• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Jinfeng, Xu Jie, Xu Jiliang, An Lidan. Evaluation of ecosystem service function of national nature reserves of the Yellow River Basin[J]. Journal of Beijing Forestry University, 2024, 46(7): 90-100. DOI: 10.12171/j.1000-1522.20230047
Citation: Wang Jinfeng, Xu Jie, Xu Jiliang, An Lidan. Evaluation of ecosystem service function of national nature reserves of the Yellow River Basin[J]. Journal of Beijing Forestry University, 2024, 46(7): 90-100. DOI: 10.12171/j.1000-1522.20230047

Evaluation of ecosystem service function of national nature reserves of the Yellow River Basin

More Information
  • Received Date: March 05, 2023
  • Revised Date: April 29, 2024
  • Accepted Date: May 10, 2024
  • Available Online: May 15, 2024
  • Objective 

    This paper studies the spatiotemporal variation characteristics of ecosystem service functions in national nature reserves in the Yellow River Basin so as to provide scientific basis for formulating effective ecological protection strategies.

    Method 

    This study took the national nature reserves in the Yellow River Basin as the research object and evaluated its four ecosystem service functions of water supply, soil conservation, carbon storage, and habitat quality through InVEST model analysis, and proposed targeted conservation recommendations on this basis.

    Result 

    (1) From 2000 to 2020, the water supply and average habitat quality index of national nature reserves in the Yellow River Basin showed a change of first decreasing and then increasing, while the change of soil conservation showed a period-by-period decrease, and the carbon density showed a change of first increasing and then decreasing over time. Precipitation and land cover change were the main factors affecting the change of ecosystem service function. (2) Influenced by the rapid development of urbanization in the Yellow River Basin, the comprehensive ecosystem service function of national nature reserves showed a gradual decrease over time, and the spatial distribution characteristics showed a gradual increase from the upstream to the downstream of the Yellow River Basin.

    Conclusion 

    Based on the complex ecological and environmental risk problems in the Yellow River Basin, it is recommended to strengthen the basin-wide coordination mechanism of water resources, pay attention to the rational development and utilization of land resources, improve the efficiency of land use, focus on vegetation protection and natural restoration, improve the basin-wide ecological compensation mechanism, and adopt locally appropriate protection measures. These measures aim to promote the coordinated and sustainable development of regional ecological environment and economy and society.

  • [1]
    Schägner J P, Brander L, Maes J, et al. Mapping ecosystem services’ values: current practice and future prospects[J]. Ecosystem Services, 2013, 4: 33−46. doi: 10.1016/j.ecoser.2013.02.003
    [2]
    Folke C. Resilience (Republished)[J]. Ecology and Society, 2016, 21(4): 44. doi: 10.5751/ES-09088-210444
    [3]
    Holdren J P, Ehrlich P R. Human population and the global environment[J]. American Scientist, 1974, 62(3): 282.
    [4]
    Costanza R, D’Arge R, de Groot R, et al. The value of the world’s ecosystem services and natural capital[J]. Ecological Economics, 1998, 25(1): 3−15. doi: 10.1016/S0921-8009(98)00020-2
    [5]
    谢高地, 甄霖, 鲁春霞, 等. 一个基于专家知识的生态系统服务价值化方法[J]. 自然资源学报, 2008, 23(5): 911−919. doi: 10.3321/j.issn:1000-3037.2008.05.019

    Xie G D, Zhen L, Lu C X, et al. Expert knowledge based valuation method of ecosystem services in China[J]. Journal of Natural Resources, 2008, 23(5): 911−919. doi: 10.3321/j.issn:1000-3037.2008.05.019
    [6]
    Millennium E A. Millennium ecosystem assessment: ecosystems and human well-being: synthesis[M]. Washington: Island Press, 2005.
    [7]
    Goldstein J H, Caldarone G, Duarte T K, et al. Integrating ecosystem-service tradeoffs into land-use decisions[J]. Proceedings of the National Academy of Sciences, 2012, 109(19): 7565−7570. doi: 10.1073/pnas.1201040109
    [8]
    Vergílio M, Fjøsne K, Nistora A, et al. Carbon stocks and biodiversity conservation on a small island: Pico (the Azores, Portugal)[J]. Land Use Policy, 2016, 58: 196−207. doi: 10.1016/j.landusepol.2016.07.020
    [9]
    Xu W, Xiao Y, Zhang J, et al. Strengthening protected areas for biodiversity and ecosystem services in China[J]. Proceedings of the National Academy of Sciences, 2017, 114(7): 1601−1606. doi: 10.1073/pnas.1620503114
    [10]
    缪建群, 孙松, 王志强, 等. 江西高天岩自然保护区生态系统服务功能价值评估[J]. 生态学报, 2017, 37(19): 6422−6430.

