• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yuan Ying, Wang Xuefeng, Shi Mengmeng, Wang Peng, Chen Xingjing. Prediction of relative chlorophyll content in Hopea hainanensis based on multispectral frequency domain features[J]. Journal of Beijing Forestry University, 2023, 45(11): 42-52. DOI: 10.12171/j.1000-1522.20230113
Citation: Yuan Ying, Wang Xuefeng, Shi Mengmeng, Wang Peng, Chen Xingjing. Prediction of relative chlorophyll content in Hopea hainanensis based on multispectral frequency domain features[J]. Journal of Beijing Forestry University, 2023, 45(11): 42-52. DOI: 10.12171/j.1000-1522.20230113

Prediction of relative chlorophyll content in Hopea hainanensis based on multispectral frequency domain features

More Information
  • Received Date: May 11, 2023
  • Revised Date: October 11, 2023
  • Accepted Date: October 11, 2023
  • Available Online: October 15, 2023
  • Objective 

    This paper studies the multispectral image-based estimation method for chlorophyll content in Hopea hainanensis, so as to explore the feasibility of fusing multispectral frequency domain features to estimate chlorophyll content, and provide an effective tool for nondestructive monitoring of chlorophyll content in H. hainanensis.

    Method 

    By combining vegetation index with traditional threshold segmentation methods, the background of multispectral images of H. hainanensis was removed, and the optimal segmentation method was determined by F1 as the segmentation accuracy evaluation index. Then, based on the segmented multispectral image, spatial domain features (vegetation index and texture features) were extracted, and three frequency domain features were introduced. The measured value of relative chlorophyll content (SPAD value) was measured using a portable chlorophyll analyzer SPAD. And based on correlation analysis and Lasso algorithm, image features were filtered to determine the preferred features which were strongly correlated with SPAD value of H. hainanensis. Finally, based on partial least-squares regression (PLSR), random forest (RF) and XGBoost algorithm, multispectral spatial domain, frequency domain and fusion feature models were established, and precision verification was conducted to determine the optimal model form for SPAD value estimation of young H. hainanensis.

    Result 

    The segmentation method combining DVI and Kapur threshold achieved the highest segmentation accuracy, with F1 of 0.917. Therefore, it was the most suitable segmentation method for H. hainanensis canopy multispectral images. Many spatial and frequency domain features of multispectral images exhibited significant correlations with the SPAD values of H. hainanensis. The most correlated feature was the modified chlorophyll absorption reflectivity index, with a correlation coefficient of −0.780. It was the preferred feature for estimating SPAD values based on single image features. Among the three frequency domain features, the correlation performance of wavelet features was the best. Therefore, wavelet transform was the preferred frequency domain transformation method for slope barrier multispectral images. The SPAD value estimation models constructed with different image features were sorted by performance as single frequency domain feature model < single spatial domain feature model < fused feature model, and the corresponding optimal modeling algorithms were RF and XGBoost, respectively. The fusion feature model based on RF was the optimal model, with a test R2 of 0.791, which was 7.9% higher than the test R2 of a single spatial feature model.

    Conclusion 

    The estimation accuracy of H. hainanensis SPAD values can be improved by introducing three frequency domain features, and the fusion feature model based on RF can achieve good estimation accuracy. Therefore, integrating multispectral spatial and frequency domain features with machine learning algorithms can be used as an effective tool for estimating the relative chlorophyll content of young H. hainanensis, which is conducive to the intelligent development of H. hainanensis cultivation and management.

  • [1]
    Ly V, Nanthavong K, Pooma R, et al. Hopea hainanensis[Z/OL]. IUCN Red List of Threatened Species, 2018: e.T32357A2816074[2023−04−11]. https://dx.doi.org/10.2305/IUCN.UK.2018-1.RLTS.T32357A2816074.en.
    [2]
    陈澜, 常庆瑞, 高一帆, 等. 猕猴桃叶片叶绿素含量高光谱估算模型研究[J]. 西北农林科技大学学报(自然科学版), 2020, 48(6): 79−89.

