• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Wenhe, Zhao Zhirong, Zhao Qianlong, Wang Qingchun, Li Jinyu, Li Mingyang, Xie Lei. Geographical study on the phylogenetic fauna of vascular plants in Beijing[J]. Journal of Beijing Forestry University, 2024, 46(9): 35-44. DOI: 10.12171/j.1000-1522.20230106
Citation: Li Wenhe, Zhao Zhirong, Zhao Qianlong, Wang Qingchun, Li Jinyu, Li Mingyang, Xie Lei. Geographical study on the phylogenetic fauna of vascular plants in Beijing[J]. Journal of Beijing Forestry University, 2024, 46(9): 35-44. DOI: 10.12171/j.1000-1522.20230106

Geographical study on the phylogenetic fauna of vascular plants in Beijing

More Information
  • Received Date: May 08, 2023
  • Revised Date: June 03, 2023
  • Available Online: September 01, 2024
  • Objective 

    This paper identifies the distribution characteristics of plant diversity and phylogenetic structure types in Beijing, so as to provide a scientific basis for the conservation of biodiversity in Beijing’s natural ecosystems.

    Method 

    We incorporated phylogenetic analysis methods into floristic study, constructed phylogenetic trees of vascular plants by collecting plant catalogs, distribution information, and records from districts and various protected areas in Beijing. We calculated phylogenetic diversity and assessed taxonomic richness to identify the distribution patterns of plant diversity in Beijing. By calculating net relatedness index, we explored the phylogenetic structure of plants in various districts and multiple protected areas in Beijing. The phylogenetic similarity index Phylosor was calculated for each pair of protected areas, and cluster analysis was conducted on 14 protected areas based on both species composition similarity and phylogenetic similarity.

    Result 

    (1) The floristic composition in Beijing was complete, including all major clades of vascular plants worldwide. (2) Districts with higher altitude mountains, such as Yanqing, Mentougou, Miyun, Huairou, and Fangshan districts, exhibited higher taxonomic richness and phylogenetic diversity. (3) The taxonomic richness and phylogenetic diversity of plant genera and species in different districts and protected areas were significantly correlated, but their phylogenetic structures were non-random. Among them, Huairou District, Mentougou District, and Miyun District had overdispersed phylogenetic structure. (4) Cluster analyses based on species similarity and phylogenetic similarity were both unable to distinguish protected areas located in the Taihang Mountains and Yanshan Mountains of northern China. (5) The highest phylogenetic diversity was found in Xiaolongmen, Baihuashan, Labagoumen, and Wulingshan Mountains, among which, Wulingshan Mountains and Labagoumen had a overdispersed phylogenetic structure.

    Conclusion 

    The plant diversity hotspots in Beijing are mainly concentrated in the northern and western mountainous areas, Yanqing, Mentougou, and Miyun districts exhibite the highest plant diversity. Among the 14 protected areas, Xiaolongmen and Baihuashan Mountains exhibit the highest taxonomic richness and phylogenetic diversity, needing particular attention. Wulingshan Mountains and Labagoumen show a overdispersed phylogenetic structure, offering potential for higher conservation benefits, which should not be overlooked. Flora of Taihang and Yanshan mountains in Beijing does not exhibit significant differences.

  • [1]
    吴征镒, 周浙昆, 孙航, 等. 种子植物分布区类型及其起源和分化[M]. 昆明: 云南科技出版社, 2006.

    Wu Z Y, Zhou Z K, Sun H, et al. The areal-types of seed plants and their origin and differentiation[M]. Kunming: Yunnan Science and Technology Press, 2006.
    [2]
    李嵘, 孙航. 植物系统发育区系地理学研究: 以云南植物区系为例[J]. 生物多样性, 2017, 25(2): 195−203.

    Li R, Sun H. Phylofloristics: a case study from Yunnan, China[J]. Biodiversity Science, 2017, 25(2): 195−203.
    [3]
    孙航, 邓涛, 陈永生, 等. 植物区系地理研究现状及发展趋势[J]. 生物多样性, 2017, 25(2): 111−122.