    Miao J Q, Sun S, Wang Z Q, et al. Evaluating the ecosystem services of Gaotianyan Nature Reserve in Lianhua County, Jiangxi Province[J]. Acta Ecologica Sinica, 2017, 37(19): 6422−6430.
    [11]
    Timko J A, Innes J L. Evaluating ecological integrity in national parks: case studies from Canada and South Africa[J]. Biological Conservation, 2009, 142(3): 676−688. doi: 10.1016/j.biocon.2008.11.022
    [12]
    Dudley Nigel. IUCN自然保护地管理分类应用指南[M]. 北京: 中国林业出版社, 2016.

    Nigel D. IUCN nature reserve management classification application guide [M]. Beijing: China Forestry Publishing House, 2016.
    [13]
    王伟, 辛利娟, 杜金鸿, 等. 自然保护地保护成效评估: 进展与展望[J]. 生物多样性, 2016, 24(10): 1177−1188. doi: 10.17520/biods.2016162

    Wang W, Xin L J, Du J H, et al. Evaluating conservation effectiveness of protected areas: advances and new perspectives[J]. Biodiversity Science, 2016, 24(10): 1177−1188. doi: 10.17520/biods.2016162
    [14]
    徐勇, 王传胜. 黄河流域生态保护和高质量发展: 框架、路径与对策[J]. 中国科学院院刊, 2020, 35(7): 875−883.

    Xu Y, Wang C S. Ecological protection and high-quality development in the Yellow River Basin: framework, path, and countermeasure[J]. Bulletin of the Chinese Academy of Sciences, 2020, 35(7): 875−883.
    [15]
    杨东阳, 张骞, 苗长虹, 等. 黄河流域省区生态系统服务价值时空演变研究[J]. 黄河文明与可持续发展, 2021(1): 88−101.

    Yang D Y, Zhang Q, Miao C H, et al. The spatiotemporal change of ecosystem service value in the Yellow River Basin[J]. Yellow River Civilization and Sustainable Development, 2021(1): 88−101.
    [16]
    陈心盟. 黄河流域生态系统服务时空变化及其权衡关系分析[J]. 农业与技术, 2020, 40(20): 122−125.

    Chen X M. Spatiotemporal changes and trade-offs of ecosystem services in the Yellow River Basin[J]. Agriculture and Technology, 2020, 40(20): 122−125.
    [17]
    孙梦华, 牛文浩, 张蚌蚌, 等. 黄河流域土地利用变化下生态系统服务价值时空演变及其响应: 以陕甘宁地区为例[J]. 应用生态学报, 2021, 32(11): 3913−3922.

    Sun M H, Niu W H, Zhang B B, et al. Spatial-temporal evolution and responses of ecosystem service value under land use change in the Yellow River Basin: a case study of Shaanxi-Gansu-Ningxia region, Northwest China[J]. Chinese Journal of Applied Ecology, 2021, 32(11): 3913−3922.
    [18]
    孙孝平, 李双, 余建平, 等. 基于土地利用变化情景的生态系统服务价值评估: 以钱江源国家公园体制试点区为例[J]. 生物多样性, 2019, 27(1): 51−63. doi: 10.17520/biods.2018182

    Sun X P, Li S, Yu J P, et al. Evaluation of ecosystem service value based on land use scenarios: a case study of Qianjiangyuan National Park pilot[J]. Biodiversity Science, 2019, 27(1): 51−63. doi: 10.17520/biods.2018182
    [19]
    薛健, 李宗省, 冯起, 等. 1980-2017年祁连山水源涵养量时空变化特征[J]. 冰川冻土, 2022, 44(1): 1−13.

