Citation: | Lu Meng, Wang Hesong, Xun Xue. Spatial-temporal evolution of habitat quality in Altay area and its driving factors[J]. Journal of Beijing Forestry University, 2024, 46(3): 27-39. DOI: 10.12171/j.1000-1522.20230189 |
The objective of this study was to reveal the spatial-temporal evolution and driving factors of habitat quality in Altay area, and to provide scientific supports for ecological environment protection and sustainable development.
Using a year-by-year land-use dataset ranging from 1990 to 2021, ArcGIS and InVEST models were employed to evaluate the habitat quality, and explore the driving factors of habitat quality index.
(1) Bare land and grassland were dominant land-use types, mainly distributed in the central and southern areas. While forests were mainly distributed in the northern part of the study area. From 1990 to 2021, there was a significant change in land-use types, mainly occurred between bare land and grassland, both of them were transferred to cropland, forests and build-up areas. The area of grassland decreased significantly, while the areas of cropland, forest, and build-up areas increased significantly. (2) In terms of spatial pattern, the habitat quality in Altay area was high in the northwest and the north region, and low in the southeast and the south region. The areas with high habitat quality were mainly distributed in the forest and waters areas of the northwestern part, and the low value areas were mainly distributed in the bare land of the southern part. The average value of habitat quality index for the Altay area decreased from 0.513 to 0.508 in 1990 to 2021. (3) The degree of land use and potential evapotranspiration were the two main driving factors that had the highest impact on habitat quality in the study area, both of them showed significant negative correlations with habitat quality. Both of annual temperature and annual precipitation had weak correlations with habitat quality.
The habitat quality of Altay area generally showed a slight decreasing trend and was significantly correlated with the degree of land use. In future, ecological governance on forest and grassland should be enhanced and the structure of land use should also be optimized. The results will be benefit to enhance the understanding of the long-term dynamic changes in habitat quality, and to provide decision-making support for ecological construction and industrial development evaluation in the Altay area and other arid areas in Northwest China.
[1] |
Liu S S, Liao Q P, Xiao M Z, et al. Spatial and temporal variations of habitat quality and its response of landscape dynamic in the three gorges reservoir area, China[J/OL]. International Journal of Environmental Research and Public Health, 2022, 19(6): 3594[2023−03−06]. https://doi.org/10.3390/ijerph19063594.
|
[2] |
Zhang X R, Zhou J, Li G N, et al. Spatial pattern reconstruction of regional habitat quality based on the simulation of land use changes from 1975 to 2010[J]. Journal of Geographical Sciences, 2020, 30(4): 601−620. doi: 10.1007/s11442-020-1745-4
|
[3] |
Zhao L S, Yu W Y, Meng P, et al. InVEST model analysis of the impacts of land use change on landscape pattern and habitat quality in the Xiaolangdi Reservoir area of the Yellow River Basin, China[J]. Land Degradation & Development, 2022, 33(15): 2870−2884.
|
[4] |
付建新. 山西黄河流域不同土地利用类型NDVI时空变化及其对气温、降水的响应[J]. 水土保持研究, 2023, 30(3): 364−372.
Fu J X. Temporal and spatial changes of NDVI of different land covers and their responses to temperature and precipitation in the Yellow River Basin of Shanxi[J]. Research Soil and Water Conservation, 2023, 30(3): 364−372.
|
[5] |
Wang B X, Cheng W M. Effects of land use/cover on regional habitat quality under different geomorphic types based on InVEST Model[J/OL]. Remote Sensing, 2022, 14(5): 1279[2023−03−06]. https://doi.org/10.3390/rs14051279.
|
[6] |
Li M Y, Zhou Y, Xiao P N, et al. Evolution of habitat quality and its topographic gradient effect in northwest Hubei Province from 2000 to 2020 based on the InVEST model[J/OL]. Land, 2021, 10(8): 857[2023−03−06]. https://doi.org/10.3390/land10080857.