    Sun H, Deng T, Chen Y S, et al. Current research and development trends in floristic geography[J]. Biodiversity Science, 2017, 25(2): 111−122.
    [4]
    Li R, Qian L S, Sun H. Current progress and future prospects in phylofloristics[J]. Plant Diversity, 2018, 40(4): 141−146. doi: 10.1016/j.pld.2018.07.003
    [5]
    Faith D P. Conservation evaluation and phylogenetic diversity[J]. Biological Conservation, 1992, 61: 1−10. doi: 10.1016/0006-3207(92)91201-3
    [6]
    Honorio C E N, Dexter K G, Pennington R T, et al. Phylogenetic diversity of Amazonian tree communities[J]. Diversity and Distributions, 2015, 21(11): 1295−1307. doi: 10.1111/ddi.12357
    [7]
    Rodrigues A S L, Gaston K J. Maximising phylogenetic diversity in the selection of networks of conservation areas[J]. Biological Conservation, 2002, 105: 103−111. doi: 10.1016/S0006-3207(01)00208-7
    [8]
    Rodrigues A S L, Brooks T M, Gaston K J. Integrating phylogenetic diversity in the selection of priority areas for conservation: does it make a difference?[C]// Purvis A, Gittleman J L, Brooks T M. Phylogeny and conservation. Cambridge: Cambridge University Press, 2005: 101–199.
    [9]
    Tucker C M, Cadotte M W. Unifying measures of biodiversity: understanding when richness and phylogenetic diversity should be congruent[J]. Diversity and Distributions, 2013, 19(7): 845−854. doi: 10.1111/ddi.12087
    [10]
    Brum F T, Graham C H, Costa G C, et al. Global priorities for conservation across multiple dimensions of mammalian diversity[J]. Proceedings of the National Academy of Sciences, 2017, 114(29): 7641−7646. doi: 10.1073/pnas.1706461114
    [11]
    刘珉璐, 潘翔, 陈庆辉, 等. 系统发育多样性与系统发育结构在岛屿植物群落保护中的意义: 以蜈支洲岛为例[J]. 热带亚热带植物学报, 2017, 25(5): 419−428. doi: 10.11926/jtsb.3712

    Liu M L, Pan X, Chen Q H, et al. Significance of phylogenetic diversity and phylogenetic structure conservation of island plant communities: a case of Wuzhizhou Island[J]. Journal of Tropical and Subtropical Botany, 2017, 25(5): 419−428. doi: 10.11926/jtsb.3712
    [12]
    Li R, Yue J P. A phylogenetic perspective on the evolutionary processes of floristic assemblages within a biodiversity hotspot in eastern Asia[J]. Journal of Systematics and Evolution, 2020, 58(4): 413−422. doi: 10.1111/jse.12539
    [13]
    慈秀芹, 李捷. 系统发育多样性在植物区系研究与生物多样性保护中的应用[J]. 生物多样性, 2017, 25(2): 175−181.

    Ci X Q, Li J. Phylogenetic diversity and its application in floristics and biodiversity conservation[J]. Biodiversity Science, 2017, 25(2): 175−181.
    [14]
    Andino J G, Pitman N, Steege H T, et al. Incorporating phylogenetic information for the definition of floristic districts in hyperdiverse Amazon forests: implications for conservation[J]. Ecology and Evolution, 2017, 7(22): 9639−9650. doi: 10.1002/ece3.3481
    [15]
    Frye H A, Aiello-Lammens M E, Euston-Brown D, et al. Plant spectral diversity as a surrogate for species, functional and phylogenetic diversity across a hyper-diverse biogeographic region[J]. Global Ecology and Biogeography, 2021, 30(7): 1403−1417. doi: 10.1111/geb.13306
    [16]
    孙立. 北京市自然保护区体系及空间布局研究[D]. 北京: 北京林业大学, 2008.

