Processing math: 100%
  • Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Ma Hao, Cao Yuanshuai, Lü Yanjie, Xu Ganjun, He Youjun, Wang Jianjun. Construction of individual tree DBH growth models for natural Betula platyphylla forests in Daxing’an Mountains, Inner Mongolia of northern China[J]. Journal of Beijing Forestry University, 2024, 46(8): 101-110. DOI: 10.12171/j.1000-1522.20230086
Citation: Ma Hao, Cao Yuanshuai, Lü Yanjie, Xu Ganjun, He Youjun, Wang Jianjun. Construction of individual tree DBH growth models for natural Betula platyphylla forests in Daxing’an Mountains, Inner Mongolia of northern China[J]. Journal of Beijing Forestry University, 2024, 46(8): 101-110. DOI: 10.12171/j.1000-1522.20230086

Construction of individual tree DBH growth models for natural Betula platyphylla forests in Daxing’an Mountains, Inner Mongolia of northern China

More Information
  • Received Date: April 18, 2023
  • Revised Date: August 10, 2023
  • Accepted Date: March 03, 2024
  • Available Online: March 07, 2024
  • Objective 

    In order to accurately predict growth and formulate adaptive management measures for natural Betula platyphylla forests in Daxing’an Mountains, Inner Mongolia of northern China, a mixed-effects individual-tree DBH growth model of Betula platyphylla, including climatic factors and tree size diversity factors, was developed.

    Method 

    The data were derived from the 8th and 9th national forest inventory in Daxing’an Mountains of Inner Mongolia, including a total of 97 fixed sample plots and 4 785 sample tree observations of Betula platyphylla. Based on the selected data, the traditional growth model of individual-tree DBH was constructed by stepwise regression method. Then, sample plot effects were added to construct individual-tree mixed-effects model of Betula platyphylla. Finally, we validated the basic model and the mixed-effects model by 10-fold cross-validation method.

    Result 

    The logarithm of initial DBH, basal area of trees larger than the subject tree, standard deviation of DBHs, growth accumulation temperature and mean annual precipitation had significant effects on individual-tree DBH growth of Betula platyphylla. Compared with basic model, R2adj of final mixed-effects model increased by 0.120 6, and the root mean square error decreased by 0.097 1 cm2, respectively. The prediction accuracy of the mixed-effects model improved significantly. The results of 10-fold cross-validation indicated that the mixed-effects model also showed a better fitting result.

    Conclusion 

    The individual-tree DBH growth mixed-effects model of Betula platyphylla including climatic factors and tree size diversity factors can accurately predict the DBH growth of individual trees, which can provide support for scientific management of natural Betula platyphylla forests in Daxing’an Mountains, Inner Mongolia of northern China.

  • [1]
    王建军, 曾伟生, 孟京辉. 考虑预估期间林木枯死及采伐影响的杉木单木胸高断面积生长模型研究[J]. 西北林学院学报, 2017, 32(3): 181−185.

    Wang J J, Zeng W S, Meng J H. Individual-tree basal area growth model for Cunninghamia lanceolata with the consideration of thinning and tree mortality in the prediction interval[J]. Journal of Northwest Forestry University, 2017, 32(3): 181−185.
    [2]
    Uzoh F C C, Oliver W W. Individual tree diameter increment model for managed even-aged stands of ponderosa pine throughout the western United States using a multilevel linear mixed effects model[J]. Forest Ecology and Management, 2008, 256(3): 438−445. doi: 10.1016/j.foreco.2008.04.046
    [3]
    段劼, 马履一, 薛康, 等. 北京地区侧柏人工林单木胸径生长模型的研究[J]. 林业资源管理, 2010(2): 62−68.

    Duan J, Ma L Y, Xue K, et al. Individual-tree diameter growth model for Platycladus orientalis plantation in Beijing Area[J]. Forest Resources Management, 2010(2): 62−68.
    [4]
    杜志, 陈振雄, 孟京辉, 等. 基于混合效应的马尾松单木断面积预估模型[J]. 中南林业科技大学学报, 2020, 40(9): 33−40.

