• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Pengyu, Li Jiapu, He Yicheng, Tian Dashuan, Ji Baoming. Response and mechanism of plant leaf nitrogen and phosphorus resorption efficiency to nutrient addition in an alpine meadow[J]. Journal of Beijing Forestry University, 2024, 46(1): 93-103. DOI: 10.12171/j.1000-1522.20230091
Citation: Li Pengyu, Li Jiapu, He Yicheng, Tian Dashuan, Ji Baoming. Response and mechanism of plant leaf nitrogen and phosphorus resorption efficiency to nutrient addition in an alpine meadow[J]. Journal of Beijing Forestry University, 2024, 46(1): 93-103. DOI: 10.12171/j.1000-1522.20230091

Response and mechanism of plant leaf nitrogen and phosphorus resorption efficiency to nutrient addition in an alpine meadow

More Information
  • Received Date: April 24, 2023
  • Revised Date: July 31, 2023
  • Accepted Date: August 23, 2023
  • Available Online: January 08, 2024
  • Objective 

    The purpose of our study was to reveal the response and mechanism of plant leaf nutrient resorption efficiency to nitrogen and phosphorus addition and their interaction, and to clarify the diversity of plant nutrient use strategies in alpine meadows.

    Method 

    To answer this question, we performed an experiment of N and P addition in an alpine meadow, measured leaf nutrient resorption efficiency in four dominant species (Elymus nutans, Deschampsia cespitosa, Artemisia roxburghiana, Potentilla anserina).

    Result 

    (1) N addition had positive effects on leaf N resorption efficiency (NRE) in graminoids, but the leaf NRE of forbs was not affected by N addition, while it did not affect P resorption efficiency (PRE) among four plant species. (2) P addition had no significant effect on the leaf NRE of all plants and the leaf PRE of two forbs, but increased the leaf PRE of graminoids. (3) N and P addition together reduced leaf NRE in E. nutans, A. roxburghiana and P. anserina, but increased NRE in D. cespitosa. Moreover, the combination of N and P addition had not significant effect on leaf PRE of four plants.

    Conclusion 

    Overall, our study indicates that alpine plants adopt three nutrient resorption strategies for more nutrient supply: full resorption (increase green leaf nutrient but no change in senescent leaf), partial resorption (more increase in green leaf nutrient than senescent leaf) and no resorption (similar increase in green and senescent leaf nutrient). These findings provide implications for understanding the diversity and complementarity of nutrient internal circulation strategies in alpine plants.

