Citation: | Qi Jiandong, Ma Zhongtian, Zheng Shangzi. Wildlife image screening for infrared cameras based on YOLOv7[J]. Journal of Beijing Forestry University, 2024, 46(2): 143-154. DOI: 10.12171/j.1000-1522.20230112 |
Due to the lush vegetation and disorderly trees in the wild environment, as well as the influence of factors such as environment, weather, and lighting, infrared cameras are prone to triggering shooting errors, resulting in the capture of a large amount of waste film, which requires a lot of manpower for screening. To solve such problems, based on the YOLOv7 model, this paper has made lightweight improvements to achieve automatic screening of waste pieces.
This study constructed a dataset of 2 172 wildlife images collected from the Beijing Wuling Mountain Nature Reserve in the period of 2014−2015, and marked the positions of animals in the images. YOLOv7 network was improved in different ways. MicroBlock was introduced to replace the backbone network of YOLOv7, and the SPPCSPC structure was light-weighted to reduce the model parameters. SIoU loss, LNDown downsampling, and BiFPN were used to improve the model’s ability to detect animals. YOLOv5-m, YOLOv5-l, Ghost-YOLOv5-l, YOLOv6, YOLOX-M, and YOLOR-CSP models were trained on an Snapshot Serengeti camera trap subset dataset containing 10 000 images, and the screening effects of the model on wildlife images were compared. Transfer learning was used to train a self-built wildlife dataset, and the training effects of freezing different layers was tested.
The improved model based on YOLOv7 reduced inference time by 14.3%, floating-point operations per second by 33.5%, and parameters by 17.8% compared with the YOLOv7 network. The error detection of the improved YOLOv7 model was also better than that of YOLOv7. Although the improved YOLOv7 did not achieve the best performance in all indicators compared with other models, it achieved a better balance between detection time and accuracy. In the self-built dataset, the unfrozen weight method had the best effect, and average precision was 12.6% higher than that of the model without transfer learning.
This study provides a faster and more accurate screening solution for wildlife monitoring networks in the Mountain area of Beijing Miyun.
[1] |
Kays R, McShea W J, Wikelski M. Born-digital biodiversity data: millions and billions[J]. Diversity and Distributions, 2020, 26(5): 644−648. doi: 10.1111/ddi.12993
|
[2] |
肖治术, 肖文宏, 王天明, 等. 中国野生动物红外相机监测与研究: 现状及未来[J]. 生物多样性, 2022, 30: 234−259.
Xiao Z S, Xiao W H, Wang T M, et al. Infrared camera monitoring and research on wildlife in China: current status and future[J]. Biodiversity, 2022, 30: 234−259.
|
[3] |
Villa A G, Salazar A, Vargas F. Towards automatic wild animal monitoring: identification of animal species in camera-trap images using very deep convolutional neural networks[J]. Ecological Informatics, 2017, 41: 24−32. doi: 10.1016/j.ecoinf.2017.07.004
|
[4] |
Norouzzadeh M S, Nguyen A, Kosmala M, et al. Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning[J]. Proceedings of the National Academy of Sciences, 2018, 115(25): e5716−e5725.
|
[5] |
Schneider S, Greenberg S, Taylor G W, et al. Three critical factors affecting automated image species recognition performance for camera traps[J]. Ecology and Evolution, 2020, 10(7): 3503−3517.
|
[6] |
Guo Y, Rothfus T A, Ashour A S, et al. Varied channels region proposal and classification network for wildlife image classification under complex environment[J]. IET Image Processing, 2020, 14(4): 585−591. doi: 10.1049/iet-ipr.2019.1042
|
[7] |
Chen P, Swarup P, Matkowski W M, et al. A study on giant panda recognition based on images of a large proportion of captive pandas[J]. Ecology and Evolution, 2020, 10(7): 3561−3573. doi: 10.1002/ece3.6152
|
[8] |
Tan M, Chao W, Cheng J K, et al. Animal detection and classification from camera trap images using different mainstream object detection architectures[J]. Animals, 2022, 12(15): 1976. doi: 10.3390/ani12151976
|
[9] |
Cai Z, Vasconcelos N. Cascade r-cnn: delving into high quality object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake: IEEE, 2018: 6154−6162.
|
[10] |
Tian Z, Shen C, Chen H, et al. Fcos: fully convolutional one-stage object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9627−9636.
|
[11] |
Vecvanags A, Aktas K, Pavlovs I, et al. Ungulate detection and species classification from camera trap images using RetinaNet and faster R-CNN[J]. Entropy, 2022, 24(3): 353. doi: 10.3390/e24030353
|
[12] |
Roy A M, Bhaduri J, Kumar T, et al. WilDect-YOLO: an efficient and robust computer vision-based accurate object localization model for automated endangered wildlife detection[J]. Ecological Informatics, 2023, 75: 101919. doi: 10.1016/j.ecoinf.2022.101919
|
[13] |
Huang G, Liu Z, van der Maaten L, et al. Densely connected convolutional networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hawaii: IEEE, 2017: 4700−4708.
|
[14] |
Li Y, Chen Y, Dai X, et al. Micronet: improving image recognition with extremely low flops[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 468−477.
|
[15] |
Tan M, Pang R, Le Q V. Efficientdet: scalable and efficient object detection[C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. Seattle: IEEE, 2020: 10781−10790.
|
[16] |
He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904−1916. doi: 10.1109/TPAMI.2015.2389824
|
[17] |
Liu Z, Mao H, Wu C Y, et al. A convnet for the 2020s[C]// Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. New Orleans: IEEE, 2022: 11976−11986.
|
[18] |
Ge Z, Liu S, Wang F, et al, Yolox: exceeding yolo series in 2021[J/OL]. arXiv preprint arXiv: 2107.08430, 2021 [2023−12−23]. https://arxiv.linfen3.top/pdf/2107.08430.pdf.
|
[19] |
Wang C Y, Yeh I H, Liao H Y M. You only learn one representation: unified network for multiple tasks[J/OL]. arXiv preprint arXiv: 2105.04206. 2021 [2023−12−23]. https://arxiv.linfen3.top/abs/2105.04206.pdf.
|
1. |
陈子川,潘国营,陈灿,徐云鹏,林晗,陈煜,谢安强,范海兰. 光强对木麻黄幼苗根系形态、解剖结构及其碳氮含量的影响. 生态学报. 2024(10): 4377-4387 .