    Du Z, Chen Z X, Meng J H, et al. Prediction model of individual-tree basal area for Pinus massoniana based on mixed effect[J]. Journal of Central South University of Forestry & Technology, 2020, 40(9): 33−40.
    [5]
    芦海涛, 李凤日, 贾炜玮. 水曲柳单木生长模型的研究[J]. 森林工程, 2011, 27(3): 5−8. doi: 10.3969/j.issn.1001-005X.2011.03.002

    Lu H T, Li F R, Jia W W. Research on individual tree growth model of Manchurian ash[J]. Forest Engineering, 2011, 27(3): 5−8. doi: 10.3969/j.issn.1001-005X.2011.03.002
    [6]
    Wang M, Zhao Y H, Zhen Z, et al. Individual-tree diameter growth model for Korean pine plantations based on optimized interpolation of meteorological variables[J]. Journal of Forestry Research, 2021, 32(4): 1535−1552. doi: 10.1007/s11676-020-01177-9
    [7]
    张海平, 李凤日, 董利虎, 等. 基于气象因子的白桦天然林单木直径生长模型[J]. 应用生态学报, 2017, 28(6): 1851−1859.

    Zhang H P, Li F R, Dong L H, et al. Individual tree diameter increment model for natural Betula platyphylla forests based on meteorological factors[J]. Chinese Journal of Applied Ecology, 2017, 28(6): 1851−1859.
    [8]
    Madrigal-González J, Ruiz-Benito P, Ratcliffe S, et al. Complementarity effects on tree growth are contingent on tree size and climatic conditions across Europe[J]. Scientific Reports, 2016, 6(1): 638−646.
    [9]
    Wang W W, Chen X Y, Zeng W S, et al. Development of a mixed-effects individual-tree basal area increment model for oaks (Quercus spp.) considering forest structural diversity[J]. Forests, 2019, 10(6): 474. doi: 10.3390/f10060474
    [10]
    Lei X D, Wang W F, Peng C H. Relationships between stand growth and structural diversity in spruce-dominated forests in New Brunswick, Canada[J]. Canadian Journal of Forest Research, 2009, 39(10): 1835−1847. doi: 10.1139/X09-089
    [11]
    Daniels L, Veblen T. Spatio-temporal influences of climate on altitudinal treeline in northern Patagonia[J]. Ecology, 2004, 85(5): 1284−1296. doi: 10.1890/03-0092
    [12]
    Gordon N, Will S. Effect of climate on lodgepole pine stem taper in British Columbia, Canada[J]. Forestry, 85(5): 579−587.
    [13]
    Hamann A, Wang T L. Potential effects of climate change on ecosystem and tree species distribution in British Columbia[J]. Ecology, 2006, 87(11): 2773−2786. doi: 10.1890/0012-9658(2006)87[2773:PEOCCO]2.0.CO;2
    [14]
    杨鑫, 王建军, 杜志, 等. 基于气候因子的兴安落叶松天然林单木直径生长模型构建[J]. 北京林业大学学报, 2022, 44(8): 1−11. doi: 10.12171/j.1000-1522.20210353

    Yang X, Wang J J, Du Z, et al. Development of individual-tree diameter increment model for natural Larix gmelinii forests based on climatic factors[J]. Journal of Beijing Forestry University, 2022, 44(8): 1−11. doi: 10.12171/j.1000-1522.20210353
    [15]
    Grégoire T G, Schabenberger O, Barrett J P. Linear modelling of irregularly spaced, unbalanced, longitudinal data from permanent-plot measurements[J]. Canadian Journal of Forest Research, 1995, 25(1): 137−156. doi: 10.1139/x95-017
    [16]
    Cudeck R, Klebe K J. Multiphase mixed-effects models for repeated measures data[J]. Psychological Methods, 2002, 7(1): 41−63. doi: 10.1037/1082-989X.7.1.41
    [17]
    Schabenberger O, Gregoire T G. A conspectus on estimating function theory and its applicability to recurrent modeling issues in forest biometry[J]. Silva Fennica, 1995, 29(1): 49−70.
    [18]
    Sharma M, Parton J. Height-diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach[J]. Forest Ecology and Management, 2007, 249(3): 187−198. doi: 10.1016/j.foreco.2007.05.006
    [19]
    陈国栋, 杜研, 丁佩燕, 等. 基于混合效应模型的新疆天山云杉单木胸径预测模型构建[J]. 北京林业大学学报, 2020, 42(7): 12−22.

    Chen G D, Du Y, Ding P Y, et al. Predicting model construction of single tree DBH of Picea schrenkiana in Xinjiang of northwestern China based on mixed effects model[J]. Journal of Beijing Forestry University, 2020, 42(7): 12−22.
    [20]
    李春明. 基于广义线性混合效应模型的蒙古栎林单木枯损建模及影响因子分析[J]. 林业科学研究, 2020, 33(6): 105−113.

