• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Cai Zhiyong, Sun Long, Hu Haiqing, Zhao Nan, Sun Jiabao. Dynamic prediction of forest litter load based on litter decomposition rate[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20230183
Citation: Cai Zhiyong, Sun Long, Hu Haiqing, Zhao Nan, Sun Jiabao. Dynamic prediction of forest litter load based on litter decomposition rate[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20230183

Dynamic prediction of forest litter load based on litter decomposition rate

More Information
  • Received Date: July 19, 2023
  • Revised Date: January 20, 2025
  • Accepted Date: March 09, 2025
  • Available Online: March 12, 2025
  • Objective 

    Forest fallen leaves play a crucial role in the occurrence and development of Forest Fires as ignition and flammable materials. This article takes the Betula platyphylla forest in Daxing'an Mountains as an example to construct a mathematical model from the perspective of forest leaf litter generation and decomposition, predict the future dynamics of forest leaf litter load, and provide a theoretical basis for forest fire prevention scientific research.

    Method 

    The forest floor litter is regarded as the accumulation of residual amounts from the decomposition of litter over the years. Using the Olson single-exponential decomposition equation, a set of litter decomposition equations is constructed. Mathematical methods such as series summation, substitution, and stepwise search are applied to simplify the equations, and the litter decomposition rate coefficient and decomposition turnover period are solved. Subsequently, the litter decomposition rate coefficient and decomposition turnover period are used to derive a litter load prediction model. Model variable data are obtained through the establishment of Survey Sample Site to verify the operability and accuracy of the prediction model.

    Result 

    A forest litter load prediction model based on litter decomposition rate was established, which predicted the litter load in the survey plots for the next two years. The relative error between the predicted and measured litter loads ranged from 0.05 to 0.26, with an average error of 0.14. Overall, the model's predicted values were relatively consistent with the measured values.

    Conclusion 

    Through model prediction, it is revealed that the litter load in the Daxing'anling forest region exhibits a periodic fluctuation pattern over time. Forest stands with a fast decomposition rate have a shorter variation cycle, maintaining a relatively stable litter load; while forest stands with a slow decomposition rate have a longer variation cycle, with the litter load undergoing continuous changes over a longer period of time.

  • [1]
    孙龙, 鲁佳宇, 魏书精, 等. 森林可燃物载量估测方法研究进展[J]. 森林工程, 2013, 29(2): 26−37. doi: 10.3969/j.issn.1001-005X.2013.02.005

    Shun L, Lu J Y, Wei S J, et al. Research progress of forest fuel load estimation methods[J]. Forest engineering, 2013, 29(2): 26−37. doi: 10.3969/j.issn.1001-005X.2013.02.005
    [2]
    胡海清. 林火生态与管理[M]. 北京: 中国林业出版社, 2018: 37-39.

    Hu H Q. Fire ecology and management [M]. Beijing: China Forestry Publishing House, 2018: 37-39.
    [3]
    杨雪清, 孙志超, 柴政, 等. 全国森林可燃物载量样地调查与预估方法探讨[J]. 林业资源管理, 2022(6): 1−6.

    Yang X Q. Sun Z C, Chai Z, et al. Research on the plot survey and load estimation of national forest fuels[J]. Forest Resources Management, 2022(6): 1−6.
    [4]
    单延龙, 舒立福, 李长江. 森林可燃物参数与林分特征关系[J]. 自然灾害学报, 2004, 13(6): 70−75. doi: 10.3969/j.issn.1004-4574.2004.06.012

    Shan Y L, Shu L F, Li C J. A relation between forest combustible parameters and stand characteristics[J]. Journal of Natural Disasters, 2004, 13(6): 70−75. doi: 10.3969/j.issn.1004-4574.2004.06.012
    [5]
    胡海清, 魏云敏. 利用TM遥感影像和林分因子估测森林可燃物载量[J]. 东北林业大学学报, 2007, 35(6): 18−20. doi: 10.3969/j.issn.1000-5382.2007.06.007

    Hu H Q, Wei Y M. Estimation of forest fuel load using TM remote sensing images and forest partitioning factors[J]. Journal of Northeast Forestry University, 2007, 35(6): 18−20. doi: 10.3969/j.issn.1000-5382.2007.06.007
    [6]
    国家林业和草原局. 森林可燃物标准样地调查技术规程: FXPC/LC F-01[S]. 北京: 国务院第一次全国自然灾害综合风险普查领导小组办公室, 2021.