    Chen L, Chang Q R, Gao Y F, et al. Hyperspectral estimation model of chlorophyll content in kiwifruit leaves[J]. Journal of Northwest A&F University (Natural Science Edition), 2020, 48(6): 79−89.
    [3]
    Qi H X, Wu Z Y, Zhang L, et al. Monitoring of peanut leaves chlorophyll content based on drone-based multispectral image feature extraction[J]. Computers and Electronics in Agriculture, 2021, 187: 106292. doi: 10.1016/j.compag.2021.106292
    [4]
    Sun Q, Chen L P, Xu X B, et al. A new comprehensive index for monitoring maize lodging severity using UAV-based multi-spectral imagery[J]. Computers and Electronics in Agriculture, 2022, 202: 107362. doi: 10.1016/j.compag.2022.107362
    [5]
    李永亮, 张怀清, 林辉. 基于红边参数与PCA的GA-BP神经网络估算叶绿素含量模型[J]. 林业科学, 2012, 48(9): 22−29.

    Li Y L, Zhang H Q, Lin H. GA-BP neural network estimation models of chlorophyll content based on red edge parameters and PCA[J]. Scientia Silvae Sinicae, 2012, 48(9): 22−29.
    [6]
    Lin C W, Ding Q, Tu W H, et al. Fourier dense network to conduct plant classification using UAV-based optical images[J]. IEEE Access, 2019, 7: 17736−17749. doi: 10.1109/ACCESS.2019.2895243
    [7]
    Yang B, Wang M, Sha Z, et al. Evaluation of aboveground nitrogen content of winter wheat using digital imagery of unmanned aerial vehicles[J]. Sensors, 2019, 19(20): 4416. doi: 10.3390/s19204416
    [8]
    Zhuo W, Wu N, Shi R, et al. UAV Mapping of the chlorophyll content in a tidal flat wetland using a combination of spectral and frequency indices[J]. Remote Sensing, 2022, 14(4): 827. doi: 10.3390/rs14040827
    [9]
    Bao Q Z, Gao J H, Chen W C. Local adaptive shrinkage threshold denoising using curvelet coefficients[J]. Electronics Letters, 2008, 44(4): 277−278. doi: 10.1049/el:20082831
    [10]
    Wang Y P, Chang Y C, Shen Y. Estimation of nitrogen status of paddy rice at vegetative phase using unmanned aerial vehicle based multispectral imagery[J]. Precision Agriculture, 2022, 23(1): 1−17. doi: 10.1007/s11119-021-09823-w
    [11]
    Suh H K, Hofstee J W, van Henten E J. Investigation on combinations of colour indices and threshold techniques in vegetation segmentation for volunteer potato control in sugar beet[J]. Computers and Electronics in Agriculture, 2020, 179: 105819. doi: 10.1016/j.compag.2020.105819
    [12]
    Huang S Y, Miao Y X, Yuan F, et al. Potential of RapidEye and WorldView-2 satellite data for improving rice nitrogen status monitoring at different growth stages[J]. Remote Sensing, 2017, 9(3): 227. doi: 10.3390/rs9030227
    [13]
    Prey L, Hu Y C, Schmidhalter U. High-throughput field phenotyping traits of grain yield formation and nitrogen use efficiency: optimizing the selection of vegetation indices and growth stages[J]. Frontiers in Plant Science, 2020, 10: 1672. doi: 10.3389/fpls.2019.01672
    [14]
    苏伟, 王伟, 刘哲, 等. 无人机影像反演玉米冠层LAI和叶绿素含量的参数确定[J]. 农业工程学报, 2020, 36(19): 58−65.

