• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhao Hanqing, Wang Qiang, Pang Xiaoming, Bo Wenhao, Li Yingyue. In vitro polyploid induction and optimization of its proliferation and rooting culture system for ‘Jingzao 39’[J]. Journal of Beijing Forestry University, 2024, 46(6): 118-126. DOI: 10.12171/j.1000-1522.20230039
Citation: Zhao Hanqing, Wang Qiang, Pang Xiaoming, Bo Wenhao, Li Yingyue. In vitro polyploid induction and optimization of its proliferation and rooting culture system for ‘Jingzao 39’[J]. Journal of Beijing Forestry University, 2024, 46(6): 118-126. DOI: 10.12171/j.1000-1522.20230039

In vitro polyploid induction and optimization of its proliferation and rooting culture system for ‘Jingzao 39’

More Information
  • Received Date: February 23, 2023
  • Revised Date: March 13, 2023
  • Accepted Date: May 09, 2024
  • Available Online: May 13, 2024
  • Objective 

    This paper studies the effects of colchicine solution mass concentration, treatment time and pre-culture time on the induction of polyploidof ‘Jingzao 39’ in vitro, optimizes the proliferation and rooting medium of ‘Jingzao 39’, and an in vitro polyploid induction system for ‘Jingzao 39’ was established and polyploid plants were obtained.

    Method 

    Using randomized complete block design, we investigated the effects of different mass concentrations of colchicine solution and treatment time combinations on adventitious bud regeneration of ‘Jingzao 39’, the effects of different pre-culture time on polyploid induction of ‘Jingzao 39’ in vitro, the effects of different growth regulator combinations on the proliferation culture of ‘Jingzao 39’ and the effects of different basic media and growth regulator combinations on the rooting culture of ‘Jingzao 39’.

    Result 

    (1) When the mass concentration of colchicine solution was 80 mg/L and treated for 48 h, the survival rate of ‘Jingzao 39’ leaves was (50.00 ± 7.07)%, and the differentiation coefficient was (2.06 ± 0.17). (2) The best pre-culture time was 6 d, and the tetraploid ‘Jingzao 39’ was obtained with 80 mg/L colchicine and treatment for 48 h. (3) The optimal proliferation medium was MS + 0.8 mg/L 6-BA + 0.4 mg/L IBA + 30 g/L maltose, pH = 5.8, and the average proliferation coefficient was (4.22 ± 0.22). (4) The best rooting medium was modified 1/2MS + 0.8 mg/L IBA + 30 g/L maltose, pH = 5.8, and the average root length was (5.22 ± 0.19) cm, and the average rooting number was (3.20 ± 0.22).

    Conclusion 

    The polyploid induction system of ‘Jingzao 39’ is established preliminarily, and one polyploid ‘Jingzao 39’ is obtained. The methods of its proliferation and rooting culture are optimized. It provides a feasible technical method for the germplasm innovation of fine jujube variety ‘Jingzao 39’, and provides an experimental basis for the application of polyploid induction in jujube and other fruit trees.

  • [1]
    王利虎, 卢彦琦, 苏行,等. 果树多倍化育种研究进展[J]. 山西农业大学学报(自然科学版), 2022, 42(3): 14−24.

    Wang L H, Lu Y Q, Su X, et al. Research progress on polyploidy breeding of fruit trees[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2022, 42(3): 14−24.
    [2]
    José J D, Javier L, Enrique M, et al. Phenotypic diploidization in plant functional traits uncovered by synthetic neopolyploids[J]. Journal of Experimental Botany, 2021, 72(15): 5522−5533. doi: 10.1093/jxb/erab179
    [3]
    欧春青, 李林光, 何平,等. 寒富苹果叶片离体再生及四倍体诱导[J]. 果树学报, 2008, 25(3): 293−297.

    Ou C Q, Li L G, He P, et al. In vitro adventitious shoot regeneration and induction of tetraploid from leaves of Hanfu apple[J]. Journal of Fruit Science, 2008, 25(3): 293−297.
    [4]
    Podwyszyńska M, Sowik I, Machlańska A, et al. In vitro tetraploid induction of Malus × domestica Borkh. using leaf or shoot explants[J]. Scientia Horticulturae, 2017, 226(12): 379−388.
    [5]
    徐靓. 二倍体猕猴桃资源的离体再生与多倍体诱导[D]. 铜川: 西北农林科技大学, 2017.