|
[7] |
Sun X Y, Jiang Z, Liu F, et al. Monitoring spatio-temporal dynamics of habitat quality in Nansihu Lake Basin, eastern China, from 1980 to 2015[J]. Ecological Indicators, 2019, 102: 716−723. doi: 10.1016/j.ecolind.2019.03.041
|
[8] |
Zhao H B, Xu X M, Tang J Q, et al. Spatial pattern evolution and prediction scenario of habitat quality in typical fragile ecological region, China: a case study of the Yellow River floodplain area[J/OL]. Heliyon, 2023, 9(3): e14430[2023−12−12]. https://doi.org/10.1016/j.heliyon.2023.e14430.
|
[9] |
Xie B, Meng S B, Zhang M M. Evolution of habitat quality and its response to topographic gradient effect in a Karst Plateau: a case ttudy of the key biodiversity conservation project area of Wuling Mountains[J/OL]. International Journal of Environmental Research and Public Health, 2023, 20(1): 331[2023−03−06]. https://doi.org/10.3390/ijerph20010331.
|
[10] |
张衡, 叶锦玉, 张瑛瑛, 等. 长江口东滩湿地斑尾刺虾虎鱼的栖息亚生境选择和食性差异[J]. 应用生态学报, 2018, 29(3): 945−952.
Zhang H, Ye J Y, Zhang Y Y, et al. Subhabitat selection and differences of diet composition for Acanthogobius ommaturus in the Dongtan Wetland of the Yangtze Estuary, China[J]. Chinese Journal of Applied Ecology, 2018, 29(3): 945−952.
|
[11] |
沙永翠, 张培育, 张欢, 等. 栖息地环境对种群营养生态位的影响: 以黄颡鱼为例[J]. 生态学报, 2015, 35(5): 1321−1328.
Sha Y C, Zhang P Y, Zhang H, et al. Impacts of habitat environment on trophic niches of a local population: a case study of yellow catfish[J]. Acta Ecologica Sinica, 2015, 35(5): 1321−1328.
|
[12] |
Tillin H M, Rogers S I, Frid C L J. Approaches to classifying benthic habitat quality[J]. Marine Policy, 2008, 32(3): 455−464. doi: 10.1016/j.marpol.2007.06.008
|
[13] |
朱鸣. 基于3S技术的升金湖湿地生境质量评价研究[D]. 合肥: 安徽农业大学, 2020.
Zhu M. Research on habitat quality evaluation of Shengjin Lake Wetland based on the 3S technology[D]. Hefei: Anhui Agricultural University, 2020.
|
[14] |
Chen C Y, Liu J, Bi L L. Spatial and temporal changes of habitat quality and its influential factors in China based on the InVEST model[J/OL]. Forests, 2023, 14(2): 374[2023−03−06]. https://doi.org/10.3390/f14020374.
|
[15] |
Xiang X S, Zhang X Q, Bian X D, et al. HSI model for early life stages of anchovy considering transport processes in Laizhou Bay[J/OL]. Frontiers in Marine Science, 2022, 9: 946114[2023−12−25]. https://www.frontiersin.org/articles/10.3389/fmars.2022.946114.
|
[16] |
霍思高, 黄璐, 严力蛟. 基于SolVES模型的生态系统文化服务价值评估: 以浙江省武义县南部生态公园为例[J]. 生态学报, 2018, 38(10): 3682−3691.
Huo S G, Huang L, Yan L J. Valuation of cultural ecosystem services based on SolVES: a case study of the South Ecological Park in Wuyi County, Zhejiang Province[J]. Acta Ecologica Sinica, 2018, 38(10): 3682−3691.
|
[17] |
Romaan H K, Teng L, Ahmad S, et al. In pursuit of new spaces for threatened mammals: assessing habitat suitability for Kashmir Markhor ( Capra falconeri cashmeriensis) in the Hindukush Range[J]. Sustainability, 2022, 14(3): 1544. doi: 10.3390/su14031544
|
[18] |
李丽, 王心源, 骆磊, 等. 生态系统服务价值评估方法综述[J]. 生态学杂志, 2018, 37(4): 1233−1245.