    Xue J, Li Z X, Feng Q, et al. Spatiotemporal variation characteristics of water conservation amount in the Qilian Mountains from 1980 to 2017[J]. Journal of Glaciology and Geocryology, 2022, 44(1): 1−13.
    [20]
    Zhang L, Dawes W R, Walker G R. Response of mean annual evapotranspiration to vegetation changes at catchment scale[J]. Water Resources Research, 2001, 37(3): 701−708. doi: 10.1029/2000WR900325
    [21]
    Sharp R, Tallis H T, Ricketts T, et al. InVEST 3.2. 0 User’s guide[EB/OL]. (2015−12−30)[2023−02−21]. https://storage.googleapis.com/releases.naturalcapitalproject.org/invest-userguide/latest/index.html.
    [22]
    杨洁, 谢保鹏, 张德罡, 等. 基于InVEST模型的黄河流域土壤侵蚀评估及其时空变化[J]. 兰州大学学报(自然科学版), 2021, 57(5): 650−658.

    Yang J, Xie B P, Zhang D G, et al. Soil erosion and its temporal-spatial variation in the Yellow River Basin based on the InVEST model[J]. Journal of Lanzhou University (Natural Sciences), 2021, 57(5): 650−658.
    [23]
    杨洁, 谢保鹏, 张德罡. 基于InVEST和CA-Markov模型的黄河流域碳储量时空变化研究[J]. 中国生态农业学报(中英文), 2021, 29(6): 1018−1029.

    Yang J, Xie B P, Zhang D G. Spatio-temporal evolution of carbon stocks in the Yellow River Basin based on InVEST and CA-Markov models[J]. Chinese Journal of Eco-Agriculture, 2021, 29(6): 1018−1029.
    [24]
    杨洁, 谢保鹏, 张德罡. 黄河流域生境质量时空演变及其影响因素[J]. 中国沙漠, 2021, 41(4): 12−22.

    Yang J, Xie B P, Zhang D G. Spatial-temporal evolution of habitat quality and its influencing factors in the Yellow River Basin based on InVEST model and GeoDetector[J]. Journal of Desert Research, 2021, 41(4): 12−22.
    [25]
    Budyko M I. Climate and life[M]. Washington: Academic Press, 1974.
    [26]
    张晗. 基于GIS和InVEST模型的安远县生态系统服务功能评价[D]. 南昌: 江西农业大学, 2019.

    Zhang H. Comprehensive assessments of ecosystem service functions in Anyuan County based on GIS and InVEST model[D]. Nanchang: Jiangxi Agricultural University, 2019.
    [27]
    国家林业和草原局. 黄河流域国家级保护区管理成效优良率超过九成[EB/OL]. (2022−04−04)[2023−05−20]. http://www.forestry.gov.cn/c/www/zrzrbhq/23851.jhtml.

    National Forestry and Grassland Administration. Yellow River Basin national protected area management effectiveness excellent rate over 90%[EB/OL]. (2022−04−04)[2023−05−20]. http://www.forestry.gov.cn/c/www/zrzrbhq/23851.jhtml.
    [28]
    杨小琬, 张丽君, 秦耀辰, 等. 1995年以来黄河下游碳储量时空变化及驱动因素[J]. 河南大学学报(自然科学版), 2022, 52(1): 20−33.

    Yang X W, Zhang L J, Qin Y C, et al. Temporal and spatial variation and driving factors of carbon storage in the lower Yellow River since 1995[J]. Journal of Henan University (Natural Science), 2022, 52(1): 20−33.
    [29]
    计伟, 刘海江, 高吉喜, 等. 黄河流域生态质量时空变化分析[J]. 环境科学研究, 2021, 34(7): 1700−1709.

    Ji W, Liu H J, Gao J X, et al. Spatial-temporal variations of ecological quality in the Yellow River Basin[J]. Research of Environmental Sciences, 2021, 34(7): 1700−1709.
    [30]
    Schroter D, Cramer W, Leemans R, et al. Ecosystem service supply and vulnerability to global change in Europe[J]. Science, 2005, 310: 1333−1337. doi: 10.1126/science.1115233
    [31]
    Shaw M R, Pendleton L, Cameron D R, et al. The impact of climate change on California’s ecosystem services[J]. Climatic Change, 2011, 109(S1): 465−484. doi: 10.1007/s10584-011-0313-4
    [32]
    柯新利, 唐兰萍. 城市扩张与耕地保护耦合对陆地生态系统碳储量的影响: 以湖北省为例[J]. 生态学报, 2019, 39(2): 672−683.