    Xu L. In vitro regeneration of diploid Actinidia and polyploid induction[D]. Tongchuan: Northwest A&F University, 2017.
    [6]
    王利虎. 枣和酸枣田间愈伤组织途径芽再生技术优化及其在多倍体诱变中的应用[D]. 保定: 河北农业大学, 2015.

    Wang L H. Optimization of in vivo bud regeneration technique via callus and its applicationin polyploidy induction in Chinese jujube and sour jujube[D]. Baoding: Hebei Agricultural University, 2015.
    [7]
    Gu X F, Yang A F, Meng H, et al. In vitro induction of tetraploid plants from diploid Zizyphus jujuba Mill. cv. Zhanhua[J]. Plant Cell Reports, 2005, 24(11): 671−676. doi: 10.1007/s00299-005-0017-1
    [8]
    郭烨, 崔艳红, 孔德仓,等. 茶壶枣离体多倍体诱导关键技术研究[J]. 北京林业大学学报, 2019, 41(7): 49−56.

    Guo Y, Cui Y H, Kong D C, et al. Study on key techniques of polyploid induction in Ziziphus jujuba Mill. cv. ‘Teapot’[J]. Journal of Beijing Forestry University, 2019, 41(7): 49−56.
    [9]
    Cui Y, Hou L, Li X, et al. In vitro induction of tetraploid Ziziphus jujuba Mill. var. spinosa plants from leaf explants[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2017, 131(1): 175−182. doi: 10.1007/s11240-017-1274-8
    [10]
    曲泽州, 王永蕙. 中国果树志: 枣卷[M]. 北京: 中国林业出版社, 1993: 1−5.

    Qu Z Z, Wang Y H. Chinese fruit tree chronicle: jujube roll[M]. Beijing: China Forestry Publishing House, 1993: 1−5.
    [11]
    王向红, 崔同, 刘孟军,等. 不同品种枣的营养成分分析[J]. 营养学报, 2002, 24(2): 206−208.

    Wang X H, Cui T, Liu M J, et al. Analysis of nutritional composition of different Chinese jujubes[J]. Acta Nutrimenta Sinica, 2002, 24(2): 206−208.
    [12]
    Jin X. Jujuba: Ziziphus jujuba[M]. Ballarat: Exotic Fruits, 2018: 263−269.
    [13]
    张砚垒. 不同品种红枣营养成分分析及抗氧化活性研究[D]. 泰安: 山东农业大学, 2021.

    Zhang Y L. Nutritional components analysis and antioxidant properties of different varieties of jujube (Ziziphus jujuba Mill.)[D]. Taian: Shandong Agricultural University, 2021.
    [14]
    潘青华, 白金, 郑立梅. 优质鲜食大枣新品种京枣39[J]. 北京农业, 2003, 23(6): 19.

    Pan Q H, Bai J, Zheng L M. High quality fresh jujube new variety Jingzao 39[J]. Beijing Agriculture, 2003, 23(6): 19.
    [15]
    彭华, 潘青华, 张洪. 京枣39的品种特性及丰产栽培[J]. 林业实用技术, 2005, 48(11): 30−31.

    Peng H, Pan Q H, Zhang H. Variety characteristics and high-yield cultivation of Jingzao 39[J]. Forest Science and Technology, 2005, 48(11): 30−31.
    [16]
    卢翠. 京枣39引种表现及丰产栽培技术[J]. 绿色科技, 2021, 23(13): 183−184.

    Lu C. Introduction performance and high-yield cultivation techniques of Jingzao 39[J]. Journal of Green Science and Technology, 2021, 23(13): 183−184.
    [17]
    刘志国. 南疆砾质戈壁条件下枣种质资源的评价与筛选[D]. 保定: 河北农业大学, 2011.