Li L, Wang X Y, Luo L, et al. A systematic review on the methods of ecosystem services value assessment[J]. Chinese Journal of Ecology, 2018, 37(4): 1233−1245.
|
[19] |
陈妍, 乔飞, 江磊. 基于InVEST模型的土地利用格局变化对区域尺度生境质量的影响研究: 以北京为例[J]. 北京大学学报(自然科学版), 2016, 52(3): 553−562.
Chen Y, Qiao F, Jiang L. Effects of land use pattern change on regional scale habitat quality based on InVEST model: a case study in Beijing[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52(3): 553−562.
|
[20] |
Ge Y S, Li C Z, Zhang T, et al. Temporal and spatial change of habitat quality and its driving forces: the case of Tacheng Region, China[J/OL]. Frontiers in Environmental Science, 2023, 11: 1118179[2023−12−25]. https://www.frontiersin.org/articles/10.3389/fenvs.2023.1118179.
|
[21] |
Wei Q Q, Abudureheman M, Halike A, et al. Temporal and spatial variation analysis of habitat quality on the PLUS-InVEST model for Ebinur Lake Basin, China[J/OL]. Ecological Indicators, 2022, 145: 109632[2024−03−06]. https://doi.org/10.1016/j.ecolind. 2022.109632.
|
[22] |
Wei Y M, Wang H W, Xue M Q, et al. Spatial and temporal evolution of land use and the response of habitat quality in Wusu, China[J/OL]. International Journal of Environmental Research and Public Health, 2023, 20(1): 361[2023−03−06]. https://doi.org/10.3390/ijerph20010361.
|
[23] |
Su Y Q, Feng Q, Liu W, et al. Improved uderstanding of trade-offs and synergies in ecosystem services via fine land-use classification and multi-scale analysis in the arid region of northwest China[J/OL]. Remote Sensing, 2023, 15(20): 4976[2023−12−06]. https://doi.org/10.3390/rs15204976.
|
[24] |
樊影, 王宏卫, 杨胜天, 等. 基于生境质量和生态安全格局的阿勒泰地区生态保护关键区域识别[J]. 生态学报, 2021, 41(19): 7614−7626.
Fan Y, Wang H W, Yang S T, et al. Identification of ecological protection crucial areas in Altay Prefecture based on habitat quality and ecological security pattern[J]. Acta Ecologica Sinica, 2021, 41(19): 7614−7626.
|
[25] |
罗万云, 王福博, 戎铭倩. 国家重点生态功能区生态–经济–社会系统耦合协调的动态演化: 以新疆阿勒泰地区为例[J]. 生态学报, 2022, 42(12): 4729−4741.
Luo W Y, Wang F B, Rong M Q. Dynamic evolution of ecological-economic-social system coupling coordination in national key ecological function areas: take the Altay region of Xinjiang as an example[J]. Acta Ecologica Sinica, 2022, 42(12): 4729−4741.
|
[26] |
张曼. 近20年阿勒泰地区植被动态变化及影响因素分析[D]. 兰州: 兰州理工大学, 2022.
Zhang M. Analysis of vegetation dynamic changes and influencing factors in Altay Region in the past 20 year [D]. Lanzhou: Lanzhou University of Technology, 2022.
|
[27] |
王佳佳, 贺涛, 张沂, 等. 间伐强度对阿尔泰山天然林下植被的影响[J]. 生态学报, 2022, 42(23): 9761−9768.