    Su W, Wang W, Liu Z, et al. Determining the retrieving parameters of corn canopy LAI and chlorophyll content computed using UAV image[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(19): 58−65.
    [15]
    Huete A R, Liu H Q, Batchily K, et al. A comparison of vegetation indices over a global set of TM images for EOS-MODIS[J]. Remote Sensing of Environment, 1997, 59(3): 440−451. doi: 10.1016/S0034-4257(96)00112-5
    [16]
    Roujean J L, Breon F M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements[J]. Remote Sensing of Environment, 1995, 51(3): 375−384. doi: 10.1016/0034-4257(94)00114-3
    [17]
    Gitelson A A, Kaufman Y J, Stark R, et al. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sensing of Environment, 2002, 80(1): 76−87. doi: 10.1016/S0034-4257(01)00289-9
    [18]
    Daughtry C S T, Walthall C L, Kim M S, et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance[J]. Remote Sensing of Environment, 2000, 74(2): 229−239. doi: 10.1016/S0034-4257(00)00113-9
    [19]
    Chen J M. Evaluation of vegetation indices and a modified simple ratio for boreal applications[J]. Canadian Journal of Remote Sensing, 1996, 22(3): 229−242. doi: 10.1080/07038992.1996.10855178
    [20]
    McDaniel K C, Haas R H. Assessing mesquite-grass vegetation condition from Landsat[J]. Photogrammetric Engineering and Remote Sensing, 1982, 48(3): 441−450.
    [21]
    Harwikarya, Ramayanti D. Feature textures extraction of macroscopic image of jatiwood ( Tectona Grandy) based on gray level co-occurence matrix[J]. IOP Conference Series:Materials Science and Engineering, 2018, 453: 012046. doi: 10.1088/1757-899X/453/1/012046
    [22]
    Kauffmann L, Chauvin A, Guyader N, et al. Rapid scene categorization: role of spatial frequency order, accumulation mode and luminance contrast[J]. Vision Research, 2015, 107: 49−57. doi: 10.1016/j.visres.2014.11.013
    [23]
    张孟库, 姜立春. 基于机器学习的落叶松树皮厚度预测[J]. 北京林业大学学报, 2022, 44(6): 54−62.

    Zhang M K, Jiang L C. Prediction of bark thickness for Larix gmelinii based on machine learning[J]. Journal of Beijing Forestry University, 2022, 44(6): 54−62.
    [24]
    杨灵玉, 高小红, 张威, 等. 基于Hyperion影像植被光谱的土壤重金属含量空间分布反演: 以青海省玉树县为例[J]. 应用生态学报, 2016, 27(6): 1775−1784.

    Yang L Y, Gao X H, Zhang W, et al. Estimating heavy metal concentrations in topsoil from vegetation reflectance spectra of Hyperion images: a case study of Yushu County, Qinghai, China[J]. Chinese Journal of Applied Ecology, 2016, 27(6): 1775−1784.
    [25]
    Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5−32. doi: 10.1023/A:1010933404324
    [26]
    Zhang J J, Cheng T, Guo W, et al. Leaf area index estimation model for UAV image hyperspectral data based on wavelength variable selection and machine learning methods[J]. Plant Methods, 2021, 17: 49. doi: 10.1186/s13007-021-00750-5
    [27]
    Gholizadeh H, Robeson S M, Rahman A F. Comparing the performance of multispectral vegetation indices and machine-learning algorithms for remote estimation of chlorophyll content: a case study in the Sundarbans mangrove forest[J]. International Journal of Remote Sensing, 2015, 36(12): 3114−3133. doi: 10.1080/01431161.2015.1054959
    [28]
    Liu Y, Hatou K, Aihara T, et al. A robust vegetation index based on different UAV RGB images to estimate SPAD values of naked barley leaves[J]. Remote Sensing, 2021, 13(4): 686. doi: 10.3390/rs13040686
    [29]
    Qiu Z C, Ma F, Li Z W, et al. Estimation of nitrogen nutrition index in rice from UAV RGB images coupled with machine learning algorithms[J]. Computers and Electronics in Agriculture, 2021, 189: 106421. doi: 10.1016/j.compag.2021.106421
    [30]
    Xie X, Zhang X, Shen J, et al. Poplar’s waterlogging resistance modeling and evaluating: exploring and perfecting the feasibility of machine learning methods in plant science[J]. Frontiers in Plant Science, 2022, 13: 821365. doi: 10.3389/fpls.2022.821365
  • Related Articles