    Li C M. Modeling of individual tree mortality and analysis of influence factor in Mongolian oak stand based on generalized linear mixed effect model[J]. Scientia Silvae Sinicae, 2020, 33(6): 105−113.
    [21]
    Wang W W, Wang J J, Meng J H. A climate-sensitive mixed-effects tree recruitment model for oaks (Quercus spp.) in Hunan Province, south-central China[J]. Forest Ecology and Management, 2023, 528.
    [22]
    聂璐毅, 董利虎, 李凤日, 等. 基于两水平非线性混合效应模型的长白落叶松削度方程构建[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 194−202.

    Nie L Y, Dong L H, Li F R, et al. Construction of taper equation for Larix olgensis based on two-level nonlinear mixed effects model[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2022, 46(3): 194−202.
    [23]
    Wang Y R, Miao Z, Hao Y S, et al. Effects of biotic and abiotic factors on biomass conversion and expansion factors of natural white birch forest (Betula platyphylla Suk.) in Northeast China[J]. Forests, 2023, 14(2): 362.
    [24]
    Wang T, Hamann A, Spittlehouse D L, et al. Climatewna-high-resolution spatial climate data for western north America[J]. Journal of Applied Meteorology and Climatology, 2012, 51(1): 16−29. doi: 10.1175/JAMC-D-11-043.1
    [25]
    Bella I E. A new competition model for individual trees[J]. Forest Science, 1971, 17: 364−372.
    [26]
    Wykoff W R. A basal area increment model for individual conifer in the northern Rocky Mountains[J]. Forestry Science, 1990, 36: 1077−1104.
    [27]
    Stage A R. An expression for the effect of aspect, slope, and habitat type on tree growth[J]. Forest Science, 1976, 22(4): 457−460.
    [28]
    Davidian M, Giltinan D M. Nonlinear models for repeated measurement data[M]. New York: CRC Press, 1995: 78−108.
    [29]
    彭娓, 李凤日, 董利虎. 黑龙江省长白落叶松人工林单木生长模型[J]. 南京林业大学学报(自然科学版), 2018, 42(3): 19−27.

    Peng W, Li F R, Dong L H. Individual tree diameter growth model for Larix olgensis plantation in Heilongjiang Province, China[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018, 42(3): 19−27.
    [30]
    Adame P, Hynynen J, Cañellas I, et al. Individual-tree diameter growth model for rebollo oak (Quercus pyrenaica Willd.) coppices[J]. Forest Ecology and Management, 2008, 255(3−4): 1011−1022.
    [31]
    Condés S, Sterba H. Comparing an individual tree growth model for Pinus halepensis Mill. in the Spanish region of Murcia with yield tables gained from the same area[J]. European Journal of Forest Research, 2008, 127(3): 2531−261.
    [32]
    Monserud R A, Sterba H. A basal area increment model for individual trees growing ineven- and uneven-aged forest stands in Austria[J]. Forest Ecology and Management, 1996, 80(1−3): 57−80. doi: 10.1016/0378-1127(95)03638-5
    [33]
    Zhang L, He Y J, Wang J J, et al. Development of a climate-sensitive matrix growth model for Larix gmelinii mixed-species natural forests and its application for predicting forest dynamics under different climate scenarios[J]. Forests, 2022, 13: 574. doi: 10.3390/f13040574
    [34]
    Ercanli I. Positive effect of forest structural diversity on aboveground stand carbon stocks for even-aged Scots pine (Pinus sylvestris L.) stands in the Sarıçiçek Forest, Northern Turkey[J]. Scandinavian Journal of Forest Research, 2018, 33: 455−463. doi: 10.1080/02827581.2018.1444196
    [35]
    Liang J J, Buongiorno J, Monserud R A. Growth and yield of all-aged Douglas-fir–western hemlock forest stands: a matrix model with stand diversity effects[J]. Canadian Journal of Forest Research, 2005, 35(10): 2368−2381. doi: 10.1139/x05-137
    [36]
    Liang J J, Buongiorno J, Monserud R A, et al. Effects of diversity of tree species and size on forest basal area growth, recruitment, and mortality[J]. Forest Ecology and Management, 2007, 243(1): 116−127. doi: 10.1016/j.foreco.2007.02.028
    [37]
    Kujansuu J, Yasue K, Koike T, et al. Climatic responses of tree-ring widths of Larix gmelinii on contrasting north-facing and south-facing slopes in central Siberia[J]. Journal of Wood Science, 2007, 4: 881−102.
    [38]
    郭常酉, 郭宏仙, 王宝华. 基于气候因子的杉木单木胸径生长模型构建[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 47−56.

