• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Xueyuan, Huang Yuxiang, Ma Erni. Research on mechanical properties of Phyllostachys edulis heat treatment materials based on cellulose skeleton[J]. Journal of Beijing Forestry University, 2023, 45(7): 130-138. DOI: 10.12171/j.1000-1522.20230079
Citation: Wang Xueyuan, Huang Yuxiang, Ma Erni. Research on mechanical properties of Phyllostachys edulis heat treatment materials based on cellulose skeleton[J]. Journal of Beijing Forestry University, 2023, 45(7): 130-138. DOI: 10.12171/j.1000-1522.20230079

Research on mechanical properties of Phyllostachys edulis heat treatment materials based on cellulose skeleton

More Information
  • Received Date: April 06, 2023
  • Revised Date: May 17, 2023
  • Available Online: May 29, 2023
  • Published Date: July 24, 2023
  •   Objective  This paper aims to analyze the changes of microstructure and micromechanical properties of fiber cell, the main carrier cell of moso bamboo in the process of heat treatment, in order to explain the changes of macromechanical properties of moso bamboo from the perspective of structural-activity relationship among fiber cells.
      Method  The cell wall matrix of four-year-old moso bamboo was removed with acid sodium chlorite solution and sodium hydroxide solution to obtain fiber cells with only cellulose. The untreated bamboo and bamboo fiber cells were subjected to saturated steam heat treatment at 140 and 200 ℃ for 8 h. Then, the physical and mechanical properties (density, flexural and tensile properties) and the micromechanical properties of fiber cells, such as single fiber tensile properties, cell wall hardness and elastic modulus, were measured. Scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and polymerization degree were used to characterize the changes in morphology and microstructure of cellulose before and after heat treatment.
      Result  The density, bending and tensile properties of moso bamboo decreased with the increase of heat treatment temperature. The tensile strength and elastic modulus of fiber cells were not significantly affected by heat treatment at 140 ℃, but the tensile strength of fiber cells decreased sharply when the heat treatment temperature was increased to 200 ℃, from 808.30 MPa without heat treatment to 479.23 MPa. In addition, with the increase of heat treatment temperature, the hardness of fiber cell wall increased. After heat treatment, the micromorphology of fiber cells with only cellulose remained basically unchanged, and the crystallinity of cellulose increased, intermolecular hydrogen bond increased, and polymerization degree decreased.
      Conclusion  Heat treatment can reduce the density, bending and tensile properties of moso bamboo, and reduce the tensile strength of moso bamboo fiber cells with only cellulose, but can change the micromechanical properties of fiber cell wall to a certain extent. This is closely related to the change of crystallinity, hydrogen bond system and polymerization degree of cellulose after heat treatment.
  • [1]
    Azadeh A, Ghavami K. The influence of heat on shrinkage and water absorption of dendrocalamus giganteus bamboo as a functionally graded material[J]. Construction and Building Materials, 2018, 186: 145−154. doi: 10.1016/j.conbuildmat.2018.07.011
    [2]
    牛帅红. 高温热水处理对毛竹竹材性能影响的研究[D]. 杭州: 浙江农林大学, 2016.

    Niu S H. Study on the effect of properties for high temperature hot water treatments[D]. Hangzhou: Zhejiang A&F University, 2016.
    [3]
    Wang D, Fu F, Lin L. Molecular-level characterization of changes in the mechanical properties of wood in response to thermal treatment[J]. Cellulose, 2022, 29(6): 3131−3142. doi: 10.1007/s10570-022-04471-3
    [4]
    唐彤. 毛竹材的桐油热处理研究[D]. 北京: 中国林业科学研究院, 2019.

    Tang T. Research on thermal modification of moso bamboo in tung oil[D]. Beijing: Chinese Academy of Forestry, 2019.
    [5]
    陈礼辉, 曹石林, 黄六莲, 等. 竹纤维素的制备及其功能化材料研究进展[J]. 林业工程学报, 2021, 6(4): 1−13.