  • [1]
    Aerts R, Chapin F S. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns[M]//Fitter A H, Raffaelli D G. Advances in ecological research. New York: Academic Press, 1999.
    [2]
    Jackson R B, Schenk H J, Jobbágy E G, et al. Belowground consequences of vegetation change and their treatment in models[J]. Ecological Applications, 2000, 10(2): 470−483. doi: 10.1890/1051-0761(2000)010[0470:BCOVCA]2.0.CO;2
    [3]
    Zhao Q, Guo J, Shu M, et al. Impacts of drought and nitrogen enrichment on leaf nutrient resorption and root nutrient allocation in four Tibetan plant species[J]. Science of the Total Environment, 2020, 723: 138106. doi: 10.1016/j.scitotenv.2020.138106
    [4]
    Wang F, Fang X, Wang G G, et al. Effects of nutrient addition on foliar phosphorus fractions and their resorption in different-aged leaves of Chinese fir in subtropical China[J]. Plant and Soil, 2019, 443(1−2): 41−54. doi: 10.1007/s11104-019-04221-8
    [5]
    Kou L, Wang H, Gao W, et al. Nitrogen addition regulates tradeoff between root capture and foliar resorption of nitrogen and phosphorus in a subtropical pine plantation[J]. Trees, 2017, 31: 77−91. doi: 10.1007/s00468-016-1457-7
    [6]
    Li X, Liu J, Fan J, et al. Combined effects of nitrogen addition and litter manipulation on nutrient resorption of Leymus chinensis in a semi-arid grassland of northern China[J]. Plant Biology (Stuttgart, Germany), 2014, 17(1): 9−15.
    [7]
    Wang M, Murphy M T, Moore T R. Nutrient resorption of two evergreen shrubs in response to long-term fertilization in a bog[J]. Oecologia, 2014, 174(2): 365−377. doi: 10.1007/s00442-013-2784-7
    [8]
    Zhang Y, Yang G, Shi F, et al. Biomass allocation between leaf and stem regulates community-level plant nutrient resorption efficiency response to nitrogen and phosphorus additions in a temperate wetland of Northeast China[J]. Journal of Plant Ecology, 2021, 14(1): 58−66. doi: 10.1093/jpe/rtaa077
    [9]
    Lu J, Yang M, Liu M, et al. Nitrogen and phosphorus fertilizations alter nitrogen, phosphorus and potassium resorption of alfalfa in the Loess Plateau of China[J]. Journal of Plant Nutrition, 2019, 42: 1−13. doi: 10.1080/01904167.2018.1509996
    [10]
    van Heerwaarden L M, Toet S, Aerts R. Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization[J]. Journal of Ecology, 2003, 91(6): 1060−1070. doi: 10.1046/j.1365-2745.2003.00828.x
    [11]
    Su Y, Ma X, Gong Y, et al. Responses and drivers of leaf nutrients and resorption to nitrogen enrichment across northern China’s grasslands: a meta-analysis[J/OL]. Catena, 2021, 199(1): 105110[2022−10−09]. https://doi.org/10.1016/j.catena.2020.105110.
    [12]
    You C, Wu F, Yang W, et al. Does foliar nutrient resorption regulate the coupled relationship between nitrogen and phosphorus in plant leaves in response to nitrogen deposition?[J]. Science of the Total Environment, 2018, 645: 733−742. doi: 10.1016/j.scitotenv.2018.07.186
    [13]
    See C R, Yanai R D, Fisk M C, et al. Soil nitrogen affects phosphorus recycling: foliar resorption and plant-soil feedbacks in a northern hardwood forest[J]. Ecology, 2015, 96(9): 2488−2498. doi: 10.1890/15-0188.1
    [14]
    Liu Y, Li L, Li X, et al. Effect of nitrogen and phosphorus addition on leaf nutrient concentrations and nutrient resorption efficiency of two dominant alpine grass species[J]. Journal of Arid Land, 2021, 13(10): 1041−1053. doi: 10.1007/s40333-021-0080-7
    [15]
    Mao R, Zeng D H, Zhang X H, et al. Responses of plant nutrient resorption to phosphorus addition in freshwater marsh of Northeast China[J/OL]. Scientific Reports, 2015, 5: 8097 [2022−10−07]. https://www.nature.com/articles/srep08097.
    [16]
    Li L J, Zeng D H, Mao R, et al. Nitrogen and phosphorus resorption of Artemisia scoparia, Chenopodium acuminatum, Cannabis sativa, and Phragmites communis under nitrogen and phosphorus additions in a semiarid grassland, China[J]. Plant, Soil and Environment, 2012, 58(10): 446−451. doi: 10.17221/6339-PSE
    [17]
    Lü X T, Reed S C, Yu Q, et al. Nutrient resorption helps drive intra-specific coupling of foliar nitrogen and phosphorus under nutrient-enriched conditions[J]. Plant and Soil, 2016, 398(1): 111−120.
    [18]
    Yuan Z Y, Chen H Y H. Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation[J]. Global Ecology and Biogeography, 2009, 18(1): 11−18. doi: 10.1111/j.1466-8238.2008.00425.x
    [19]
    Zhang J, Li H, Shen H, et al. Effects of nitrogen addition on nitrogen resorption in temperate shrublands in northern China[J/OL]. PLoS One, 2015, 10(6): e0130434 [2022−12−13]. http://doi.org/10.1371/journal.pone.0130434.
    [20]
    He M, Yan Z, Cui X, et al. Scaling the leaf nutrient resorption efficiency: nitrogen vs phosphorus in global plants[J]. The Science of the Total Environment, 2020, 729: 138920. doi: 10.1016/j.scitotenv.2020.138920
    [21]
    Tateno R, Takeda H. Nitrogen resorption efficiency of 13 tree species of a cool temperate deciduous forest in Central Japan[J]. Journal of Forest Research, 2018, 23(2): 91−97. doi: 10.1080/13416979.2018.1432303
    [22]
    Chen H, Xu B, Wei S, et al. Nutrient resorption and phenolics concentration associated with leaf senescence of the subtropical mangrove aegiceras corniculatum: implications for nutrient conservation[J]. Forests, 2016, 7(11): 290.
    [23]
    Urbina I, Grau O, Sardans J, et al. High foliar K and P resorption efficiencies in old-growth tropical forests growing on nutrient-poor soils[J]. Ecology and Evolution, 2021, 11(13): 8969−8982. doi: 10.1002/ece3.7734
    [24]
    Wright I J, Westoby M. Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species[J]. Functional Ecology, 2003, 17(1): 10−19. doi: 10.1046/j.1365-2435.2003.00694.x
    [25]
    Franklin O, Ågren G I. Leaf senescence and resorption as mechanisms of maximizing photosynthetic production during canopy development at N limitation[J]. Functional Ecology, 2002, 16(6): 727−733. doi: 10.1046/j.1365-2435.2002.00674.x
    [26]
    Chen J, Groenigen K J V, Hungate B A, et al. Long-term nitrogen loading alleviates phosphorus limitation in terrestrial ecosystems[J]. Global Change Biology, 2020, 26(9): 5077−5086. doi: 10.1111/gcb.15218
    [27]
    Lü X, Reed S, Yu Q, et al. Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland[J]. Global Change Biology, 2013, 19(9): 2775−2784. doi: 10.1111/gcb.12235
    [28]
    Yuan Z Y, Chen H Y H. Negative effects of fertilization on plant nutrient resorption[J]. Ecology, 2015, 96(2): 373−380. doi: 10.1890/14-0140.1
    [29]
    Gerdol R, Iacumin P, Brancaleoni L. Differential effects of soil chemistry on the foliar resorption of nitrogen and phosphorus across altitudinal gradients[J]. Functional Ecology, 2019, 33(7): 1351−1361. doi: 10.1111/1365-2435.13327
    [30]
    Vourlitis G L, Lobo F D A, Lawrence S, et al. Nutrient resorption in tropical savanna forests and woodlands of central Brazil[J]. Plant Ecology, 2014, 215(9): 963−975. doi: 10.1007/s11258-014-0348-5
    [31]
    Yan Z B, Kim N, Han X W, et al. Effects of nitrogen and phosphorus supply on growth rate, leaf stoichiometry, and nutrient resorption of Arabidopsis thaliana[J]. Plant and Soil, 2014, 388: 147−155.
    [32]
    Chen F S, Niklas K J, Liu Y, et al. Nitrogen and phosphorus additions alter nutrient dynamics but not resorption efficiencies of Chinese fir leaves and twigs differing in age[J]. Tree Physiology, 2015, 35(10): 1106−1117. doi: 10.1093/treephys/tpv076
    [33]
    Hidaka A, Kitayama K. Allocation of foliar phosphorus fractions and leaf traits of tropical tree species in response to decreased soil phosphorus availability on Mount Kinabalu, Borneo[J]. Journal of Ecology, 2011, 99(3): 849−857. doi: 10.1111/j.1365-2745.2011.01805.x
    [34]
    Vitousek P. Nutrient cycling and nutrient use efficiency[J]. American Naturalist, 1982, 119(4): 553−572. doi: 10.1086/283931
    [35]
    Zhang M, Zhang L, Yao X, et al. Co-evaluation of plant leaf nutrient concentrations and resorption in response to fertilization under different nutrient-limited conditions[J]. Diversity-Basel, 2022, 14(5): 385.
    [36]
    Drenovsky R, Richards J. Low leaf N and P resorption contributes to nutrient limitation in two desert shrubs[J]. Plant Ecology, 2006, 183: 305−314. doi: 10.1007/s11258-005-9041-z
    [37]
    符义稳, 田大栓, 牛书丽, 等. 氮磷添加和干旱对高寒草甸优势植物叶片化学计量的影响[J]. 北京林业大学学报, 2020, 42(5): 115−123. doi: 10.12171/j.1000-1522.20190469

