• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Tang Peng, Zhang Jianjun, Li Yang, Wei Guangkuo, Hu Yawei, Zhao Jiongchang. Effects of extreme rainfall on the morphological characteristics and spatial distribution of shallow landslides under different land use patterns in the loess region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2023, 45(10): 109-117. DOI: 10.12171/j.1000-1522.20230070
Citation: Tang Peng, Zhang Jianjun, Li Yang, Wei Guangkuo, Hu Yawei, Zhao Jiongchang. Effects of extreme rainfall on the morphological characteristics and spatial distribution of shallow landslides under different land use patterns in the loess region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2023, 45(10): 109-117. DOI: 10.12171/j.1000-1522.20230070

Effects of extreme rainfall on the morphological characteristics and spatial distribution of shallow landslides under different land use patterns in the loess region of western Shanxi Province, northern China

More Information
  • Received Date: March 29, 2023
  • Revised Date: June 13, 2023
  • Available Online: October 13, 2023
  • Objective 

    This paper aims to explore the influence of extreme rainfall on the morphological characteristics and spatial distribution of shallow landslides under different land use patterns.

    Method 

    In this paper, the morphological characteristics and spatial distribution of shallow landslides were investigated by UAV photogrammetry after the extreme rainfall from October 3 to 6, 2021 in the Small Watershed of Caijiachuan Farmland, secondary forest and plantation in Jixian County, Shanxi Province of northern China.

    Result 

    (1) Extreme rainfall induced 425 shallow landslides in three small watersheds, with a total volume of 82 000 m3. Among them, there were 179 landslides with a volume of 43 138 m3 in the small watershed of farmland, 196 landslides with a volume of 33 489 m3 in the small watershed of planted forests, and 50 landslides with a volume of 5 373 m3 in the small watershed of secondary forest. (2) The analysis of kernel density showed that the shallow landslides in the small watershed of farmland had the highest density, and the peak of kernel density reached 714 per km2, and most of them were located on the erosion slope and the slope between farmlands. Most of the shallow landslides in the small watershed of secondary forest were distributed along ravines, and the shallow landslides in the small watershed of plantation were distributed in strips along the northwest-southeast ridge line. (3) Shallow landslides in small watershed of farmland were mainly concentrated in the slope range of 20°−50° and the slope direction mainly due east and southeast. Landslides in small watersheds of secondary forests were mainly distributed in slopes of 40°−50° and were less affected by slope aspects. Landslides in the small watershed of plantation were concentrated in the slope of 50°−60° and the slope aspects mainly due east and west.

    Conclusion 

    This survey shows that vegetation can effectively reduce the shallow landslides caused by extreme rainstorms in small watershed scale, especially the secondary forest has a better effect on preventing shallow landslides. Therefore, under the background of global climate change, it is of great significance to build imitation natural vegetation on the Loess Plateau to improve the function of soil and water conservation.

  • [1]
    高杨, 李滨, 冯振, 等. 全球气候变化与地质灾害响应分析[J]. 地质力学学报, 2017, 23(1): 65−77.

    Gao Y, Li B, Feng Z, et al. Global climate change and geological disaster response analysis[J]. Journal of Geomechanics, 2017, 23(1): 65−77.
    [2]
    翟婷婷, 赵广举, 穆兴民, 等. 黄河中游典型流域极端降雨条件的水沙过程变化[J]. 泥沙研究, 2021, 46(1): 57−63, 41.

    Zhai T T, Zhao G J, Mu X M, et al. Processes of water and sediment in the representative catchments of the middle Yellow River under extreme rainfalls[J]. Journal of Sediment Research, 2021, 46(1): 57−63, 41.
    [3]
    邵葆蓉, 孙即超, 朱月琴, 等. 基于多元回归的黄土滑坡滑动距离预测模型探讨: 以甘肃天水地区为例[J]. 地质通报, 2020, 39(12): 1993−2003.

    Shao B R, Sun J C, Zhu Y Q, et al. Research on gliding distance estimation of loess landslide based on multiple regression: a case study of Tianshui region, Gansu Province[J]. Geological Bulletin of China, 2020, 39(12): 1993−2003.
    [4]
    赵美龄, 郝利娜, 许晓露, 等. 土地利用/覆被变化对地质灾害发育的影响研究[J]. 遥感技术与应用, 2022, 37(2): 399−407.