    Sun L. Study on the spatial distribution about Beijing nature reserve[D]. Beijing: Beijing Forestry University, 2008.
    [17]
    邢韶华, 林大影, 袁秀, 等. 北京山区野生维管束植物区系[J]. 生态学杂志, 2006(6): 671−676. doi: 10.3321/j.issn:1000-4890.2006.06.016

    Xing S H, Lin D Y, Yuan X, et al. Flora of wild vascular bundle plants in mountainous area of Beijing[J]. Chinese Journal of Ecology, 2006(6): 671−676. doi: 10.3321/j.issn:1000-4890.2006.06.016
    [18]
    贺士元, 邢其华, 尹祖堂. 北京植物志 (上册) [M]. 北京: 科学出版社, 1992.

    He S Y, Xing Q H, Yin Z T. Flora of Beijing [M]. Vol. 1. Beijing: Science Press, 1992.
    [19]
    张潮, 刘全儒, 汤晓辛. 北京地区种子植物区系分析[J]. 分子植物育种, 2017, 15(5): 1994−2002.

    Zhang C, Liu Q R, Tang X X. Analysis on the flora of the seed plants in Beijing area[J]. Molecular Plant Breeding, 2017, 15(5): 1994−2002.
    [20]
    李义明. 系统发育多样性测度及其在生物多样性保护中的应用[J]. 生物多样性, 1998, 1998(1): 49−54. doi: 10.3321/j.issn:1005-0094.1998.01.009

    Li Y M. The phylogenetic diversity measurements and their uses in biodiversity conservation[J]. Biodiversity Science, 1998, 1998(1): 49−54. doi: 10.3321/j.issn:1005-0094.1998.01.009
    [21]
    刘增力, 胡理乐, 闫伯前, 等. 北京市自然保护地生态效益及其影响因素[J]. 生态学报, 2022, 42(24): 10060−10071.

    Liu Z L, Hu L L, Yan B Q, et al. Ecological benefit evaluation and influencing factors analysis of the protected areas in Beijing[J]. Acta Ecologica Sinica, 2022, 42(24): 10060−10071.
    [22]
    华锦欣, 翟帅, 徐曦, 等. 杭州市自然保护地现状与空间分布格局特征分析[J]. 浙江林业科技, 2023, 43(2): 28−34. doi: 10.3969/j.issn.1001-3776.2023.02.005

    Hua J X, Zhai S, Xu X, et al. Current situation and spatial distribution patterns of Natural Protected Areas in Hangzhou[J]. Journal of Zhejiang Forestry Science and Technology, 2023, 43(2): 28−34. doi: 10.3969/j.issn.1001-3776.2023.02.005
    [23]
    张瑶. 北京国家森林公园游憩资源评价研究[D]. 北京: 北京农学院, 2020.

    Zhang Y. Study on the evaluation of recreational resources of Beijing National Forest Park[D]. Beijing: Beijing University of Agriculture, 2020.
    [24]
    孙立. 北京周边自然保护区合理布局研究[D]. 北京: 北京林业大学, 2005.

    Sun L. The reasonable distribution of nature reserve around Beijing[D]. Beijing: Beijing Forestry University, 2005.
    [25]
    贺士元, 邢其华, 尹祖堂. 北京植物志 (下册)[M]. 北京: 科学出版社, 1992.

    He S Y, Xing Q H, Yin Z T. Flora of Beijing [M]. Vol. 2. Beijing: Science Press, 1992.
    [26]
    肖翠, 刘冰, 吴超然, 等. 北京维管植物编目和分布数据集[J]. 生物多样性, 2022, 30(6): 5−13. doi: 10.17520/biods.2022064