    Fu Y W, Tian D S, Niu S L, et al. Effects of nitrogen, phosphorus addition and drought on leaf stoichiometry in dominant species of alpine meadow[J]. Journal of Beijing Forestry University, 2020, 42(5): 115−123. doi: 10.12171/j.1000-1522.20190469
    [38]
    Li N, Wang G, Yang Y, et al. Plant production, and carbon and nitrogen source pools, are strongly intensified by experimental warming in alpine ecosystems in the Qinghai-Tibet Platea[J]. Soil Biology & Biochemistry, 2011, 43(5): 942−953.
    [39]
    Yang Z, Gao J, Zhao L, et al. Linking thaw depth with soil moisture and plant community composition: effects of permafrost degradation on alpine ecosystems on the Qinghai-Tibet Plateau[J]. Plant and Soil, 2013, 367(1−2): 687−700. doi: 10.1007/s11104-012-1511-1
    [40]
    Zhao X, Zhou X. Ecological basis of alpine meadow ecosystem management in Tibet: Haibei alpine meadow ecosystem research station[J]. Ambio, 1999, 28: 642−647.
    [41]
    杨晓霞, 任飞, 周华坤, 等. 青藏高原高寒草甸植物群落生物量对氮、磷添加的响应[J]. 植物生态学报, 2014, 38(2): 159−166. doi: 10.3724/SP.J.1258.2014.00014