    Zhao M L, Hao L N, Xu X L, et al. Research on the impact of land use/cover change on geological disaster development[J]. Remote Sensing Technology and Application, 2022, 37(2): 399−407.
    [5]
    李阳, 张建军, 魏广阔, 等. 晋西黄土区极端降雨后浅层滑坡调查及影响因素分析[J]. 水土保持学报, 2022, 36(5): 44−50.

    Li Y, Zhang J J, Wei G K, et al. Investigation of shallow landslide after extreme rainfall and analysis of its influencing factors in the west Shanxi loess region[J]. Journal of Soil and Water Conservation, 2022, 36(5): 44−50.
    [6]
    段钊, 赵法锁, 陈新建. 陕北黄土高原区崩塌发育类型及影响因素分析: 以吴起县为例[J]. 自然灾害学报, 2012, 21(6): 142−149.

    Duan Z, Zhao F S, Chen X J. Types and influencing factors of collapse development in Loess Plateau region of north Shaanxi: a case study of Wuqi County[J]. Journal of Natural Disasters, 2012, 21(6): 142−149.
    [7]
    郭果, 陈筠, 李明惠, 等. 土质滑坡发育概率与坡度间关系研究[J]. 工程地质学报, 2013, 21(4): 607−612.

    Guo G, Chen J, Li M H, et al. Statistic relationship between slope gradient and landslide probability in soil slopes around reservoir[J]. Journal of Engineering Geology, 2013, 21(4): 607−612.
    [8]
    王存智, 张炜, 李晨冬, 等. 基于GIS和层次分析法的沙溪流域滑坡地质灾害易发性评价[J]. 中国地质调查, 2022, 9(5): 51−60.

    Wang C Z, Zhang W, Li C D, et al. Susceptibility evaluation of landslide hazards of Shaxi River Basin based on GIS and AHP[J]. Geological Survey of China, 2022, 9(5): 51−60.
    [9]
    牛全福, 冯尊斌, 党星海, 等. 黄土区滑坡研究中地形因子的选取与适宜性分析[J]. 地球信息科学学报, 2017, 19(12): 1584−1592.

    Niu Q F, Feng Z B, Dang X H, et al. Suitability analysis of topographic factors in loess landslide research[J]. Journal of Geo-Information Science, 2017, 19(12): 1584−1592.
    [10]
    李德珅, 何芝远, 孔嘉旭, 等. 陕西省志丹县黄土滑坡空间分布规律与形态特征研究[J]. 地质与资源, 2022, 31(2): 214−220.

    Li D K, He Z Y, Kong J X, et al. Spatial distribution and morphological characteristics of loess landslide in Zhidan County, Shaanxi Province[J]. Geology and Resources, 2022, 31(2): 214−220.
    [11]
    范宣梅, 王欣, 戴岚欣, 等. 2022年MS6.8级泸定地震诱发地质灾害特征与空间分布规律研究[J]. 工程地质学报, 2022, 30(5): 1504−1516.

    Fan X M, Wang X, Dai L X, et al. Characteristics and spatial distribution pattern of MS6.8 Luding Earthquake occurred on September 5, 2022[J]. Journal of Engineering Geology, 2022, 30(5): 1504−1516.
    [12]
    Guzzetti F, Ardizzone F, Cardinali M, et al. Landslide volumes and landslide mobilization rates in Umbria, central Italy[J]. Earth and Planetary Science Letters, 2009, 279(3−4): 222−229. doi: 10.1016/j.jpgl.2009.01.005
    [13]
    张珊, 杨树文, 杨猛, 等. 兰州市降雨型黄土滑坡灾害空间分布特征[J]. 测绘科学, 2016, 41(12): 142−146, 211.

    Zhang S, Yang S W, Yang M, et al. Spatial distribution characteristics of precipitation-induced loess landslide hazards in Lanzhou[J]. Science of Surveying and Mapping, 2016, 41(12): 142−146, 211.
    [14]
    许冲, 徐锡伟, 吴熙彦, 等. 2008年汶川地震滑坡详细编目及其空间分布规律分析[J]. 工程地质学报, 2013, 21(1): 25−44.

    Xu C, Xu X W, Wu X Y, et al. Detailed catalog of landslides triggered by the 2008 Wenchuan Earthquake and statistics analyses of their spatial distribution[J]. Journal of Engineering Geology, 2013, 21(1): 25−44.
    [15]
    黄森, 崔素丽, 辛鹏, 等. 天水市“7.25”群发性浅层滑坡降雨阈值及空间分布研究[J]. 自然灾害学报, 2021, 30(3): 181−190.