    Ke X L, Tang L P. Impact of cascading processes of urban expansion and cropland reclamation on the ecosystem of a carbon storage service in Hubei Province, China[J]. Acta Ecologica Sinica, 2019, 39(2): 672−683.
    [33]
    马佳宁, 高艳红. 近50年黄河上游流域年均降水与极端降水变化分析[J]. 高原气象, 2019, 38(1): 124−135.

    Ma J N, Gao Y H. Analysis of annual precipitation and extreme precipitation change in the upper Yellow River Basin in recent 50 years[J]. Plateau Meteorology, 38(1): 124−135.
    [34]
    王艳芬, 陈怡平, 王厚杰, 等. 黄河流域生态系统变化及其生态水文效应[J]. 中国科学基金, 2021, 35(4): 520−528.

    Wang Y F, Chen Y P, Wang H J, et al. Ecosystem change and its ecohydrological sffect in the Yellow River Basin[J]. Bulletin of National Natural Science Foundation of China, 2021, 35(4): 520−528.
    [35]
    朱春霞, 钟绍卓, 龙宇, 等. 黄河流域生态系统服务的时空演变及其驱动力[J]. 生态学杂志, 2023, 42(10): 2502−2513.

    Zhu C X, Zhong S Z, Long Y, et al. 2023. Spatiotemporal variation of ecosystem services and their drivers in the Yellow River Basin, China[J]. Chinese Journal of Ecology, 2023, 42(10): 2502−2513.
    [36]
    Jiang C, Zhang H Y, Zhang Z D, et al. Model-based assessment soil loss by wind and water erosion in China’s Loess Plateau: dynamic change, conservation effectiveness, and strategies for sustainable restoration[J]. Global and Planetary Change, 2019, 172: 396−413. doi: 10.1016/j.gloplacha.2018.11.002
    [37]
    王有恒, 谭丹, 韩兰英, 等. 黄河流域气候变化研究综述[J]. 中国沙漠, 2021, 41(4): 235−246.

    Wang Y H, Tan D, Han L Y, et al. Review of climate change in the Yellow River Basin[J]. Journal of Desert Research, 2021, 41(4): 235−246.
    [38]
    贺俊平, 贺振. 近53年黄河流域降水时空分布特征[J]. 生态环境学报, 2014, 23(1): 95−100. doi: 10.3969/j.issn.1674-5906.2014.01.014

    He J P, He Z. Spatio-temporal characteristics of extreme precipitation event in Yellow River Basin in recent 53 years[J]. Ecology and Environmental Sciences, 2014, 23(1): 95−100. doi: 10.3969/j.issn.1674-5906.2014.01.014
    [39]
    王胜杰, 赵国强, 王旻燕, 等. 1961—2020年黄河流域气候变化特征研究[J]. 气象与环境科学, 2021, 44(6): 1−8.

    Wang S J, Zhao G Q, Wang M Y, et al. Characteristics of climate change in the Yellow River Basin from 1961 to 2020[J]. Meteorological and Environmental Sciences, 2021, 44(6): 1−8.
    [40]
    杨泽龙, 李艳忠, 梁康, 等. 植被恢复背景下黄河中游及6个典型流域蒸散发及其组分变化格局[J]. 自然资源学报, 2022, 37(3): 816−828. doi: 10.31497/zrzyxb.20220317

    Yang Z L, Li Y Z, Liang K, et al. Variation patterns of evapotranspiration and its components in the Middle Yellow River and six typical basins under the background of vegetation restoration[J]. Journal of Natural Resources, 2022, 37(3): 816−828. doi: 10.31497/zrzyxb.20220317
    [41]
    张志强, 刘欢, 左其亭, 等. 2000—2019年黄河流域植被覆盖度时空变化[J]. 资源科学, 2021, 43(4): 849−858.

    Zhang Z Q, Liu H, Zuo Q T, et al. Spatiotemporal change of fractional vegetation cover in the Yellow River Basin during 2000−2019[J]. Resources Science, 2021, 43(4): 849−858.
    [42]
    黄河水利委员会水土保持局. 依法强化水土保持监管 扎实推进黄河流域水土保持专项整治行动[J]. 中国水土保持, 2021(4): 15−18. doi: 10.3969/j.issn.1000-0941.2021.04.006

    Soil and Water Conservation Bureau of the Yellow River Water Conservancy Commission. Strengthening the supervision of soil and water conservation according to law and promoting the special rectification action of soil and water conservation in the Yellow River Basin[J]. Soil and Water Conservation in China, 2021(4): 15−18. doi: 10.3969/j.issn.1000-0941.2021.04.006
    [43]
    字豪翠, 张芝艳, 席武俊. 黄河流域植被覆盖度变化[J]. 自然科学, 2023, 11(4): 634−640.

