Citation: | Wang Xueyuan, Huang Yuxiang, Ma Erni. Research on mechanical properties of Phyllostachys edulis heat treatment materials based on cellulose skeleton[J]. Journal of Beijing Forestry University, 2023, 45(7): 130-138. DOI: 10.12171/j.1000-1522.20230079 |
[1] |
Azadeh A, Ghavami K. The influence of heat on shrinkage and water absorption of dendrocalamus giganteus bamboo as a functionally graded material[J]. Construction and Building Materials, 2018, 186: 145−154. doi: 10.1016/j.conbuildmat.2018.07.011
|
[2] |
牛帅红. 高温热水处理对毛竹竹材性能影响的研究[D]. 杭州: 浙江农林大学, 2016.
Niu S H. Study on the effect of properties for high temperature hot water treatments[D]. Hangzhou: Zhejiang A&F University, 2016.
|
[3] |
Wang D, Fu F, Lin L. Molecular-level characterization of changes in the mechanical properties of wood in response to thermal treatment[J]. Cellulose, 2022, 29(6): 3131−3142. doi: 10.1007/s10570-022-04471-3
|
[4] |
唐彤. 毛竹材的桐油热处理研究[D]. 北京: 中国林业科学研究院, 2019.
Tang T. Research on thermal modification of moso bamboo in tung oil[D]. Beijing: Chinese Academy of Forestry, 2019.
|
[5] |
陈礼辉, 曹石林, 黄六莲, 等. 竹纤维素的制备及其功能化材料研究进展[J]. 林业工程学报, 2021, 6(4): 1−13.
Chen L H, Cao S L, Huang L L, et al. Development of bamboo cellulose preparation and its functionalization[J]. Journal of Forest Engineering, 2021, 6(4): 1−13.
|
[6] |
Wu J, Zhong T, Zhang W, et al. Comparison of colors, microstructure, chemical composition and thermal properties of bamboo fibers and parenchyma cells with heat treatment[J]. Journal of Wood Science, 2021, 67(1): 1−11. doi: 10.1186/s10086-020-01935-7
|
[7] |
Lin Q, Huang Y, Yu W. An in-depth study of molecular and supramolecular structures of bamboo cellulose upon heat treatment[J]. Carbohydrate Polymers, 2020, 241: 116412. doi: 10.1016/j.carbpol.2020.116412
|
[8] |
汤颖, 李君彪, 沈钰程, 等. 热处理工艺对竹材性能的影响[J]. 浙江农林大学学报, 2014, 31(2): 167−171. doi: 10.11833/j.issn.2095-0756.2014.02.001
Tang Y, Li J B, Shen Y C, et al. Phyllostachys edulis with high temperature heat treatments[J]. Journal of Zhejiang A&F University, 2014, 31(2): 167−171. doi: 10.11833/j.issn.2095-0756.2014.02.001
|
[9] |
孟凡丹, 高建民, 余养伦, 等. 热处理对纤维化竹单板表面性能和微力学性能的影响[J]. 东北林业大学学报, 2017, 45(10): 53−59. doi: 10.3969/j.issn.1000-5382.2017.10.013
Meng F D, Gao J M, Yu Y L, et al. Effect of heat treatment on surface and micromechanical properties of oriented bamboo fiber mat[J]. Journal of Northeast Forestry University, 2017, 45(10): 53−59. doi: 10.3969/j.issn.1000-5382.2017.10.013
|
[10] |
Hill C, Altgen M, Rautkari L. Thermal modification of wood: a review: chemical changes and hygroscopicity[J]. Journal of Materials Science, 2021, 56(11): 6581−6614. doi: 10.1007/s10853-020-05722-z
|
[11] |
Boonstra M J, van Acker J, Tjeerdsma B F, et al. Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents[J]. Annals of Forest Science, 2007, 64(7): 679−690. doi: 10.1051/forest:2007048
|
[12] |
Jiang F, Li T, Li Y J, et al. Wood-based nanotechnologies toward sustainability[J]. Advanced Materials, 2018, 1703453: 1−39.
|
[13] |
Wang D, Lin L, Fu F. Fracture mechanisms of moso bamboo (Phyllostachys pubescens) under longitudinal tensile loading[J]. Industrial Crops and Products, 2020, 153: 112574. doi: 10.1016/j.indcrop.2020.112574
|
[14] |
莫军前. 基于近红外光谱技术的高温热处理竹材物理化学性质研究[D]. 北京: 北京林业大学, 2020.