    Guo C Y, Guo H X, Wang B H. Study on increment model of individual-tree diameter of Cunninghamia lanceolatain consideration of climatic factors[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2023, 47(1): 47−56.
    [39]
    Akkemik. Dendroclimatology of umbrella pine (Pinus pine L.) in Istanbul, Turkey[J]. Tree-Ring Bulletin, 2000, 56: 17−20.
  • Related Articles

    [1]Feng Yuan, Li Guixiang, He Liping, Bi Bo, Qin Yangping, Wang Faping, Hu Binxian, Yin Jiuming. Tree height curves of Pinus yunnanensis forest based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240063
    [2]Li Xinyu, Yeerjiang Baiketuerhan, Wang Juan, Zhang Xinna, Zhang Chunyu, Zhao Xiuhai. Relationship between tree height and DBH of Pinus koraiensis in northeastern China based on nonlinear mixed effects model[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240321
    [3]Wang Baoying, Liang Ruiting, Xie Yunhong, Qiu Siyu, Sun Yujun. Construction of Cunninghamia lanceolata tree height curve model based on nonlinear quantile mixed effect[J]. Journal of Beijing Forestry University, 2023, 45(11): 33-41. DOI: 10.12171/j.1000-1522.20220496
    [4]Du Zhi, Chen Zhenxiong, Li Rui, Liu Ziwei, Huang Xin. Development of climate-sensitive nonlinear mixed-effects tree height-DBH model for Cunninghamia lanceolata[J]. Journal of Beijing Forestry University, 2023, 45(9): 52-61. DOI: 10.12171/j.1000-1522.20230052
    [5]Yang Xin, Wang Jianjun, Du Zhi, Wang Wenwen, Meng Jinghui. Development of individual-tree diameter increment model for natural Larix gmelinii forests based on climatic factors[J]. Journal of Beijing Forestry University, 2022, 44(8): 1-11. DOI: 10.12171/j.1000-1522.20210353
    [6]Tang Yan, Zhao Runan, Ren Gang, Cao Fuliang, Zhu Zunling. Prediction of potential distribution of Lycium chinense based on MaxEnt model and analysis of its important influencing factors[J]. Journal of Beijing Forestry University, 2021, 43(6): 23-32. DOI: 10.12171/j.1000-1522.20200103
    [7]Chen Guodong, Du Yan, Ding Peiyan, Guo Kexin, Yin Zhongdong. Predicting model construction of single tree DBH of Picea schrenkiana in Xinjiang of northwestern China based on mixed effects model[J]. Journal of Beijing Forestry University, 2020, 42(7): 12-22. DOI: 10.12171/j.1000-1522.20190236
    [8]ZANG Hao, LEI Xiang-dong, ZHANG Hui-ru, LI Chun-ming, LU Jun. Nonlinear mixed-effects height-diameter model of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2016, 38(6): 8-9. DOI: 10.13332/j.1000-1522.20160008
    [9]YU Li, LEI Xiang-dong, WANG Ya-zhi, YANG Ying-jun, WANG Quan-jun. Impact of climate on individual tree radial growth based on generalized additive model[J]. Journal of Beijing Forestry University, 2014, 36(5): 22-32. DOI: 10.13332/j.cnki.jbfu.2014.05.007
    [10]LIU Chun-yan, , GU Jian-cai, LI Ji-yue, CHEN Ping, LU Gu i-qiao, TIAN Guo-heng. Correlated analysis between the growth of Larix principisrupprechtii and climatic factors in Saihanba Nature Reserve, northern Hebei Province.[J]. Journal of Beijing Forestry University, 2009, 31(4): 102-105.
  • Cited by

    Periodical cited type(1)

    1. 虞夏霓,刘偲,陈步先,包新德,关鑫,林金国. 砂光处理对翅荚木表面特性影响研究. 林产工业. 2024(06): 14-19 .

    Other cited types(1)

Catalog

    Article views (559) PDF downloads (74) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return