等. 补光光质对叶用莴苣光合特性的影响[J]. 植物生理学报, 2015, 51(12): 2255−2262.

    Zhou C B, Zhang X, Liu B B, et al. The effect of supplementary light quality on physiological characteristics of lettuce[J]. Plant Physiology Journal, 2015, 51(12): 2255−2262.
    [28]
    刘文海, 高东升, 束怀瑞. 不同光强处理对设施桃树光合及荧光特性的影响[J]. 中国农业科学, 2006, 39 (10): 2069−2075.

    Liu W H, Gao D S, Shu H R. Effects of different photon flux density on the characteristics of photosynthesis and chlorophyll fluorescence of peach trees in protected culture[J]. Scientia Agricultura Sinica, 2006, 39 (10): 2069−2075.
    [29]
    Wang Y, Wei X L. Advance on the effects of different light environments on growth, physiological biochemistry andmorphostructure of plant[J]. Journal of Mountain Agriculture and Biology, 2010, 29: 353−359.
    [30]
    张涛, 王瑞敏, 陈燕琼, 等. 8种绿化树种对城市夜间照明的生理适应性[J]. 森林与环境学报, 2019, 39(4): 424−430.

    Zhang T, Wang R M, Chen Y Q, et al. Physiological adaptations of eight greening-trees in an urban area under night lighting[J]. Journal of Forest and Environment, 2019, 39(4): 424−430.
    [31]
    王荷, 张蓓蓓, 张辉, 等. 浅析夜景照明对植物生长的影响[J]. 农学学报, 2017, 7(5): 33−37. doi: 10.11923/j.issn.2095-4050.cjas16110027

    Wang H, Zhang B B, Zhang H, et al. Night lighting effects on plant growth[J]. Journal of Agriculture, 2017, 7(5): 33−37. doi: 10.11923/j.issn.2095-4050.cjas16110027
    [32]
    柴胜丰, 韦霄. 强光胁迫对濒危植物金花茶幼苗生长和叶绿素荧光参数的影响[J]. 植物研究, 2012, 32(2): 159−164. doi: 10.7525/j.issn.1673-5102.2012.02.006

    Chai S F, Wei X. Effect of strong light stress on the growth, biomass and chlorophyll fluorescence parameters in seedlings of endangered plant Camellia nitidissima[J]. Bulletin of Botanical Research, 2012, 32(2): 159−164. doi: 10.7525/j.issn.1673-5102.2012.02.006
    [33]
    刘成功, 王明援, 刘宁, 等. 不同光照时间对欧美杨幼苗生长和光合特性的影响[J]. 林业科学, 2018, 54(12): 33−41. doi: 10.11707/j.1001-7488.20181204

    Liu C G, Wang M Y, Liu N, et al. Effects of different irradiation duration on growth and photosynthetic characteristics of Populus × euramericana seedlings[J]. Scientia Silvae Sinicae, 2018, 54(12): 33−41. doi: 10.11707/j.1001-7488.20181204
    [34]
    Filippou P, Bouchagier P, Skotti E, et al. Proline and reactive oxygen /nitrogen species metabolism is involved in the tolerant response of the invasive plant species Ailanthus altissima to drought and salinity[J]. Environmental and Experimental Botany, 2014, 97: 1−10. doi: 10.1016/j.envexpbot.2013.09.010
    [35]
    张朝铖, 蒋倩, 吴志, 等. 4种观赏草的耐阴特性研究及评价[J]. 草业学报, 2019, 28(7): 60−72.

    Zhang Z C, Jiang Q, Wu Z, et al. Evaluation of shade tolerance characteristics of four ornamental grasses[J]. Acta Prataculturae Sinica, 2019, 28(7): 60−72.
    [36]
    徐超华, 李军营, 崔明昆, 等. 延长光照时间对烟草叶片生长发育及光合特性的影响[J]. 西北植物学报, 2013, 33(4): 763−770. doi: 10.7606/j.issn.1000-4025.2013.04.0763

    Xu C H, Li J Y, Cui M K, et al. Effects of supplemental lighting on growth and photosynthesis of tob[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(4): 763−770. doi: 10.7606/j.issn.1000-4025.2013.04.0763
    [37]
    马肖静, 刘勇鹏, 黄松, 等. 不同LED光照强度夜间补光对番茄幼苗生长发育的影响[J]. 植物生理学报, 2022, 58(12): 2411−2420.