Wang J J, He T, Zhang Y, et al. Effects of thinning intensity on understory plant of natural forest in Altai Mountains, Xinjiang, China[J]. Acta Ecologica Sinica, 2022, 42(23): 9761−9768.
|
[28] |
Hua F, Bruijnzeel L A, Meli P, et al. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches[J]. Science, 2022, 376: 839−844. doi: 10.1126/science.abl4649
|
[29] |
Fu Q, Li B, Hou Y, et al. Effects of land use and climate change on ecosystem services in Central Asia’s arid regions: a case study in Altay Prefecture, China[J]. Science of the Total Environment, 2017, 607−608: 633−646. doi: 10.1016/j.scitotenv.2017.06.241
|
[30] |
古丽扎提·哈布肯, 赵景波. 近50年来新疆阿勒泰地区的气候变化[J]. 干旱区研究, 2011, 28(2): 268−274.
Gulzat H, Zhao J B. Analysis on climate change in recent 50 years in Altay Prefecture, Xinjiang[J]. Arid Zone Research, 2011, 28(2): 268−274.
|
[31] |
提杨, 庄鸿飞, 陈敏豪, 等. 天津市自然保护地与区域生境质量的时空演变格局[J]. 生态学报, 2023, 43(7): 2770−2780.
Ti Y, Zhuang H F, Chen M H, et al. Spatio-temporal evolution pattern of protected areas and regional habitat quality in Tianjin[J]. Acta Ecologica Sinica, 2023, 43(7): 2770−2780.
|
[32] |
Wang B X, Cheng W M, Lan S X. Impact of land use changes on habitat quality in Altay Region[J]. Journal of Resources and Ecology, 2021, 12(6): 715−728.
|
[33] |
樊远辛. 基于InVEST模型的喀纳斯自然保护区森林生态系统调节功能价值评估[D]. 合肥: 安徽农业大学, 2017.
Fan Y X. Assessment on regulating functions of forest ecosystem in the Kanas National Nature Reserve based on the InVEST model[D]. Hefei: Anhui Agricultural University, 2017.
|
[34] |
付奇, 李波, 杨琳琳, 等. 西北干旱区生态系统服务重要性评价: 以阿勒泰地区为例[J]. 干旱区资源与环境, 2016, 30(10): 70−75.
Fu Q, Li B, Yang L L, et al. Importance evaluation of typical ecosystem services in arid regions of north-west China: a case study in Altay Prefecture[J]. Journal of Arid Land Resources and Environment, 2016, 30(10): 70−75.
|
[35] |
刘方田, 许尔琪. 基于土地利用的新疆兵团与非兵团生境质量时空演变的对比[J]. 应用生态学报, 2020, 31(7): 2341−2351.
Liu F T, Xu E Q. Comparison of spatial-temporal evolution of habitat quality between Xinjiang Corps and Non-corps Region based on land use[J]. Chinese Journal of Applied Ecology, 2020, 31(7): 2341−2351.
|
[36] |
庄大方, 刘纪远. 中国土地利用程度的区域分异模型研究[J]. 自然资源学报, 1997, 12(2): 105−111. doi: 10.11849/zrzyxb.1997.02.002
Zhuang D F, Liu J Y. Study on the model of regional differentiation of land use degree in China[J]. Journal of Natural Resources, 1997, 12(2): 105−111. doi: 10.11849/zrzyxb.1997.02.002
|
[37] |
贺可, 吴世新, 杨怡, 等. 近40 a新疆土地利用及其绿洲动态变化[J]. 干旱区地理, 2018, 41(6): 1333−1340.
He K, Wu S X, Yang Y, et al. Dynamic changes of land use and oasis in Xinjiang in the last 40 years[J]. Arid Land Geography, 2018, 41(6): 1333−1340.
|
[38] |
郎鹏. 不同干扰方式对草地生态特征影响研究[D]. 乌鲁木齐: 新疆师范大学, 2023.
Lang P. Effects of different disturbance modes on grassland ecological characteristics : a case study of Altai[D]. Urumqi: Xinjiang Normal University, 2023.
|
[39] |
国家统计局. 中国林业统计年鉴(2002—2017)[M]. 北京: 中国林业出版社, 2003−2018.