    Yang X X, Ren F, Zhou H K, et al. Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau[J]. Chinese Journal of Plant Ecology, 2014, 38(2): 159−166. doi: 10.3724/SP.J.1258.2014.00014
    [42]
    Butler O M, Elser J J, Lewis T, et al. The phosphorus-rich signature of fire in the soil-plant system: a global meta-analysis[J]. Ecology Letters, 2018, 21(3): 335−344. doi: 10.1111/ele.12896
    [43]
    Borer E T, Seabloom E W, Gruner D S, et al. Herbivores and nutrients control grassland plant diversity via light limitation[J]. Nature, 2014, 508(517): 520.
    [44]
    Borer E T, Harpole W S, Adler P B, et al. Finding generality in ecology: a model for globally distributed experiments[J]. Methods in Ecology and Evolution, 2014, 5(1): 65−73. doi: 10.1111/2041-210X.12125
    [45]
    Boerner R E J. Foliar nutrient dynamics and nutrient use efficiency of four deciduous tree species in relation to site fertility[J]. Journal of Applied Ecology, 1984, 21(3): 1029−1040. doi: 10.2307/2405065
    [46]
    Zong N, Song M, Zhao G, et al. Nitrogen economy of alpine plants on the north Tibetan Plateau: nitrogen conservation by resorption rather than open sources through biological symbiotic fixation[J]. Ecology and Evolution, 2020, 10(4): 2051−2061. doi: 10.1002/ece3.6038
    [47]
    Liang D, Zhang J, Zhang S. Patterns of nitrogen resorption in functional groups in a Tibetan alpine meadow[J]. Folia Geobotanica, 2015, 50(3): 267−274. doi: 10.1007/s12224-015-9217-9
    [48]
    安卓, 牛得草, 文海燕, 等. 氮素添加对黄土高原典型草原长芒草氮磷重吸收率及C∶N∶P化学计量特征的影响[J]. 植物生态学报, 2011, 35(8): 801−807. doi: 10.3724/SP.J.1258.2011.00801

    An Z, Niu D C, Wen H Y, et al. Effects of N addition on nutrient resorption efficiency and C∶N∶P stoichiometric characteristics in Stipa bungeana of steppe grasslands in the Loess Plateau, China[J]. Chinese Journal of Plant Ecology, 2011, 35(8): 801−807. doi: 10.3724/SP.J.1258.2011.00801
    [49]
    Dong W Y, Zhang X Y, Liu X Y, et al. Responses of soil microbial communities and enzyme activities to nitrogen and phosphorus additions in Chinese fir plantations of subtropical China[J]. Biogeosciences, 2015, 12(18): 5537−5546. doi: 10.5194/bg-12-5537-2015
    [50]
    Zemunik G, Turner B L, Lambers H, et al. Diversity of plant nutrient-acquisition strategies increases during long-term ecosystem development[J/OL]. Nature Plants, 2015, 1(5): 15050 [2022−10−15]. https://www.nature.com/articles/nplants201550.
    [51]
    Delgado B M, Maestre F T, Gallardo A, et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands[J]. Nature, 2013, 502: 672−676. doi: 10.1038/nature12670
    [52]
    Du E, Terrer C, Pellegrini A F A, et al. Global patterns of terrestrial nitrogen and phosphorus limitation[J]. Nature Geoscience, 2020, 13(3): 221−226. doi: 10.1038/s41561-019-0530-4
  • Cited by

    Periodical cited type(4)

    1. 俞彤,唐洪旺,王常慧,董宽虎,苏原. 放牧增加草地生态系统植物氮磷浓度和回收效率. 草地学报. 2025(02): 566-574 .
    2. 张心怡,何菲菲,张亮,罗颖,周青平,雷映霞. 不同披碱草种质对低氮胁迫的形态和生理响应分析及耐低氮性评价. 草地学报. 2024(07): 2128-2142 .
    3. 黎鹏宇,何奕成,纪宝明,田大栓. 养分添加对中国草地植物叶片养分重吸收率的影响. 草地学报. 2024(11): 3335-3343 .
    4. 赵睿,刘玉臣,沈海龙,张鹏,张耀明,高明,郭文慧,闫平. 林木叶片养分重吸收影响因素. 温带林业研究. 2024(04): 89-94 .

    Other cited types(3)

Catalog

    Article views (406) PDF downloads (61) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return