    Ma X J, Liu Y P, Huang S, et al. Effects of different LED illumination intensity at night on the growth and development of tomato seedlings[J]. Plant Physiology Journal, 2022, 58(12): 2411−2420.
  • Related Articles

    [1]Luo Ye, Wang Jun, Yang Yuchun, He Huaijiang, Yu Haiou, Zheng Jun, Zhang Tianxiang. DBH class structure and arbor biomass of Juglans mandshurica secondary forest[J]. Journal of Beijing Forestry University, 2022, 44(1): 29-37. DOI: 10.12171/j.1000-1522.20200348
    [2]Qin Qianqian, Wang Haiyan, Zheng Yonglin, Lei Xiangdong. Spatial distribution characteristics of litter nutrients in temperate spruce-fir mixed forests[J]. Journal of Beijing Forestry University, 2021, 43(3): 73-84. DOI: 10.12171/j.1000-1522.20200065
    [3]Chen Bei-bei, Wang Kai, Ni Rui-qiang, Cheng Yan-xia. Composition and spatial pattern of tree seedlings in a coniferous and broadleaved mixed forest in Changbai Mountain of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(2): 68-75. DOI: 10.13332/j.1000-1522.20170370
    [4]SUN Yue, XIA Fu-cai, HE Huai-jiang, LIU Bao-dong, WANG Ge-rong, LI Liang. Community structure features of the larch-birch secondary forest on the northeastern slope of Changbai Mountain, Northeast China.[J]. Journal of Beijing Forestry University, 2016, 38(12): 28-38. DOI: 10.13332/j.1000-1522.20160088
    [5]WANG Xin, ZHANG Hua-yu, LI Zong-feng, ZHANG Shi-qiang, WANG Guo-hang, DENG Hong-ping. Community structure and population regeneration of an endangered plant, Thuja sutchuenensis.[J]. Journal of Beijing Forestry University, 2016, 38(10): 28-37. DOI: 10.13332/j.1000-1522.20160028
    [6]L&#xDC, Xun, YANG Shuang-bao, LIU Wen-zhen, GUO Xiao-long, LI An-min, YUAN Yi-chao. Analysis of spatial structure characteristics based on diameter class of trees in primeval Quercus aliena var. acuteserrata community in the forest area of Xiaolong Mountain, Gansu Province.[J]. Journal of Beijing Forestry University, 2015, 37(5): 11-18. DOI: 10.13332/j.1000-1522.20140238
    [7]LUO Zong-shi, XIANG Cheng-hua, ZHANG Lu, XIE Da-jun, LUO Xiao-hua. Spatial distribution of fine roots and underground competition between Chinese prickly ash (Zanthoxylum bungenum) and weeds in Chinese prickly ash plantation[J]. Journal of Beijing Forestry University, 2010, 32(2): 86-91.
    [8]HAN Lu, WANG Hai-zhen, PENG Jie, LIANG Ji-ye, MA Chun-hui. Size-class structure and distribution pattern of Populus euphratica Oliv. in different habitats.[J]. Journal of Beijing Forestry University, 2010, 32(1): 7-12.
    [9]MAO Lei, , WANG Dong-mei, YANG Xiao-hui, YU Hong. Spatial patterns of young Pinus sylvestris var. mongolica saplings and their regeneration analysis in different stands of Inner Mongolia, northern China.[J]. Journal of Beijing Forestry University, 2008, 30(6): 71-77.
    [10]MA Yu-fei, LI Jun-qing. Population structure of Davidia involucrate in Mt.Seven-sister Nature Reserve of central China’s Hubei Province[J]. Journal of Beijing Forestry University, 2005, 27(3): 12-16.
  • Cited by

    Periodical cited type(62)