    [1]Zhao Yabing, Peng Daoli, Guo Famiao, Wang Yin, Huang Jingxian. Estimating forest growing stock volume based on feature selection and machine learning[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240328
    [2]Guo Jialun, Zhong Haomin, Zhao Junbo, Chen Yao. Deresination rate prediction of Masson pine wood based on support vector regression (SVR)[J]. Journal of Beijing Forestry University, 2025, 47(3): 151-161. DOI: 10.12171/j.1000-1522.20240359
    [3]Zhou Lai, Cheng Xiaofang, Zhang Mengtao. Model construction of Larix principis-rupprechtii canopy volume and surface area based on BP neural network[J]. Journal of Beijing Forestry University, 2024, 46(8): 94-100. DOI: 10.12171/j.1000-1522.20230166
    [4]Feng Xinyan, Jia Xin, Huang Jinze, Gao Shengjie, Yuan Min, Liu Tiantian, Jin Chuan. Application of ANN-BiLSTM model to long-term gap-filling of carbon flux data in temperate desert shrub[J]. Journal of Beijing Forestry University, 2023, 45(9): 62-72. DOI: 10.12171/j.1000-1522.20220510
    [5]Zhang Hanyue, Feng Zhongke, Huang Guosheng, Yang Xueqing, Feng Zemin. Research on the growth rate model of Populus spp. considering environmental factors[J]. Journal of Beijing Forestry University, 2022, 44(11): 50-59. DOI: 10.12171/j.1000-1522.20210201
    [6]Zhang Mengku, Jiang Lichun. Prediction of bark thickness for Larix gmelinii based on machine learning[J]. Journal of Beijing Forestry University, 2022, 44(6): 54-62. DOI: 10.12171/j.1000-1522.20210097
    [7]Zhao Jing, Chen Ran, Hao Huichao, Shao Zhuang. Application progress and prospect of machine learning technology in landscape architecture[J]. Journal of Beijing Forestry University, 2021, 43(11): 137-156. DOI: 10.12171/j.1000-1522.20200313
    [8]Lei Xiangdong. Applications of machine learning algorithms in forest growth and yield prediction[J]. Journal of Beijing Forestry University, 2019, 41(12): 23-36. DOI: 10.12171/j.1000-1522.20190356
    [9]ZHANG Wen-yi, JING Tian-zhong, YAN Shan-chun. Studies on prediction models of Dendrolimus superans occurrence area based on machine learning[J]. Journal of Beijing Forestry University, 2017, 39(1): 85-93. DOI: 10.13332/j.1000-1522.20160205
    [10]LIN Zhuo, WU Cheng-zhen, HONG Wei, HONG Tao. Yield model of Cunninghamia lanceolata plantation based on back propagation neural network and support vector machine.[J]. Journal of Beijing Forestry University, 2015, 37(1): 42-54. DOI: 10.13332/j.cnki.jbfu.2015.01.008
  • Cited by

    Periodical cited type(7)

    1. 孙欣,尹紫良,赵琬婧,张治军,王清波,蔡体久,孙晓新. 灌木扩张压力下三江平原沼泽植物群落多样性变化及其土壤控制因子. 应用生态学报. 2024(04): 1016-1024 .
    2. 李元,杨海鑫,齐昊宇,喻其林,郭东罡,张全喜. 运城盐湖湿地土壤重金属污染特征与风险评价. 生态毒理学报. 2024(03): 396-406 .
    3. 管祥楠,董士伟,刘玉,张欣欣,潘瑜春,卢闯. 土壤重金属含量变化的影响因素多目标识别方法. 环境科学. 2024(08): 4791-4801 .
    4. 高明华. 长寿湖国家湿地公园退耕地土壤细菌群落多样性研究. 呼伦贝尔学院学报. 2023(03): 85-91 .
    5. 裘奕斐,王静,徐敏. 江苏滨海县近岸海域海水、沉积物和生物体重金属分布及健康风险评价. 南京师大学报(自然科学版). 2021(01): 71-78 .
    6. 李琦,赵琬婧,王瑜,原卉,王清波,刘成林,李海兴,孙晓新. 三江平原沼泽湿地典型湿地植物对重金属的富集效应. 湿地科学与管理. 2021(02): 9-13 .
    7. 刘德浩,廖文莉,陈智涛,阳艳萍,吴宝宏,舒夏竺,邓仿东. 潼湖湿地土壤重金属污染现状及生态风险评价. 林业与环境科学. 2021(05): 61-68 .

    Other cited types(0)

Catalog

    Article views (381) PDF downloads (36) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return