![]() | |
2. |
陈静航,叶蕊蕊,孙建喜,罗利华,李灿,吴勇,胡田田. 滴灌施肥周期和毛管布设方式对苹果树细根直径时空分布的影响. 干旱地区农业研究. 2023(01): 101-110 .
![]() | |
3. |
吴小健,李秉钧,颜耀,李明,吴鹏飞,马祥庆. 不同种源杉木细根解剖性状的差异分析. 森林与环境学报. 2023(03): 232-239 .
![]() | |
4. |
吴义远,董文渊,浦婵,钟欢,夏莉,袁翎凌,陈新. 土壤水分和养分对筇竹竹鞭解剖特征及其适应可塑性的影响. 竹子学报. 2023(01): 1-10 .
![]() | |
5. |
张家豪,王根绪,王文志,孙守琴. 大气氮沉降增加对树木生长和水碳利用的影响. 西部林业科学. 2023(03): 145-151+159 .
![]() | |
6. |
韩梦豪,李俊杰,王磊,刘晴廙,关庆伟. 间伐对马尾松不同根序细根化学组分的影响. 森林与环境学报. 2023(04): 337-345 .
![]() | |
7. |
张玉慧,谢芳,闫国永. 不同乔木树种根系养分吸收策略的维度性差异. 林业科技. 2023(04): 16-22 .
![]() | |
8. |
刘逸潇,王传宽,上官虹玉,臧妙涵,梁逸娴,全先奎. 兴安落叶松不同径级根碳氮磷钾化学计量特征的种源差异. 应用生态学报. 2023(07): 1797-1805 .
![]() | |
9. |
周诚,刘彤,王庆贵,韩士杰. 长期氮添加对阔叶红松林细根形态、解剖结构和化学组分的影响. 北京林业大学学报. 2022(11): 31-40 .
![]() | |
10. |
郝龙飞,郝文颖,刘婷岩,张敏,许吉康,斯钦毕力格. 氮添加及接种处理对1年生樟子松苗木根系形态及养分含量的影响. 北京林业大学学报. 2021(04): 1-7 .
![]() | |
11. |
焦海珍,邵陈禹,陈建姣,张晨禹,陈佳豪,李云飞,沈程文. 重度遮阴及复光条件下茶树根系的生理响应及抗氧化酶活性动态变化. 茶叶科学. 2021(05): 695-704 .
![]() | |
12. |
洪梓明,邢亚娟,闫国永,张军辉,王庆贵. 长白山白桦山杨次生林细根形态特征和解剖结构对氮沉降的响应. 生态学报. 2020(02): 608-620 .
![]() | |
13. |
吴义远,董文渊,刘培,张孟楠,谢泽轩,田发坤. 不同土壤水分和养分条件下筇竹竹秆解剖特征及其适应可塑性. 北京林业大学学报. 2020(04): 80-90 .
![]() | |
14. |
李秉钧,颜耀,王小虎,孙雪莲,马祥庆. 环境因子对林木细根功能性状的影响研究进展. 福建林业科技. 2020(02): 125-132 .
![]() | |
15. |
张俪予,张军辉,张蕾,陈伟,韩士杰. 兴安落叶松和白桦细根形态对环境变化的响应. 北京林业大学学报. 2019(06): 15-23 .
![]() | |
16. |
陈旭,刘洪凯,赵春周,王强,王延平. 山东滨海盐碱地11个造林树种叶解剖特征对土壤条件的响应. 植物生态学报. 2019(08): 697-708 .
![]() | |
17. |
杨阳,熊远兵,郝晓泳. 干旱胁迫对耧斗菜根解剖结构及生理特性的影响. 北方园艺. 2018(17): 82-89 .
![]() | |
18. |
王建宇,胡海清,邢亚娟,闫国永,王庆贵. 大兴安岭兴安落叶松林树木生物量对氮沉降的响应. 林业科学研究. 2018(03): 88-94 .
![]() | |
19. |
杨阳,熊远兵,郝晓泳. 干旱胁迫对耧斗菜根解剖结构及生理特性的影响. 内蒙古农业大学学报(自然科学版). 2018(03): 1-7 .
![]() | |
20. |
钟悦鸣,董芳宇,王文娟,王健铭,李景文,吴波,贾晓红. 不同生境胡杨叶片解剖特征及其适应可塑性. 北京林业大学学报. 2017(10): 53-61 .
![]() | |
21. |
毛晋花,邢亚娟,马宏宇,王庆贵. 氮沉降对植物生长的影响研究进展. 中国农学通报. 2017(29): 42-48 .
![]() | |
22. |
张鑫,邢亚娟,贾翔,王庆贵. 北方森林细根对氮沉降和二氧化碳浓度升高的响应. 中国农学通报. 2017(30): 84-90 .
![]() |