    1. 张聪,刘琪,李海奎,刘鹏举,詹思颖. 我国尺度兼容和树种分类的材积源森林碳储量模型. 林业科学. 2025(01): 57-69 .
    2. 衣娜娜,毕力格,史金丽,蔡敏,许志丽,郑凤杰,丽娜. 内蒙古大兴安岭飞机冷云增雨潜势预报模型. 干旱区研究. 2025(03): 409-419 .
    3. 王伟武,伏添乐,陈欢. 基于PLUS-InVEST模型的长三角城市群碳储量时空演变与预测. 环境科学. 2025(04): 1937-1950 .
    4. 徐思若,成志影,那雪迎,张栩嘉,马大龙,张鹏. 黑龙江省森林碳汇及其经济价值的变化分析与潜力预测. 生态学杂志. 2024(01): 197-205 .
    5. 张圆圆,龙勤. 云南省森林净碳储量估算及影响因素分析——基于碳源和碳汇双重角度. 绿色科技. 2024(01): 227-231 .
    6. 汪宗顺,张海鹏,岳超,杨红强,张寒. 造林增汇是实现碳中和的成本有效途径吗?——以西北地区为例. 自然资源学报. 2024(03): 731-748 .
    7. 田震,高凡,赛硕,杨之恒,丁国栋. 清水河县森林生态系统碳储量、碳密度分布特征. 干旱区资源与环境. 2024(06): 166-173 .
    8. 杨俊豪,张皓东,李永昌,刘书敏. 基于可加性模型的云南松和华山松碳储量模型构建. 昆明理工大学学报(自然科学版). 2024(02): 140-150 .
    9. 于鲁冀,张亚慧,樊雷,王莉,刘莹莹. 河南省森林固碳量与碳汇价值评估. 郑州大学学报(工学版). 2024(03): 7-13 .
    10. 袁慧兰,郑甜甜,林佳敏,鲍雪莲,闵凯凯,朱雪峰,解宏图,梁超. 农林土壤置换对植物残体分解过程的影响. 生态学杂志. 2024(04): 1017-1024 .
    11. 李林,赵毅,温智峰,刘佳润,魏识广,周景钢,冯嘉谊. 南亚热带常绿阔叶林地上碳储量空间分布特征及其影响因素. 生态学报. 2024(11): 4687-4697 .
    12. 马振华. 基于第7至9次森林资源清查的宁夏森林碳储量动态变化特征. 陕西林业科技. 2024(03): 39-45 .
    13. 郭同方,吴水荣,张超,苏秦. 重点国有林区森林碳储量动态变化及增汇策略分析——以龙江森工为例. 江西农业大学学报. 2024(03): 582-596 .
    14. 贺晨瑞,庞丽峰,谭炳香,黄逸飞,孙学霞. 基于遥感的北京市森林地上碳储量监测. 西北林学院学报. 2024(03): 162-170+265 .
    15. Zhencan ZHENG,Liuwen ZHUANG,Guofang MIAO,Han LIU,Zhiqiang CHENG,Wenyu LI,Rong SHANG,Peng GONG,Jing Ming CHEN. Elevational distribution of forests and its spatiotemporal dynamics in subtropical China from 2000 to 2019. Science China Earth Sciences. 2024(08): 2563-2582 .
    16. 郑振灿,庄留文,缪国芳,刘涵,程志强,李纹宇,商荣,宫鹏,陈镜明. 中国亚热带地区2000~2019年森林海拔分布特征及其时空动态. 中国科学:地球科学. 2024(08): 2604-2624 .
    17. 张亮. 韶关市森林植被碳储量与碳密度动态研究. 林业与环境科学. 2024(05): 88-94 .
    18. 范彩慧,段成波,龙德增,赵润华. 保山市森林生物质碳储量分析. 绿色科技. 2024(20): 68-73 .
    19. 胡兴波,张月,胡长江,李慧波,王光鑫. 西南地区常见林木的固碳经济效益分析. 农村科学实验. 2024(23): 114-116 .
    20. 曹爱平,罗雷,王晓荣,徐立,郑晓敏. 基于湖北第五次森林资源普查数据的森林碳储量研究. 湖北林业科技. 2024(06): 1-6 .