Mo J Q. Study on physicochemical properties of high temperature heat treated bamboo based on near infrared spectroscopy technology[D]. Beijing: Beijing Forestry University, 2020.
|
[15] |
侯瑞光, 刘元, 李贤军, 等. 高温热处理对重组竹物理力学性能的影响[J]. 中南林业科技大学学报, 2013, 33(2): 101−104.
Hou R G, Liu Y, Li X J, et al. Effects of heat treatment on physical-mechanical properties of reconstituted bamboo lumber (RBL)[J]. Journal of Central South University of Forestry & Technology, 2013, 33(2): 101−104.
|
[16] |
黄成建. 热处理毛竹材细胞壁结构及力学性能研究[D]. 杭州: 浙江农林大学, 2015.
Huang C J. Microstructural and micromechanical properties of thermo-treated bamboo cell wall[D]. Hangzhou: Zhejiang A&F University, 2015.
|
[17] |
孙海燕, 苏明垒, 吕建雄, 等. 细胞壁微纤丝角和结晶区对木材物理力学性能影响研究进展[J]. 西北农林科技大学学报(自然科学版), 2019, 47(5): 50−58.
Sun H Y, Su M L, Lü J X, et al. Effects of cell wall microfibril angle and crystal zone on physical and mechanical properties of wood[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2019, 47(5): 50−58.
|
[18] |
Kalutskaya E P, Gusev S S. An infrared spectroscopic investigation of the hydration of cellulose[J]. Polymer Science USSR, 1980, 22(3): 550−556. doi: 10.1016/0032-3950(80)90378-0
|
[19] |
孙润鹤, 李贤军, 刘元, 等. 高温热处理对竹束FTIR和XRD特征的影响规律[J]. 中南林业科技大学学报, 2013, 33(2): 97−100.
Sun R H, Li X J, Liu Y, et al. Effects of high temperature heat treatment on FTIR and XRD characteristics of bamboo bundles[J]. Journal of Central South University of Forestry & Technology, 2013, 33(2): 97−100.
|
[20] |
卿彦. “双碳”战略目标下木竹基先进功能材料研究进展[J]. 中南林业科技大学学报, 2022, 42(12): 13−25.
Qing Y. Advanced functional materials derived from natural wood and bamboo resources under the double carbon strategy in China[J]. Journal of Central South University of Forestry & Technology, 2022, 42(12): 13−25.
|
[21] |
Oudiani A E I, Msahli S, Sakli F. In-depth study of agave fiber structure using Fourier transform infrared spectroscopy[J]. Carbohydrate Polymers, 2017, 164: 242−248. doi: 10.1016/j.carbpol.2017.01.091
|
[22] |
Chen C, Kuang Y, Zhu S, et al. Structure-property-function relationships of natural and engineered wood[J]. Nature Reviews Materials, 2020, 5(9): 642−666. doi: 10.1038/s41578-020-0195-z
|
[23] |
Håkansson H, Ahlgren P. Acid hydrolysis of some industrial pulps: effect of hydrolysis conditions and raw material[J]. Cellulose, 2005, 12(2): 177−183. doi: 10.1007/s10570-004-1038-6
|
[24] |
Lin Q, Gao Q, Wang X, et al. Mechanism analysis of thermal treatment for the mechanical properties of bamboo veneer composites from the perspective of cellulose skeleton[J]. Industrial Crops and Products, 2023, 195: 116395.
|
1. |
李俊峰. 机械设备无损检测技术与安全分析. 造纸装备及材料. 2022(09): 16-18 .
![]() | |
2. |
李焕,管成,张厚江,刘晋浩,周建徽,辛振波. 足尺胶合板弹性模量的两对边简支振动检测研究. 北京林业大学学报. 2021(02): 138-149 .
![]() | |
3. |
管成,辛振波,刘晋浩,张厚江,周建徽,李焕,柳苏洋. 3种边界条件下足尺定向刨花板的模态灵敏度和振动模态研究. 北京林业大学学报. 2021(12): 105-115 .
![]() | |
4. |
李亦珂. 自动化计算机控制系统在相关人造板设备中的应用分析. 林产工业. 2020(04): 109-112 .
![]() |