    Chen L H, Cao S L, Huang L L, et al. Development of bamboo cellulose preparation and its functionalization[J]. Journal of Forest Engineering, 2021, 6(4): 1−13.
    [6]
    Wu J, Zhong T, Zhang W, et al. Comparison of colors, microstructure, chemical composition and thermal properties of bamboo fibers and parenchyma cells with heat treatment[J]. Journal of Wood Science, 2021, 67(1): 1−11. doi: 10.1186/s10086-020-01935-7
    [7]
    Lin Q, Huang Y, Yu W. An in-depth study of molecular and supramolecular structures of bamboo cellulose upon heat treatment[J]. Carbohydrate Polymers, 2020, 241: 116412. doi: 10.1016/j.carbpol.2020.116412
    [8]
    汤颖, 李君彪, 沈钰程, 等. 热处理工艺对竹材性能的影响[J]. 浙江农林大学学报, 2014, 31(2): 167−171. doi: 10.11833/j.issn.2095-0756.2014.02.001

    Tang Y, Li J B, Shen Y C, et al. Phyllostachys edulis with high temperature heat treatments[J]. Journal of Zhejiang A&F University, 2014, 31(2): 167−171. doi: 10.11833/j.issn.2095-0756.2014.02.001
    [9]
    孟凡丹, 高建民, 余养伦, 等. 热处理对纤维化竹单板表面性能和微力学性能的影响[J]. 东北林业大学学报, 2017, 45(10): 53−59. doi: 10.3969/j.issn.1000-5382.2017.10.013

    Meng F D, Gao J M, Yu Y L, et al. Effect of heat treatment on surface and micromechanical properties of oriented bamboo fiber mat[J]. Journal of Northeast Forestry University, 2017, 45(10): 53−59. doi: 10.3969/j.issn.1000-5382.2017.10.013
    [10]
    Hill C, Altgen M, Rautkari L. Thermal modification of wood: a review: chemical changes and hygroscopicity[J]. Journal of Materials Science, 2021, 56(11): 6581−6614. doi: 10.1007/s10853-020-05722-z
    [11]
    Boonstra M J, van Acker J, Tjeerdsma B F, et al. Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents[J]. Annals of Forest Science, 2007, 64(7): 679−690. doi: 10.1051/forest:2007048
    [12]
    Jiang F, Li T, Li Y J, et al. Wood-based nanotechnologies toward sustainability[J]. Advanced Materials, 2018, 1703453: 1−39.
    [13]
    Wang D, Lin L, Fu F. Fracture mechanisms of moso bamboo (Phyllostachys pubescens) under longitudinal tensile loading[J]. Industrial Crops and Products, 2020, 153: 112574. doi: 10.1016/j.indcrop.2020.112574
    [14]
    莫军前. 基于近红外光谱技术的高温热处理竹材物理化学性质研究[D]. 北京: 北京林业大学, 2020.

    Mo J Q. Study on physicochemical properties of high temperature heat treated bamboo based on near infrared spectroscopy technology[D]. Beijing: Beijing Forestry University, 2020.
    [15]
    侯瑞光, 刘元, 李贤军, 等. 高温热处理对重组竹物理力学性能的影响[J]. 中南林业科技大学学报, 2013, 33(2): 101−104.

    Hou R G, Liu Y, Li X J, et al. Effects of heat treatment on physical-mechanical properties of reconstituted bamboo lumber (RBL)[J]. Journal of Central South University of Forestry & Technology, 2013, 33(2): 101−104.
    [16]
    黄成建. 热处理毛竹材细胞壁结构及力学性能研究[D]. 杭州: 浙江农林大学, 2015.

    Huang C J. Microstructural and micromechanical properties of thermo-treated bamboo cell wall[D]. Hangzhou: Zhejiang A&F University, 2015.
    [17]
    孙海燕, 苏明垒, 吕建雄, 等. 细胞壁微纤丝角和结晶区对木材物理力学性能影响研究进展[J]. 西北农林科技大学学报(自然科学版), 2019, 47(5): 50−58.

    Sun H Y, Su M L, Lü J X, et al. Effects of cell wall microfibril angle and crystal zone on physical and mechanical properties of wood[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2019, 47(5): 50−58.
    [18]
    Kalutskaya E P, Gusev S S. An infrared spectroscopic investigation of the hydration of cellulose[J]. Polymer Science USSR, 1980, 22(3): 550−556. doi: 10.1016/0032-3950(80)90378-0
    [19]
    孙润鹤, 李贤军, 刘元, 等. 高温热处理对竹束FTIR和XRD特征的影响规律[J]. 中南林业科技大学学报, 2013, 33(2): 97−100.

    Sun R H, Li X J, Liu Y, et al. Effects of high temperature heat treatment on FTIR and XRD characteristics of bamboo bundles[J]. Journal of Central South University of Forestry & Technology, 2013, 33(2): 97−100.
    [20]
    卿彦. “双碳”战略目标下木竹基先进功能材料研究进展[J]. 中南林业科技大学学报, 2022, 42(12): 13−25.