    Liu Z G. Evaluation and selection of Chinese jujube (Ziziphus jujuba Mill.) germplasmson gravel gobi of south Xinjiang[D]. Baoding: Hebei Agricultural University, 2011.
    [18]
    高艺, 薄文浩, 李颖岳,等. ‘京枣39’离体叶片高效再生体系的建立[J]. 北京林业大学学报, 2023, 45(2): 68−77.

    Gao Y, Bo W H, Li Y Y, et al. Establishment of high-efficiency regeneration system from in vitro leaves of ‘Jingzao 39’[J]. Journal of Beijing Forestry University, 2023, 45(2): 68−77.
    [19]
    李玉岭, 闫少波, 毛秀红,等. 秋水仙素诱导林木多倍体研究进展[J]. 农学学报, 2022, 12(8): 55−61.

    Li Y L, Yan S B, Mao X H, et al. Polyploidy induction by colchicine in forest trees: research progress[J]. Journal of Agriculture, 2022, 12(8): 55−61.
    [20]
    吴辉晶. 无刺刺梨的组织培养及多倍体诱导[D]. 贵阳: 贵州大学, 2023.

    Wu H J. Tissue culture and polyploid induction of Rosa roxburghii f. eseiosa Ku[D]. Guiyang: Guizhou University, 2023.
    [21]
    崔艳红. 枣组培体系的建立及四倍体诱导和生根研究[D]. 北京: 北京林业大学, 2018.

    Cui Y H. Establishment of jujube tissue culture system and study on tetraploid induction and rooting[D]. Beijing: Beijing Forestry University, 2018.
    [22]
    李云, 冯大领. 木本植物多倍体育种研究进展[J]. 植物学通报, 2005, 22(3): 375−382.

    Li Y, Feng D L. Advances in research into polyploidy breeding of woody plants[J]. Chinese Bulletin of Botany, 2005, 22(3): 375−382.
    [23]
    马荣群, 张蕊芬, 宋正旭 ,等. 红果肉苹果‘红脆甜’多倍体诱导研究[J]. 果树学报, 2020, 37(10): 1499−1505.

    Ma R Q, Zhang R F, Song Z X, et al. A study on the induction of polyploidy in red-fleshed apple ‘Hongcuitian’[J]. Journal of Fruit Science, 2020, 37(10): 1499−1505.
    [24]
    刘庆忠, 马怀宇, 魏海蓉,等. 秋水仙素诱导樱桃矮化砧木‘吉塞拉6号’获得六倍体再生植株[J]. 园艺学报, 2008, 35(2): 285−288.

    Liu Q Z, Ma H Y, Wei H R, et al. Regeneration of hexaploid plants of cherry dwarf rootstock ‘Gisela 6’ from in vitro leaves treated with colchicine[J]. Acta Horticulturae Sinica, 2008, 35(2): 285−288.
    [25]
    Marangelli F, Pavese V, Vaia G, et al. In vitro polyploid induction of highbush blueberry through de novo shoot organogenesis[J]. Plants, 2022, 11(18): 2349. doi: 10.3390/plants11182349
    [26]
    周慧文, 冯斗, 严华兵. 秋水仙素离体诱导多倍体研究进展[J]. 核农学报, 2015, 29(7): 1307−1315.

    Zhou H W, Feng D, Yan H B. The progress of polyploids induced in vitro via colchicine[J]. Journal of Nuclear Agricultural Sciences, 2015, 29(7): 1307−1315.
    [27]
    刘晓婷. 库尔勒香梨叶片再生与多倍体诱导研究[D]. 铜川: 西北农林科技大学, 2015.

    Liu X T. Leaf regeneration and polyploid induction of ‘Korla Fragrant’ pear[D]. Tongchuan: Northwest A&F University, 2015.
    [28]
    Cai X, Kang X. In vitro tetraploid induction from leaf explants of Populus pseudo-simonii Kitag[J]. Plant Cell Reports, 2011, 30(9): 1771−1778. doi: 10.1007/s00299-011-1085-z
    [29]
    Zhang Y, Wang Z, Qi S, et al. In vitro tetraploid induction from leaf and petiole explants of hybrid sweetgum (Liquidambar styraciflua × Liquidambar formosana)[J]. Forests, 2017, 8(8): 264. doi: 10.3390/f8080264
    [30]
    石庆华. 田间愈伤组织途径诱导枣和酸枣多倍体研究[D]. 保定: 河北农业大学, 2013.