    21. 王媛媛,刘可欣,张湘婕,王艺璇,赵俊玮,徐连杰,郭婷婷,王天意,任志彬,代新竹. 城市森林碳汇估算计量——以长春市为例. 中国城市林业. 2024(06): 116-122 .
    22. 张翔,刘洋,玉山,苏日娜,阿茹汗. 基于无人机激光雷达和多光谱数据的森林树高提取方法研究. 森林工程. 2023(01): 29-36 .
    23. 胡勐鸿,李万峰,吕寻. 日本落叶松自由授粉家系选择和无性繁殖利用. 温带林业研究. 2023(01): 7-16 .
    24. 陈宏福,韦体,敏正龙,妥永华,高丹丹,蔡勇,杨具田,白日霞,郭鹏辉. 黄河上游太子山国家级自然保护区森林碳储量及碳增汇潜力研究. 西北民族大学学报(自然科学版). 2023(01): 63-70 .
    25. 朱建华,田宇,李奇,刘华妍,郭学媛,田惠玲,刘常富,肖文发. 中国森林生态系统碳汇现状与潜力. 生态学报. 2023(09): 3442-3457 .
    26. 张煜星,王雪军. 1973—2018年我国桉树人工林生产力及碳汇能力. 林业科学. 2023(03): 54-64 .
    27. 简尊吉,朱建华,王小艺,肖文发. 我国陆地生态系统碳汇的研究进展和提升挑战与路径. 林业科学. 2023(03): 12-20 .
    28. 刘川. 利用森林资源一类清查数据计算活立木蓄积量的方法及应用研究. 山东林业科技. 2023(03): 69-72 .
    29. 冯源,王连晶. 县域尺度乔木林碳储量及碳汇特征分析——以马关县为例. 西部林业科学. 2023(03): 152-159 .
    30. 罗佩文,熊小雨,刘冰琳. 基于机器学习和生长预测的森林固碳分析和多目标规划管理策略. 科技风. 2023(19): 156-159 .
    31. 汤浩藩,季巍,周卫平,欧阳希,王华,张文晶,许彦红. 主要乔木树种碳储量与碳密度分布特征——以昆明市海口林场为例. 南方林业科学. 2023(03): 6-10+29 .
    32. 王迎辉,孙浩然,解华臻,张岩,卢振生. 小型树苗扦插机的设计. 南方农机. 2023(22): 35-37+57 .
    33. 江晓雨,刘康桢,徐帅. 基于LCA的合肥滨湖国家森林公园的环境评估. 合肥学院学报(综合版). 2023(05): 70-76 .
    34. 李放,孙红召,黄新峰,曹文昱,冯东阳,冯瑞琦. 基于河南省第九次森林资源清查的乔木林碳储量研究. 绿色科技. 2023(17): 151-157 .
    35. 陈晨,时军霞,刘光武. 河南省乔木林碳储量和碳密度研究. 安徽农业科学. 2023(22): 108-111 .
    36. 韩艺,张峰. 北京市不同功能分区的乔木林储碳功能对比研究. 林业调查规划. 2023(05): 26-31 .
    37. 朱昳橙. 海寨林场主要乔木树种碳储量和碳密度特征研究. 宁夏农林科技. 2023(12): 24-28 .
    38. 张颖,李晓格. 碳达峰碳中和目标下北京市森林碳汇潜力分析. 资源与产业. 2022(01): 15-25 .
    39. 徐明锋,苏永新,龚益广,王锋,张少杰,何春梅. 粤西桉阔林乔木层碳密度及其影响因子研究. 林业与环境科学. 2022(01): 1-8 .
    40. 张全斌,周琼芳. “双碳”目标下中国能源CO_2减排路径研究. 中国国土资源经济. 2022(04): 22-30 .
    41. 付晓,张煜星,王雪军. 2060年前我国森林生物量碳库及碳汇潜力预测. 林业科学. 2022(02): 32-41 .
    42. 尹海龙,张乃暄,许中旗. 冀北坝上及坝下地区华北落叶松林土壤碳储量的比较. 林业与生态科学. 2022(02): 164-168 .
    43. 刘华超,任春颖,王宗明,张柏. 大兴安岭生态功能区生态系统服务功能动态及权衡协同关系研究. 生态与农村环境学报. 2022(05): 587-598 .