    Yu H C, Zhang Z Y, Xi W J. Vegetation coverage change in the Yellow River Basin[J]. Journal of Natural Science, 2023, 11(4): 634−640.
    [44]
    彭玺, 张亚威. 湘乡市林地森林碳储量及碳密度研究[J]. 中南林业调查规划, 2019, 38(1): 62−67.

    Peng X, Zhang Y W. Study on carbon storage and carbon density of forest land in Xiangxiang[J]. Central South Forest Inventory and Planning, 2019, 38(1): 62−67.
    [45]
    Krogh L, Noergaard A, Hermansen M, et al. Preliminary estimates of contemporary soil organic carbon stocks in Denmark using multiple datasets and four scaling-up methods[J]. Agriculture Ecosystems and Environment, 2003, 96(1−3): 19−28. doi: 10.1016/S0167-8809(03)00016-1
    [46]
    Pagiola S. Payments for environmental services in Costa Rica[J]. Ecological Economics, 2008, 65(4): 712−724. doi: 10.1016/j.ecolecon.2007.07.033
    [47]
    Newbold T, Hudson L N, Hill S L, et al. Global effects of land use on local terrestrial biodiversity[J]. Nature, 2015, 520: 45−50. doi: 10.1038/nature14324
    [48]
    Yang W, Jin Y, Sun T, et al. Trade-offs among ecosystem services in coastal wetlands under the effects of reclamation activities[J]. Ecological Indicators, 2018, 92: 354−366. doi: 10.1016/j.ecolind.2017.05.005
    [49]
    邓小云. 整体主义视域下黄河流域生态环境风险及其应对[J]. 东岳论丛, 2020, 41(10): 150−155.

    Deng X Y. Ecological and environmental risks in the Yellow River Basin from the perspective of holism and their responses[J]. Dongyue Tribune, 2020, 41(10): 150−155.
    [50]
    环境保护部, 中国科学院. 全国生态功能区划[ROL]. 2015 [2023−01−05]. https://www.mee.gov.cn/xxgk2018/xxgk/xzgfxwj/202301/W020151126550511267548.pdf.

    Ministry of Environmental Protection, Chinese Academy of Sciences. National ecological function zoning[R/OL]. 2015 [2023−01−05]. https://www.mee.gov.cn/xxgk2018/xxgk/xzgfxwj/202301/W020151126550511267548.pdf.
  • Related Articles

    [1]Li Zhu, Jiang Jiali, Lü Jianxiong. Tensile creep characteristics of compression wood and normal wood under different temperatures and loads[J]. Journal of Beijing Forestry University, 2024, 46(12): 138-145. DOI: 10.12171/j.1000-1522.20240277
    [2]Wu Haoyang, Niu Jianzhi, Wang Di, Qiu Qihuang, Yang Tao, Yang Shujian. Characteristics of the macropore structure of ice-marginal landforms in the Liaodong Mountain Area of northeastern China and its influence on soil aggregate stability and soil erodibility[J]. Journal of Beijing Forestry University, 2023, 45(6): 69-81. DOI: 10.12171/j.1000-1522.20220283
    [3]LI Jin-ke, DENG Wen-hong, CHEN Shao-liang. Gel permeation chromatography (GPC)high performance liquid chromatographic (HPLC) determination of cytokinin in plant tissues.[J]. Journal of Beijing Forestry University, 2012, 34(6): 155-159.
    [4]QIU Er-fa, XU Fei, WANG Cheng, DONG Jian-wen, WU Yong-shu, . Population distribution and structure characteristics of village roadside forest in Fujian Province, eastern China[J]. Journal of Beijing Forestry University, 2012, 34(6): 68-74.
    [5]KONG Ying, SUN Ming, PAN Hu-tang, ZHANG Qi-xiang. Advances in metabolism and regulation of floral scent.[J]. Journal of Beijing Forestry University, 2012, 34(2): 146-154.
    [6]NIAN Hong-li, LI He, CAO Dong-dong, CAO Jian-kang, JIANG Wei-bo. Determination of phenolic compounds in jujube peels at different maturity stages by high performance liquid chromatography.[J]. Journal of Beijing Forestry University, 2011, 33(1): 139-143.
    [7]WANG Wei, ZHENG Xiao-xian, NING Yang-cui. Structural characteristics of typical water conservation forests in mountain areas of Beijing.[J]. Journal of Beijing Forestry University, 2011, 33(1): 60-63.
    [8]HU Xiao-dan, ZHANG De-quan, SUN Ai-dong, WANG Jian-zhong, LIU Yu-jun. Separation of perilla ketone by high speed countercurrent chromatography[J]. Journal of Beijing Forestry University, 2007, 29(5): 170-172. DOI: 10.13332/j.1000-1522.2007.05.031
    [9]GAO Lin, WANG Nai-kang, GAO Yong. Fuzzy control on air-suction seeding system in the seedling production line[J]. Journal of Beijing Forestry University, 2007, 29(4): 75-79. DOI: 10.13332/j.1000-1522.2007.04.018
    [10]CHANG De-long, SONG Zhan-qian, HUANG Wen-hao, HU Wei-hua, LI Fu-hai, ZHANG Quan-lai. Impacts of fungi on chemical components and physical structure of Paulownia elongata wood[J]. Journal of Beijing Forestry University, 2006, 28(3): 145-149.
  • Cited by