    Qing Y. Advanced functional materials derived from natural wood and bamboo resources under the double carbon strategy in China[J]. Journal of Central South University of Forestry & Technology, 2022, 42(12): 13−25.
    [21]
    Oudiani A E I, Msahli S, Sakli F. In-depth study of agave fiber structure using Fourier transform infrared spectroscopy[J]. Carbohydrate Polymers, 2017, 164: 242−248. doi: 10.1016/j.carbpol.2017.01.091
    [22]
    Chen C, Kuang Y, Zhu S, et al. Structure-property-function relationships of natural and engineered wood[J]. Nature Reviews Materials, 2020, 5(9): 642−666. doi: 10.1038/s41578-020-0195-z
    [23]
    Håkansson H, Ahlgren P. Acid hydrolysis of some industrial pulps: effect of hydrolysis conditions and raw material[J]. Cellulose, 2005, 12(2): 177−183. doi: 10.1007/s10570-004-1038-6
    [24]
    Lin Q, Gao Q, Wang X, et al. Mechanism analysis of thermal treatment for the mechanical properties of bamboo veneer composites from the perspective of cellulose skeleton[J]. Industrial Crops and Products, 2023, 195: 116395.
  • Related Articles

    [1]Qi Chusheng, Zhan Zhibin, Dai Lu. Analysis methods and characteristic parameters of wood microstructure[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240287
    [2]Dong Zhijun, Gao Jianzhou, Yu Xiaonan. Effects of uniconazole on the physiological characteristics and microstructure of potted Paeonia lactiflora[J]. Journal of Beijing Forestry University, 2022, 44(7): 117-125. DOI: 10.12171/j.1000-1522.20210325
    [3]Li Jianlong, Chen Sheng, Li Haichao, Zhang Xun, Xu Duxin, Shi Menghua, Xu Feng. Relationship between cell wall ultrastructure and mechanical properties of balsa wood[J]. Journal of Beijing Forestry University, 2022, 44(2): 115-122. DOI: 10.12171/j.1000-1522.20210410
    [4]Wang Yujiao, Peng Yao, Cao Jinzhen. Analysis of microstructure and chemical components of southern pine during initial brown-rot decay[J]. Journal of Beijing Forestry University, 2021, 43(3): 138-144. DOI: 10.12171/j.1000-1522.20210024
    [5]Zhang Jing, Qi Chusheng, Mu Jun. Effects of thermal treatment temperature and duration on mass loss and rupture modulus of Cunninghamia lanceolata[J]. Journal of Beijing Forestry University, 2020, 42(10): 137-144. DOI: 10.12171/j.1000-1522.20200257
    [6]GE Xiao-wen, WANG Li-hai, HOU Jie-jian, RONG Bin-bin, YUE Xiao-quan, ZHANG Sheng-ming. Relationship among microstructure, mechanical properties and chemical compositions in Populus cathayana sapwood during brown-rot decay.[J]. Journal of Beijing Forestry University, 2016, 38(10): 112-122. DOI: 10.13332/j.1000-1522.20160098
    [7]ZHAO Guang-jie. The course of chemical reaction and microstructure evolution of wood-based carbon fibers during carbonization and graphitization[J]. Journal of Beijing Forestry University, 2010, 32(2): 201-204.
    [8]MA Xiao-jun, ZHAO Guang-jie. Effects of carbonized temperature on microstructure of carbon fiber precursors prepared from liquefied wood[J]. Journal of Beijing Forestry University, 2009, 31(5): 112-116.
    [9]SUN De-lin, LIU Wen-jin, YU Xian-chun. Effects of sintering temperature and PF resin content on phases and microstructure characteristics of woodceramics.[J]. Journal of Beijing Forestry University, 2009, 31(4): 112-117.
    [10]ZHOU Yong-dong, FU Feng, LI Xian-jun, JIANG Xiao-mei, CHEN Zhi-lin. Effects of microwave treatment on residue growth stress and microstructure of Eucalyptus urophylla[J]. Journal of Beijing Forestry University, 2009, 31(2): 146-150.
  • Cited by

    Periodical cited type(4)

    1. 李俊峰. 机械设备无损检测技术与安全分析. 造纸装备及材料. 2022(09): 16-18 .
    2. 李焕,管成,张厚江,刘晋浩,周建徽,辛振波. 足尺胶合板弹性模量的两对边简支振动检测研究. 北京林业大学学报. 2021(02): 138-149 . 本站查看
    3. 管成,辛振波,刘晋浩,张厚江,周建徽,李焕,柳苏洋. 3种边界条件下足尺定向刨花板的模态灵敏度和振动模态研究. 北京林业大学学报. 2021(12): 105-115 . 本站查看
    4. 李亦珂. 自动化计算机控制系统在相关人造板设备中的应用分析. 林产工业. 2020(04): 109-112 .

    Other cited types(4)

Catalog

    Article views (378) PDF downloads (107) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return