    National Forestry and Grassland Administration. Technical specifications for forest fuel standard sampling site investigation: FXPC/LC F-01[S]. Beijing: Office of the Leading Group for the First National Comprehensive Natural Disaster Risk Census of the State Council, 2021.
    [7]
    Olson J S. Energy storage and the balance of producers and decomposition in ecosystems[J]. Ecology, 1963, 44: 332−337.
    [8]
    Aber J D. Mcclaugherty C A. Predicting long-term patterns of mass loss nitrogen dynamics and soil organic matter formation from initial fine litter chemistry in temperature forest ecosystems[J]. Canadian Journal of Botany, 1990, 68: 2201−2208. doi: 10.1139/b90-287
    [9]
    Moorhead D L, Reynolds J F. A general model of litter decomposition in the northern Chihuahuan Desert[J]. Ecological Modelling, 1991, 59(4): 197−219.
    [10]
    曾伟生. 3种异速生长方程对生物量建模的对比分析[J]. 中南林业调查规划, 2014, 33(1): 1−3. doi: 10.3969/j.issn.1003-6075.2014.01.001

    Zeng W S. Comparison of three allometric equations for biomass modeling[J]. Central South Forest Inventory and Planning, 2014, 33(1): 1−3. doi: 10.3969/j.issn.1003-6075.2014.01.001
    [11]
    曾伟生. 全国立木生物量方程建模方法研究[D]. 北京: 中国林业科学研究院, 2011.

    Zeng W S. Methodology on modeling of single-tree biomass equations for national biomass estimation in China[D]. Beijing: Chinese Academy of Forestry, 2011.
    [12]
    董利虎. 东北林区主要树种及林分类型生物量模型研究[D]. 哈尔滨: 东北林业大学, 2015.

    Dong L H. Developing individual and stand-level biomass equations in northeast China forest area[D]. Harbin: Northeast Forestry University, 2015.
    [13]
    Singh K P, Singh P K, Tripathi S K. Litter fall, litter decomposition and nutrient release patterns in four native tree species raised on coal mine spoil[J]. Biology and Fertility of Soils, 1999, 29: 371−378. doi: 10.1007/s003740050567
    [14]
    Latterini F, Dyderski M K, Horodecki P, et al. The effects of forest operations and silvicultural treatments on litter decompositionrate: a meta-analysis[J]. Current Forestry Reports, 2023, 9(4): 276−290. doi: 10.1007/s40725-023-00190-5
    [15]
    Berg B, Lönn M. Long-term effects of climate and litter chemistry on rates and stable fractions of decomposing scots pine and norway spruce needle litter: a synthesis[J]. Forests, 2022, 13(1): 125−125. doi: 10.3390/f13010125
    [16]
    刘增文. 森林生态系统中枯落物分解速率研究方法[J]. 生态学报, 2002, 22(6): 954−956. doi: 10.3321/j.issn:1000-0933.2002.06.023

    Liu Z w. Research method of litter decay rate in forest ecosystems[J]. Acta Ecologica Sinica, 2002, 22(6): 954−956. doi: 10.3321/j.issn:1000-0933.2002.06.023
    [17]
    郭忠玲, 郑金萍, 马元丹, 等. 长白山各植被带主要树种凋落物分解速率及模型模拟的试验研究[J]. 生态学报, 2006, 26(4): 1037−1046. doi: 10.3321/j.issn:1000-0933.2006.04.009

    Guo Z L, Zheng J P, Ma Y D, et al. Reseaches on litterfall decomposition rates and model simulating of main species in various forest vegetations of changbai mountains[J]. Acta Ecologica Sinica, 2006, 26(4): 1037−1046. doi: 10.3321/j.issn:1000-0933.2006.04.009
    [18]
    张頔, 满秀玲, 刘思琪, 等. 寒温带地区非生长季典型森林群落凋落物分解及其养分释放[J]. 北京林业大学学报, 2022, 44(3): 66−74.

    Zhang D, Man X L, Liu S Q, et al. Litter decomposition and nutrient release of typical forest communities in non-growing season in cold temperate zone[J]. Journal of beijing forestry university, 2022, 44(3): 66−74.
    [19]
    高宝嘉, 张桂娟, 周国娜, 等. 承德县人工针叶林地表枯死可燃物参数估测及潜在地表火行为评价[J]. 林业科学, 2009, 45(10): 163-167.

    Gao B J, Zhang G J, Zhou G N , et al. Estimation to dead surface combustible parameters and evaluation of potential surface fire behavior of artificial coniferous forests in Chengde County [J]. Scientia Silvae Sinicae, 2009, 45(10): 163-167.
    [20]
    刘晓东, 王军, 张东升, 等. 大兴安岭地区兴安落叶松林可燃物模型的研究[J]. 森林防火, 1995(3): 8−9.

    Liu X D, Wang J, Zhang D S, et al. A study on the combustible model of Xing'an larch forest in the Greater Khingan Range Area[J]. Forest Fire Prevention, 1995(3): 8−9.
    [21]
    周志权. 辽东3种主要林型地被可燃物载量的研究[J]. 东北林业大学学报, 2000, 28(1): 32−34. doi: 10.3969/j.issn.1000-5382.2000.01.009

    Zhou Z Q. Loading capacity of fuels of ground cover for three majo forest types in eastern Liaoning[J]. Journal of Northeast Forestry University, 2000, 28(1): 32−34. doi: 10.3969/j.issn.1000-5382.2000.01.009
    [22]
    薛建辉. 森林生态学[M]. 北京: 中国林业出版社, 2006: 209.

    Xue J H. Forest ecology [M]. Beijing: China Forestry Publishing House, 2006: 209.

Catalog

    Article views (68) PDF downloads (8) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return