    Xiao C, Liu B, Wu C R, et al. A dataset on inventory and geographical distributions of vascular plants in Beijing, China[J]. Biodiversity Science, 2022, 30(6): 5−13. doi: 10.17520/biods.2022064
    [27]
    Zhang J, Qian H U. Taxonstand: an R package for standardizing scientific names of plants and animals[J]. Plant Diversity, 2023, 45(1): 1−5. doi: 10.1016/j.pld.2022.09.001
    [28]
    The Angiosperm Phylogeny Group. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV[J]. Botanical Journal of the Linnean Society, 2016, 181: 1−20. doi: 10.1111/boj.12385
    [29]
    Jin Y, Qian H V. PhyloMaker: an R package that can generate very large phylogenies for vascular plants[J]. Ecography, 2019, 42(8): 1353−1359. doi: 10.1111/ecog.04434
    [30]
    Smith S A, Brown J W. Constructing a broadly inclusive seed plant phylogeny[J]. American Journal of Botany, 2018, 105: 302−314. doi: 10.1002/ajb2.1019
    [31]
    Zanne A E, Tank D C, Cornwell W K, et al. Three keys to the radiation of angiosperms into freezing environments[J]. Nature, 2014, 506: 89−92. doi: 10.1038/nature12872
    [32]
    董雪蕊, 张红, 张明罡. 基于系统发育的黄土高原地区木本植物多样性及特有性格局[J]. 生物多样性, 2019, 27(12): 1269−1278. doi: 10.17520/biods.2019224

    Dong X R, Zhang H, Zhang M G. Explaining the diversity and endemic patterns based on phylogenetic approach for woody plants of the Loess Plateau[J]. Biodiversity Science, 2019, 27(12): 1269−1278. doi: 10.17520/biods.2019224
    [33]
    Kembel S W, Cowan P D, Helmus M R, et al. Picante: R tools for integrating phylogenies and ecology[J]. Bioinformatics, 2010, 26(11): 1463−1464. doi: 10.1093/bioinformatics/btq166
    [34]
    Dixon P. Vegan, a package of R functions for community ecology[J]. Journal of Vegetation Science, 2003, 14(6): 927−930. doi: 10.1111/j.1654-1103.2003.tb02228.x
    [35]
    Maechler M, Rousseeuw P, Struyt A, et al. Cluster: cluster analysis basics and extensions[EB/OL]. (2022−08−22)[2023−05−08]. https://cran.r-project.org/web/packages/cluster/index.html.
    [36]
    马彦伟, 刘全儒, 康慕谊. 北京上方山种子植物区系的研究[J]. 北京师范大学学报 (自然科学版), 2004, 2004(6): 809–813.

    Ma Y W, Liu Q R, Kang M Y. On the flora of seed plants in Shangfang Mountain, Beijing[J], Journal of Beijing Normal University (Natural Science), 2004, 2004(6): 809–813.
    [37]
    Prinzing A, Durka W, Klotz S, et al. The niche of higher plants: evidence for phylogenetic conservatism[J]. Proceedings of the Royal Society of London. Series B: Biological Sciences, 2001, 268(1483): 2383−2389. doi: 10.1098/rspb.2001.1801
    [38]
    牛红玉, 王峥峰, 练琚愉, 等. 群落构建研究的新进展: 进化和生态相结合的群落谱系结构研究[J]. 生物多样性, 2011, 19(3): 275−283. doi: 10.3724/SP.J.1003.2011.09275

    Niu H Y, Wang Z F, Lian J Y, et al. New progress in community assembly: community phylogenetic structure combining evolution and ecology[J]. Biodiversity Science, 2011, 19(3): 275−283. doi: 10.3724/SP.J.1003.2011.09275
    [39]
    Forest F, Grenyer R, Rouget M, et al. Preserving the evolutionary potential of floras in biodiversity hotspots[J]. Nature, 2007, 445: 757−760. doi: 10.1038/nature05587
    [40]
    Daru B H, le Roux P C. Marine protected areas are insufficient to conserve global marine plant diversity[J]. Global Ecology and Biogeography, 2016, 25: 324−334. doi: 10.1111/geb.12412
    [41]
    Buerki S, Callmander M W, Bachman S, et al. Incorporating evolutionary history into conservation planning in biodiversity hotspots[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370: 20140014. doi: 10.1098/rstb.2014.0014
    [42]
    Shapcott A, Forster P I, Guymer G P, et al. Mapping biodiversity and setting conservation priorities for SE Queensland’s rainforests using DNA barcoding[J]. PLoS ONE, 2015, 10(3): e0122164. doi: 10.1371/journal.pone.0122164
    [43]
    Li R, Kraft N J B, Yu H, et al. Seed plant phylogenetic diversity and species richness in conservation planning within a global biodiversity hotspot in eastern Asia[J]. Conservation Biology, 2015, 29(6): 1552−1562. doi: 10.1111/cobi.12586
  • Cited by