    Shi Q H. In vivo polyploid induction via callus in Chinese jujube and sour jujube[D]. Baoding: Hebei Agricultural University, 2013.
    [31]
    闫超, 苏彩霞, 刘晓红,等. 灰枣田间愈伤组织诱导多倍体的育种方法研究[J]. 新疆农垦科技, 2016, 39(8): 35−37.

    Yan C, Su C X, Liu X H, et al. A study on the breeding method of inducing polyploidy from field callus of grey jujube[J]. Xinjiang Farm Research of Science and Technology, 2016, 39(8): 35−37.
    [32]
    Wu J, Sang Y, Zhou Q, et al. Colchicine in vitro tetraploid induction of Populus hopeiensis from leaf blades[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2020, 141(2): 1−11.
    [33]
    邱芬, 林源, 辛培尧,等. 无籽刺梨多倍体诱导及鉴定[J]. 中国南方果树, 2017, 46(4): 121−124, 128.

    Qiu F, Lin Y, Xin P Y, et al. Induction and identification of polyploidy Rosa sterilis[J]. South China Fruits, 2017, 46(4): 121−124, 128.
    [34]
    许从萍. 青杨四倍体诱导及其营养生长缓慢的分子基础研究[D]. 北京: 北京林业大学, 2018.

    Xu C P. Tetraploid induction and molecular basic of vegetative slowly growth in tetraploid Populus spp. (Section Tacamahaca)[D]. Beijing: Beijing Forestry University, 2018.
    [35]
    王娜. 利用组织培养诱导枣和酸枣多倍体研究[D]. 保定: 河北农业大学, 2004.

    Wang N. Polyploid induction of Ziziphus jujuba Mill. and Ziziphus acidojujuba C. Y. Cheng et M. J. Liu by tissue culture[D]. Baoding: Hebei Agricultural University, 2004.
    [36]
    Costantini E, Landi L, Silvestroni O, et al. Auxin synthesis-encoding transgene enhances grape fecundity[J]. Plant Physiology, 2007, 143(4): 1689−1694. doi: 10.1104/pp.106.095232
    [37]
    付为国, 韦晨, 王醒. 苹果属植物组织培养的研究进展[J]. 分子植物育种, 2019, 17(4): 1320−1325.

    Fu W G, Wei C, Wang X. Research progress on tissue culture of Malus plant[J]. Molecular Plant Breeding, 2019, 17(4): 1320−1325.
    [38]
    王金祥, 严小龙, 潘瑞炽. 不定根形成与植物激素的关系[J]. 植物生理学通讯, 2005, 41(2): 133−142.

    Wang J X, Yan X L, Pan R Z. Relationship between adventitious root formation and plant hormones[J]. Plant Physiology Journal, 2005, 41(2): 133−142.
    [39]
    彭子模, 程伟, 高雁,等. 萘乙酸对几种植物扦插生根的影响[J]. 新疆师范大学学报(自然科学版), 2002, 21(2): 34−38.

    Peng Z M, Cheng W, Gao Y, et al. How does the NAA exert effects on root growth of several plants’ cuttage shoots[J]. Journal of Xinjiang Normal University (Natural Sciences Edition), 2002, 21(2): 34−38.
    [40]
    Frank R A W, Leeper F J, Luisi B F. Structure, mechanism and catalytic duality of thiamine-dependent enzymes[J]. Cellular and Molecular Life Sciences: CMLS, 2007, 64(7−8): 892−905.
  • Related Articles