    Huang S, Cui S L, Xin P, et al. Study on rainfall threshold and spatial distribution of clustered shallow landslides in Tianshui City on July 25[J]. Journal of Natural Disasters, 2021, 30(3): 181−190.
    [16]
    陈卓鑫. 黄土高塬沟壑区植被恢复坡面浅层滑坡特征及其影响因素[D]. 西安: 西北农林科技大学, 2020.

    Chen Z X. Distribution characteristic and influencing factors of shallow landslide on vegetation-covered slope in the loess-tableland and gully region of the Loess Plateau[D]. Xi’an: Northwest A&F University, 2020.
    [17]
    韩健楠. 基于重构滑动面的滑坡体积测算[D]. 西安: 长安大学, 2018.

    Han J N. Landslide volume estimation using reconstructed failure surfaces[D]. Xi’an: Chang’an University, 2018.
    [18]
    Baldo M, Bicocchi C, Chiocchini U, et al. LIDAR monitoring of mass wasting processes: the Radicofani landslide, Province of Siena, Central Italy[J]. Geomorphology, 2009, 105(3−4): 193−201. doi: 10.1016/j.geomorph.2008.09.015
    [19]
    Chen R F, Chan Y C, Angelier J, et al. Large earthquake-triggered landslides and mountain belt erosion: the Tsaoling case, Taiwan[J]. Comptes Rendus Geoscience, 2005, 337(13): 1164−1172. doi: 10.1016/j.crte.2005.04.017
    [20]
    胡赛强, 刘淑虎, 林兆武. 基于GIS的福建省传统村落空间分布特征分析[J]. 宁夏大学学报(自然科学版), 2021, 42(3): 328−333.

    Hu S Q, Liu S H, Lin Z W. Analysis on spatial distribution characteristics of traditional villages in Fujian Province based on GIS[J]. Journal of Ningxia University (Natural Science Edition), 2021, 42(3): 328−333.
    [21]
    王新胜, 滕德贵, 谢伟, 等. 山地城市滑坡灾害空间分布特征及影响因素分析[J]. 重庆大学学报, 2020, 43(8): 87−96.

    Wang X S, Teng D G, Xie W, et al. Spatial distribution characteristics and influencing factors of landslide disasters in mountain cities[J]. Journal of Chongqing University, 2020, 43(8): 87−96.
    [22]
    许中旗, 吴增志, 李帅英, 等. 森林植被防灾学战略研究[J]. 北京林业大学学报(社会科学版), 2006, 5(增刊1): 63−65.

    Xu Z Q, Wu Z Z, Li S Y, et al. Hazard mitigation research of forest vegetation[J]. Journal of Beijing Forestry University (Social Sciences), 2006, 5(Suppl. 1): 63−65.
    [23]
    秦明月, 郭剑, 邹强. 植被覆被条件下不稳定斜坡分布规律探究: 以大渡河流域为例[J]. 工程地质学报, 2023, 31(2): 628−637.

    Qin M Y, Guo J, Zou Q. Preliminary study on distribution characteristics of potentially unstable vegetated-slope: a case study of Dadu River Basin[J]. Journal of Engineering Geology, 2023, 31(2): 628−637.
    [24]
    Kobayashi Y, Mori A S. The potential role of tree diversity in reducing shallow landslide risk[J]. Environmental Management, 2017, 59(5): 807−815. doi: 10.1007/s00267-017-0820-9
    [25]
    韩勇, 郑粉莉, 徐锡蒙, 等. 子午岭林区浅层滑坡侵蚀与植被的关系: 以富县“7·21”特大暴雨为例[J]. 生态学报, 2016, 36(15): 4635−4643.

    Han Y, Zheng F L, Xu X M, et al. Relationship between shallow landslide erosion and vegetation in the Ziwuling Forest Area: a case study of the “7·21” disaster in Fuxian County[J]. Acta Ecologica Sinica, 2016, 36(15): 4635−4643.
    [26]
    宋渊, 张恩博, 任达. 基于GIS空间分析的兴山县滑坡灾害点分布特征研究[J]. 云南地质, 2022, 41(3): 382−388.