    Periodical cited type(19)

    1. 何兰君,李林霞,欧光龙. 基于标志种分布预测的哀牢山植被潜在分布及气候解释研究. 西南林业大学学报(自然科学). 2024(03): 52-60 .
    2. 田刘翔宇,张立世,姚纪元,王利民. 基于MaxEnt探究栖息地质量对百灵科鸟类分布影响. 东北师大学报(自然科学版). 2024(02): 106-116 .
    3. 章蜜,罗伟. 庐山保护区白颈长尾雉生境适宜性评价研究. 湖北林业科技. 2024(05): 44-48 .
    4. 王佩,李英杰,袁家根,耿盼,李蕊. 基于优化MaxEnt模型的原麝生境适宜性评价. 野生动物学报. 2023(01): 38-45 .
    5. 富爱华,郜二虎,布日古德,陈敏豪,提杨,栾晓峰. 我国白琵鹭(Platalea leucorodia)越冬地预测与保护现状分析. 生态与农村环境学报. 2022(01): 69-75 .
    6. 吴艳,王洪峰,穆立蔷. 物种分布模型的研究进展与展望. 高师理科学刊. 2022(05): 66-70 .
    7. 李鑫泽,冯佳楠,支晓亮,钟林强,刘鑫鑫,张明海. 东北地区三种鹿科动物潜在栖息地预测与保护空缺分析. 野生动物学报. 2021(02): 318-328 .
    8. 王艳君,高泰,石娟. 基于MaxEnt模型对舞毒蛾全球适生区的预测及分析. 北京林业大学学报. 2021(09): 59-69 . 本站查看
    9. 张丽霞,孙冬婷,胡昕,朱向博,张敬,晁青鲜,卫泽珍,张成林. 中国圈养褐马鸡种群和饲养管理现状调查. 野生动物学报. 2021(04): 1123-1130 .
    10. 李宏群,韩培士,牛常会,袁晓青,邢立刚. 气候变化对我国特有濒危动物褐马鸡潜在生境的影响. 林业科学. 2021(10): 102-110 .
    11. 刘博,王晔楠,唐超,刘丽,马光昌,彭正强,阎伟. 云斑斜线天蛾在我国的适生性及限制性环境因子分析. 热带作物学报. 2021(12): 3581-3587 .
    12. 李敏,李秀明,徐家慧,薛琳,武爱明,盘凯筠,闵晓明,李玉太,钱法文. 基于MaxEnt模型预测白琵鹭在中国东北地区的适宜分布区. 生态学杂志. 2020(08): 2691-2703 .
    13. 张丽霞,王志永. 褐马鸡栖息地保护研究. 特种经济动植物. 2020(12): 3-5 .
    14. 唐书培,穆丽光,王晓玲,张静,刘波,孟和达来,鲍伟东. 基于MaxEnt模型的赛罕乌拉国家级自然保护区斑羚生境适宜性评价. 北京林业大学学报. 2019(01): 102-108 . 本站查看
    15. 吕汝丹,何健,刘慧杰,姚敏,程瑾,谢磊. 羽叶铁线莲的分布区与生态位模型分析. 北京林业大学学报. 2019(02): 70-79 . 本站查看
    16. 白雪红,王文杰,蒋卫国,师华定,陈坤,陈民. 气候变化背景下京津冀地区濒危水鸟潜在适宜区模拟及保护空缺分析. 环境科学研究. 2019(06): 1001-1011 .
    17. 刘博,覃伟权,阎伟. 基于MaxEnt模型的小巢粉虱在中国的潜在地理分布. 环境昆虫学报. 2019(06): 1276-1286 .
    18. 王浩,杨德宏,满亚洲. 基于GIS技术的动物物种管理及保护. 软件. 2018(12): 111-115 .
    19. 侯海英. 山西褐马鸡种群分布及特性研究. 山西林业科技. 2018(04): 11-13+72 .

    Other cited types(17)

Catalog

    Article views (219) PDF downloads (30) Cited by(36)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return