    [1]Zhao Yabing, Peng Daoli, Guo Famiao, Wang Yin, Huang Jingxian. Estimating forest growing stock volume based on feature selection and machine learning[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240328
    [2]Guo Jialun, Zhong Haomin, Zhao Junbo, Chen Yao. Deresination rate prediction of Masson pine wood based on support vector regression (SVR)[J]. Journal of Beijing Forestry University, 2025, 47(3): 151-161. DOI: 10.12171/j.1000-1522.20240359
    [3]Zhou Lai, Cheng Xiaofang, Zhang Mengtao. Model construction of Larix principis-rupprechtii canopy volume and surface area based on BP neural network[J]. Journal of Beijing Forestry University, 2024, 46(8): 94-100. DOI: 10.12171/j.1000-1522.20230166
    [4]Feng Xinyan, Jia Xin, Huang Jinze, Gao Shengjie, Yuan Min, Liu Tiantian, Jin Chuan. Application of ANN-BiLSTM model to long-term gap-filling of carbon flux data in temperate desert shrub[J]. Journal of Beijing Forestry University, 2023, 45(9): 62-72. DOI: 10.12171/j.1000-1522.20220510
    [5]Zhang Hanyue, Feng Zhongke, Huang Guosheng, Yang Xueqing, Feng Zemin. Research on the growth rate model of Populus spp. considering environmental factors[J]. Journal of Beijing Forestry University, 2022, 44(11): 50-59. DOI: 10.12171/j.1000-1522.20210201
    [6]Zhang Mengku, Jiang Lichun. Prediction of bark thickness for Larix gmelinii based on machine learning[J]. Journal of Beijing Forestry University, 2022, 44(6): 54-62. DOI: 10.12171/j.1000-1522.20210097
    [7]Zhao Jing, Chen Ran, Hao Huichao, Shao Zhuang. Application progress and prospect of machine learning technology in landscape architecture[J]. Journal of Beijing Forestry University, 2021, 43(11): 137-156. DOI: 10.12171/j.1000-1522.20200313
    [8]Lei Xiangdong. Applications of machine learning algorithms in forest growth and yield prediction[J]. Journal of Beijing Forestry University, 2019, 41(12): 23-36. DOI: 10.12171/j.1000-1522.20190356
    [9]ZHANG Wen-yi, JING Tian-zhong, YAN Shan-chun. Studies on prediction models of Dendrolimus superans occurrence area based on machine learning[J]. Journal of Beijing Forestry University, 2017, 39(1): 85-93. DOI: 10.13332/j.1000-1522.20160205
    [10]LIN Zhuo, WU Cheng-zhen, HONG Wei, HONG Tao. Yield model of Cunninghamia lanceolata plantation based on back propagation neural network and support vector machine.[J]. Journal of Beijing Forestry University, 2015, 37(1): 42-54. DOI: 10.13332/j.cnki.jbfu.2015.01.008
  • Cited by

    Periodical cited type(7)

    1. 孙欣,尹紫良,赵琬婧,张治军,王清波,蔡体久,孙晓新. 灌木扩张压力下三江平原沼泽植物群落多样性变化及其土壤控制因子. 应用生态学报. 2024(04): 1016-1024 .
    2. 李元,杨海鑫,齐昊宇,喻其林,郭东罡,张全喜. 运城盐湖湿地土壤重金属污染特征与风险评价. 生态毒理学报. 2024(03): 396-406 .
    3. 管祥楠,董士伟,刘玉,张欣欣,潘瑜春,卢闯. 土壤重金属含量变化的影响因素多目标识别方法. 环境科学. 2024(08): 4791-4801 .
    4. 高明华. 长寿湖国家湿地公园退耕地土壤细菌群落多样性研究. 呼伦贝尔学院学报. 2023(03): 85-91 .
    5. 裘奕斐,王静,徐敏. 江苏滨海县近岸海域海水、沉积物和生物体重金属分布及健康风险评价. 南京师大学报(自然科学版). 2021(01): 71-78 .
    6. 李琦,赵琬婧,王瑜,原卉,王清波,刘成林,李海兴,孙晓新. 三江平原沼泽湿地典型湿地植物对重金属的富集效应. 湿地科学与管理. 2021(02): 9-13 .
    7. 刘德浩,廖文莉,陈智涛,阳艳萍,吴宝宏,舒夏竺,邓仿东. 潼湖湿地土壤重金属污染现状及生态风险评价. 林业与环境科学. 2021(05): 61-68 .

    Other cited types(0)

Catalog

    Article views (350) PDF downloads (32) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return