    Song Y, Zhang E B, Ren D. Study on the distribution feature of sliding disaster in Xingshan based on GIS spatial analysis[J]. Yunnan Geology, 2022, 41(3): 382−388.
    [27]
    Zhang Z L, Wang T, Wu S R. Distribution and features of landslides in the Tianshui Basin, Northwest China[J]. Journal of Mountain Science, 2020, 17(3): 686−708. doi: 10.1007/s11629-019-5595-4
    [28]
    张钟远, 邓明国, 徐世光, 等. 镇康县滑坡易发性评价模型对比研究[J]. 岩石力学与工程学报, 2022, 41(1): 157−171.

    Zhang Z Y, Deng M G, Xu S G, et al. Comparison of landslide susceptibility assessment models in Zhenkang County, Yunnan Province, China[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(1): 157−171.
    [29]
    Anderson S A, Sitar N. Analysis of rainfall-induced debris flows[J]. Journal of Geotechnical Engineering, 1995, 121(7): 544−552.
  • Related Articles

    [1]Li Yang, Kang Xingang. Mixed model of forest space utilization in spruce-fir coniferous and broadleaved mixed forest of Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2020, 42(5): 71-79. DOI: 10.12171/j.1000-1522.20190112
    [2]Li Cheng, Ma Jingyong, Zhang Cai, Wang Ben, Zha Tianshan, Jia Xin. Seasonal dynamics of light-use efficiency in Artemisia ordosica shrubby desert[J]. Journal of Beijing Forestry University, 2019, 41(9): 99-107. DOI: 10.13332/j.1000-1522.20180217
    [3]Wen Yongbin, Han Hairong, Cheng Xiaoqin, Li Zuzheng. Forest water use efficiency in Qianyanzhou based on Biome-BGC model, Jiangxi Province of eastern China[J]. Journal of Beijing Forestry University, 2019, 41(4): 69-77. DOI: 10.13332/j.1000-1522.20190001
    [4]YANG Shuang, YUAN Xiao-na, WANG Zhong-xuan, ZHU Pu, JIA Gui-xia. Effects of HgCl2 stress on the upper leaf necroses and water use efficiency of oriental hybrid lilies[J]. Journal of Beijing Forestry University, 2016, 38(5): 114-119. DOI: 10.13332/j.1000-1522.20150306
    [5]WEN Yi-bo, CHANG Ying, FAN Wen-yi. Algorithm for leaf area index inversion in the Great Xing'an Mountains using MISR data and spatial scaling for the validation[J]. Journal of Beijing Forestry University, 2016, 38(5): 1-10. DOI: 10.13332/j.1000-1522.20150204
    [6]JIANG Dong-yue, QIAN Yong-qiang, LIU Jun-xiang, WANG Zheng-chao, FEI Ying-jie, SUN Zhen-yuan. Evaluation of radiation use efficiency of superior clones of Salix based on photosynthetic light-response characteristics.[J]. Journal of Beijing Forestry University, 2015, 37(5): 49-61. DOI: 10.13332/j.1000-1522.20140187
    [7]GUO Peng, XING Hai-tao, XIA Xin-li, YIN Wei-lun. Discrimination of water use efficiency(WUE) among three Populus deltoids clones.[J]. Journal of Beijing Forestry University, 2011, 33(2): 19-24.
    [8]DUAN Ai-guo, ZHANG Jian-guo, ZHANG Jun-pei, HE Cai-yun. Dynamics of water-use efficiency of tree species for vegetation restoration in dry-hot river valleys[J]. Journal of Beijing Forestry University, 2010, 32(6): 13-19.
    [9]ZHANG Jian-jun, DONG Huang-biao, NA Lei, WANG Peng. Comparison of rainfallrunoff process in watersheds under different scales on the loess area in western Shanxi Province, northern China.[J]. Journal of Beijing Forestry University, 2008, 30(2): 106-112.
    [10]ZHAO Feng-jun, SHEN Ying-bai, GAO Rong-fu, SU Xiao-hua, ZHANG Bing-yu. Relationship between foliar carbon isotope composition (δ13C) and long-term water use efficiency (WUEL[J]. Journal of Beijing Forestry University, 2006, 28(6): 40-45.
  • Cited by

    Periodical cited type(2)

    1. 包塔娜,范文义. 基于集合卡尔曼滤波的帽儿山森林多源LAI产品重建及融合校正方法. 浙江农林大学学报. 2024(04): 841-849 .
    2. 郝兵,李萍,刘东. 基于模糊小波的光照干扰图像对比度增强方法. 激光杂志. 2023(11): 104-108 .

    Other cited types(4)

Catalog

    Article views (303) PDF downloads (56) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return