Citation: | Li Zhenrui, Li Yunqi, Lin Lanying, Liu Xing’e. Fracture behavior of wood bonding interface based on fiber pull-out test[J]. Journal of Beijing Forestry University, 2023, 45(6): 117-126. DOI: 10.12171/j.1000-1522.20230054 |
[1] |
雷德定, 刘正添, 周雄志. 木材界面学与界面技术[M]. 北京: 中国林业出版社, 2012.
Lei D D, Liu Z T, Zhou X Z. Wood interface and technology[M]. Beijing: China Forestry Publishing House, 2012.
|
[2] |
王新洲, 谢序勤, 王思群, 等. 基于纳米压痕技术的木材胶合界面力学行为[J]. 林业科学, 2019, 55(7): 128−136.
Wang X Z, Xie X Q, Wang S Q, et al. Investigation of the mechanical behavior of wood-adhesive interphase by using nanoindentation[J]. Scientia Silvae Sinicae, 2019, 55(7): 128−136.
|
[3] |
Jesson D A, Watts J F. The interface and interphase in polymer matrix composites: effect on mechanical properties and methods for identification[J]. Polymer Reviews, 2012, 52(3−4): 321−354.
|
[4] |
Wang J F, Yao Y, Huang Y Q, et al. Effects of the combination of compression and impregnation with phenolic resin on the dimensional stability in the multiscale wood structure of Chinese fir[J]. Construction and Building Materials, 2022, 327: 126960. doi: 10.1016/j.conbuildmat.2022.126960
|
[5] |
Tran A, Mayr M, Konnerth J, et al. Adhesive strength and micromechanics of wood bonded at low temperature[J]. International Journal of Adhesion and Adhesives, 2020, 103: 102697. doi: 10.1016/j.ijadhadh.2020.102697
|
[6] |
Zhang Z W, Dasari A. Effect of temperature on the fracture energy of adhesive layers of engineered wood[J]. International Journal of Adhesion and Adhesives, 2022, 117: 103185. doi: 10.1016/j.ijadhadh.2022.103185
|
[7] |
周斌, 王昕萌, 张柳柳, 等. 自攻螺钉钉入角度对钢板–正交胶合木节点剪切性能的影响[J]. 林业科学, 2022, 58(6): 122−127.
Zhou B, Wang X M, Zhang L L, et al. Effects of the penetration angle of self-tapping screw on shear performance of steel plate cross-laminated timber joints[J]. Scientia Silvae Sinicae, 2022, 58(6): 122−127.
|
[8] |
Marra A A. Technology of wood bonding: principles in practice[M]. New York: Springer, 1992.
|
[9] |
江泽慧, 余雁, 费本华, 等. 纳米压痕技术测量管胞次生壁S2层的纵向弹性模量和硬度[J]. 林业科学, 2004, 40(2): 113−118. doi: 10.3321/j.issn:1001-7488.2004.02.020
Jiang Z H, Yu Y, Fei B H, et al. Using nanoindentation technique to determine the longitudinal elastic modulus and hardness of tracheids secondary wall[J]. Scientia Silvae Sinicae, 2004, 40(2): 113−118. doi: 10.3321/j.issn:1001-7488.2004.02.020
|
[10] |
Herzele S, van Herwijnen H W G, Griesser T, et al. Differences in adhesion between 1C-PUR and MUF wood adhesives to (ligno) cellulosic surfaces revealed by nanoindentation[J]. International Journal of Adhesion and Adhesives, 2020, 98: 102507. doi: 10.1016/j.ijadhadh.2019.102507
|
[11] |
Obersriebnig M, Veigel S, Gindl-Altmutter W, et al. Determination of adhesive energy at the wood cell-wall/UF interface by nanoindentation (NI)[J]. Holzforschung, 2012, 66(6): 781−787. doi: 10.1515/hf-2011-0205
|
[12] |
Chen X Y, Beyerlein I J, Brinson L C. Curved-fiber pull-out model for nanocomposites (1): bonded stage formulation[J]. Mechanics of Materials, 2009, 41(3): 279−292. doi: 10.1016/j.mechmat.2008.12.004
|
[13] |
朱大胜, 顾伯勤, 陈晔. 纤维增强弹性体基复合材料单纤维拔出试验细观力学分析[J]. 工程力学, 2009, 26(5): 1−7.