    44. 胡忠宇,苏建兰. 森林植被碳储量研究综述与展望. 农业与技术. 2022(12): 58-62 .
    45. 肖水寒,张驭骁,张佳栋,周甲佳. 基于碳存储量预测的森林经营计划决策模型. 科学技术创新. 2022(23): 165-168 .
    46. Menghong HU,Jiying LI,Man SUN. Strong Seedlings of Improved Varieties and High-efficiency Cultivation of Artificial Forests Promotes the Early Realization of "Carbon Neutrality". Agricultural Biotechnology. 2022(04): 136-141 .
    47. 曾丽,吕寻,胡勐鸿. 良种是加速实现“碳中和”的有效保障措施——以甘肃省地方良种为例. 林业科技通讯. 2022(08): 35-39 .
    48. 周静,吕晓琪. 北京大兴区森林植被碳储量计算及价值分析. 绿色科技. 2022(16): 49-52 .
    49. 薛春泉,陈振雄,杨加志,曾伟生,林丽平,刘紫薇,张红爱,苏志尧. 省市县一体化森林碳储量估测技术体系——以广东省为例. 林业资源管理. 2022(04): 157-163 .
    50. 雷海清,孙高球,郑得利. 温州市森林生态系统碳储量研究. 南京林业大学学报(自然科学版). 2022(05): 20-26 .
    51. 肖君. 福建省天然乔木林碳储量动态变化及增汇策略. 南京林业大学学报(自然科学版). 2022(05): 27-32 .
    52. 范春楠,刘强,郑金萍,郭忠玲,张文涛,刘英龙,谢遵俊,任增君. 采伐强度对阔叶红松林生态系统碳密度恢复的影响. 北京林业大学学报. 2022(10): 33-42 . 本站查看
    53. 张颖,孟娜,姜逸菲. 中国森林碳汇与林业经济发展耦合及长期变化特征分析. 北京林业大学学报. 2022(10): 129-141 . 本站查看
    54. 陈科屹,王建军,何友均,张立文. 黑龙江大兴安岭重点国有林区森林碳储量及固碳潜力评估. 生态环境学报. 2022(09): 1725-1734 .
    55. 荀文会. “碳中和”视角下的沈阳市国土空间规划路径. 规划师. 2022(10): 88-92 .
    56. 王飞平,张加龙. 基于碳卫星的森林碳储量估测研究综述. 世界林业研究. 2022(06): 30-35 .
    57. 侯瑞萍,陈健,夏朝宗,宋佳庚,黄翔,郑芊卉,安天宇,郝月兰. 2020年京津冀地区林地和其他生物质碳汇量研究. 林业资源管理. 2022(05): 42-52 .
    58. 郭学媛,朱建华,刘华妍,田惠玲,李春蕾,刘常富,肖文发. 林业活动对区域森林生物量碳源汇格局的影响——以南平市为例. 生态学报. 2022(23): 9548-9559 .
    59. 侯瑞萍,夏朝宗,陈健,郑芊卉,李海奎,黄金金,黄翔,邓继峰,韩旭,安天宇,郝月兰,苟丽晖. 长江经济带林地和其他生物质碳储量及碳汇量研究. 生态学报. 2022(23): 9483-9498 .
    60. 韩光荣,赵琦,邵长城. 优化施肥对樟子松幼苗生长和抗逆生理的影响. 林业调查规划. 2022(06): 49-54 .
    61. 刘丽,彭琛. 宁强县森林资源变化分析. 绿色科技. 2021(19): 97-99 .
    62. 张峰,彭祚登. 北京市森林碳储量和碳汇经济价值研究. 林业资源管理. 2021(06): 52-58 .

    Other cited types(41)

Catalog

    Article views (92) PDF downloads (26) Cited by(103)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return