    Periodical cited type(17)

    1. 高杰. 天然林保护对生态系统服务功能的影响. 农业灾害研究. 2024(02): 232-234 .
    2. 力佳琪,麦强盛,王俊超. 玉白顶自然保护区森林生态价值评估. 农业与技术. 2024(18): 67-71 .
    3. 潘丰十,牛香,郭珂. 呼伦贝尔市典型生态产品禀赋与价值化实现路径优化. 林业科学. 2024(12): 146-157 .
    4. 严雨桐,陈花丹,游巍斌,刘进山,蔡昌棠,何东进. 基于能值分析的天宝岩泥炭沼泽生态系统服务价值评估. 生态与农村环境学报. 2023(03): 335-343 .
    5. 李保杰,褚帅,顾和和. 淮海经济区生态系统服务价值时空分异特征研究. 地域研究与开发. 2023(02): 167-172 .
    6. 魏媛,吴长勇,洪林. 碳中和导向下贵州省森林资源生态价值评估及生态补偿研究. 自然资源情报. 2023(04): 44-50 .
    7. 赵玉堂. 普达措国家公园森林生态系统服务价值评估与分析. 林业调查规划. 2023(03): 208-213 .
    8. 邓紫君,刘鑫,祖浩然,苏闪闪,陈颖,罗俊毅,闫文德,张翔,王明旭. 湖南省森林型国家级自然保护区森林生态系统服务功能价值评估. 湖南林业科技. 2023(04): 72-80 .
    9. 李连强,杨会侠,丁国泉,李虹谕,白荣芬,王品. 辽宁仙人洞国家级自然保护区森林生态服务物质量评估及权衡与协同. 北京林业大学学报. 2023(09): 83-94 . 本站查看
    10. 白晓航,施佳颖. 黑龙江丰林国家级自然保护区红松+紫椴+硕桦群系优势树种生态位特征与种间联结分析. 园林. 2023(10): 14-21 .
    11. 李超,谢飞,苏学威,罗传文. 凉水国家级自然保护区森林生态系统服务功能评估. 中国林副特产. 2023(06): 17-18 .
    12. 党俊. 移植栽培技术在自然保护区天然林保护工程生态修复中的应用. 环境保护与循环经济. 2023(12): 68-71 .
    13. 张颖,刘平辉,朱传民,张林颖. 基于NPP的抚州市生态系统服务功能重要性评价. 贵州农业科学. 2022(02): 133-140 .
    14. 胡建忠. 对我国系统种植开发沙棘的回顾与建议. 防护林科技. 2022(04): 75-77 .
    15. 王晓康. 山西省关帝山国有林区森林生态系统服务功能价值估算研究. 中国农学通报. 2022(23): 49-55 .
    16. 任志华,秦磊. 黑龙江省乡村振兴战略实施下的乡村发展策略. 规划师. 2022(09): 139-144 .
    17. 张卫民. 中国自然保护地生态资产核算框架研究. 自然保护地. 2021(02): 22-30 .

    Other cited types(15)

Catalog

    Article views (570) PDF downloads (79) Cited by(32)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return