Zhu D S, Gu B Q, Chen Y. Micromechanical analysis of single-fiber pull-out test of fiber-reinforced elastomer matrix composites[J]. Engineering Mechanics, 2009, 26(5): 1−7.
|
[14] |
Wang H, Tian G L, Wang H K, et al. Pull-out method for direct measuring the interfacial shear strength between short plant fibers and thermoplastic polymer composites (TPC)[J]. Holzforschung, 2014, 68(1): 17−21. doi: 10.1515/hf-2013-0052
|
[15] |
Hsueh C H. Interfacial debonding and fiber pull-out stresses of fiber-reinforced composites[J]. Materials Science and Engineering: A, 1990, 123(1): 1−11. doi: 10.1016/0921-5093(90)90203-F
|
[16] |
Yu Y, Jiang Z H, Fei B H, et al. An improved microtensile technique for mechanical characterization of short plant fibers: a case study on bamboo fibers[J]. Journal of Materials Science, 2010, 46(3): 739−746.
|
[17] |
Yu Y, Tian G L, Wang H K, et al. Mechanical characterization of single bamboo fibers with nanoindentation and microtensile technique[J]. Holzforschung, 2011, 65(1): 113−119. doi: 10.1515/hf.2011.009
|
[18] |
Sanadi A R, Rowell R M, Young R A. Evaluation of wood-thermoplastic-interphase shear strength[J]. Journal of Materials Science, 1993, 28(23): 6347−6352. doi: 10.1007/BF01352195
|
[19] |
Rowell R M. Handbook of wood chemistry and wood composites[M]. Boca Raton: CRC Press, 2012.
|
[20] |
Saiki H. The effect of the penetration of adhesives into cell walls on the failure of wood bonding[J]. Journal of the Japan Wood Research Society, 1984, 30(1): 88−92.
|
[21] |
Wong K J, Yousif B F, Low K O. The effects of alkali treatment on the interfacial adhesion of bamboo fibres[J]. Journal of Materials: Design and Applications, 2010, 224(3): 139−148.
|
[22] |
Wang D, Lin L Y, Fu F. Fracture mechanisms of moso bamboo (Phyllostachys pubescens) under longitudinal tensile loading[J]. Industrial Crops and Products, 2020, 153: 112574. doi: 10.1016/j.indcrop.2020.112574
|
[23] |
Zarges J C, Kaufhold C, Feldmann M, et al. Single fiber pull-out test of regenerated cellulose fibers in polypropylene: an energetic evaluation[J]. Composites Part A: Applied Science and Manufacturing, 2018, 105: 19−27. doi: 10.1016/j.compositesa.2017.10.030
|
[24] |
Manchado M A L, Arroyo M, Biagiotti J, et al. Enhancement of mechanical properties and interfacial adhesion of PP/EPDM/Flax fiber composites using maleic anhydride as a compatibilizer[J]. Journal of Applied Polymer Science, 2003, 90(8): 2170−2178. doi: 10.1002/app.12866
|
[25] |
王东. 顺纹拉伸和弯曲作用下的木材破坏机理研究[D]. 南京: 南京林业大学, 2020.
Wang D. Wood fracture mechanisms under longitudinal tensile and bend loading[D]. Nanjing: Nanjing Forestry University, 2020.
|
[26] |
Tjeerdsma B F, Militz H. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood[J]. Holz als Roh-und Werkstoff, 2005, 63(2): 102−111. doi: 10.1007/s00107-004-0532-8
|
[27] |
Meng F D, Liu R, Zhang Y H, et al. Improvement of the water repellency, dimensional stability, and biological resistance of bamboo-based fiber reinforced composites[J]. Polymer Composites, 2017, 40(2): 506−513.
|
[28] |
Wang X Z, Deng Y H, Li Y J, et al. In situ identification of the molecular-scale interactions of phenol-formaldehyde resin and wood cell walls using infrared nanospectroscopy[J]. RSC Advances, 2016, 80(6): 76318−76324.
|
[29] |
Huang Y X, Lin Q Q, Yang C, et al. Multi-scale characterization of bamboo bonding interfaces with phenol-formaldehyde resin of different molecular weight to study the bonding mechanism[J]. Journal of the Royal Society Interface, 2020, 162(17): 20190755.
|
[30] |
Bodig J, Jayne B A. Mechanics of wood and wood composites[M]. New York: Van Nostrand Reinhold Co., 1982.
|
[31] |
Zink A G, Pellicane P J, Shuler C E. Ultrastructural analysis of softwood fracture surfaces[J]. Wood Science and Technology, 1994, 28(5): 329−338.
|
[32] |
Li Z R, Long K Y, Zhang Y, et al. Effect of PF resin penetration on interphase microstructure and quantitative micromechanical properties of different grained-wood laminates[J]. Holzforschung, 2022, 76(6): 556−566. doi: 10.1515/hf-2021-0213
|
[33] |
Jakes J E, Hunt C G, Yelle D J, et al. Synchrotron-based X-ray fluorescence microscopy in conjunction with nanoindentation to study molecular-scale interactions of phenol-formaldehyde in wood cell walls[J]. ACS Applied Materials and Interfaces, 2015, 7(12): 6584−6589. doi: 10.1021/am5087598
|
[34] |
Fahlén J, Salmén L. On the lamellar structure of the tracheid cell wall[J]. Plant Biology, 2002, 4(3): 339−345. doi: 10.1055/s-2002-32341
|
1. |
许威,曹军,花军,陈光伟. 基于纤维解离高应变率加载对木材动力学特性影响分析. 森林工程. 2023(06): 88-94 .
![]() |