National Bureau of Statistics of China. China forestry statistical yearbook (2002−2017) [M]. Beijing: China Forestry Publishing House, 2003−2018.
|
[40] |
国家统计局. 中国林业和草原统计年鉴(2018—2021)[M]. 北京: 中国林业出版社, 2019−2022.
National Bureau of Statistics of China. China forestry and grassland statistical yearbook (2018−2021) [M]. Beijing: China Forestry Publishing House, 2019−2022.
|
[41] |
Tai X, Epstein H E, Li B. Elevation and climate effects on vgetation greenness in an Arid Mountain-Basin system of Central Asia[J]. Remote Sensing, 2020, 12(10): 1665. doi: 10.3390/rs12101665
|
[42] |
张娜丽. 阿尔泰山生态特征及功能区生态评估[D]. 乌鲁木齐: 新疆大学, 2022.
Zhang N L. Ecological characteristics of Altai Mountains and ecological value evaluation of functional zone[D]. Urumqi: Xinjiang University, 2022.
|
[43] |
Dorren L K A, Berger F, Imeson A C, et al. Integrity, stability and management of protection forests in the European Alps[J]. Forest Ecology and Management, 2004, 195(1): 165−176.
|
[44] |
Liu H C, Fan J, Liu B Y, et al. Practical exploration of ecological restoration and management of the mountains-rivers-forests-farmlands-lakes-grasslands system in the Irtysh River Basin in Altay, Xinjiang[J]. Journal of Resources and Ecology, 2021, 12(6): 766−776.
|
[45] |
刘时栋, 刘琳, 张建军, 等. 基于生态系统服务能力提升的干旱区生态保护与修复研究: 以额尔齐斯河流域生态保护与修复试点工程区为例[J]. 生态学报, 2019, 39(23): 8998−9007.
Liu S D, Liu L, Zhang J J, et al. Study on ecological protection and restoration path of arid area based on improvement of ecosystem service capability, a case of the ecological protection and restoration pilot project area in Irtysh River Basin[J]. Acta Ecologica Sinica, 2019, 39(23): 8998−9007.
|
[46] |
冯琰玮, 甄江红, 马晨阳. 呼和浩特市生境质量对城市用地扩展的时空响应[J]. 干旱区地理, 2020, 43(4): 1014−1022.
Feng Y W, Zhen J H, Ma C Y. Spatiotemporal response of habitat quality to urban expansion in Hohhot City[J]. Arid Land Geography, 2020, 43(4): 1014−1022.
|
[47] |
王燕, 高吉喜, 金宇, 等. 基于2005-2015年土地利用变化和InVEST模型的内蒙古巴林右旗农牧交错带生境质量研究[J]. 生态与农村环境学报, 2020, 36(5): 654−662.
Wang Y, Gao J X, Jin Y, et al. Habitat quality of farming-pastoral ecotone in Bairin Right Banner, Inner Mongolia based on land use change and InVEST model From 2005 to 2015[J]. Journal of Ecology and Rural Environment, 2020, 36(5): 654−662.
|
[48] |
黄鑫, 程文仕, 李晓丹, 等. 甘肃省生境质量变化的图谱特征[J]. 应用生态学报, 2020, 31(9): 3131−3140.
Huang X, Cheng W S, Li X D, et al. Spectrum characteristics of habitat quality changes in Gansu Province, China[J]. Chinese Journal of Applied Ecology, 2020, 31(9): 3131−3140.
|
[49] |
翟玉鑫, 张飞云, 马丽娜. 基于三生空间的博斯腾湖流域生境质量时空演变及预估[J]. 干旱区地理, 2023, 46(11): 1792−1802.
Zhai Y X, Zhang F Y, Ma L N. Evolution and prediction of habitat quality in Bosten Lake Basin based on production-living-ecological space[J]. Arid Land Geography, 2023, 46(11): 1792−1802.
|
[50] |
周德志, 关颖慧, 张冰彬, 等. 基于土地利用变化的陕北地区生境质量时空演变及其驱动因素[J]. 北京林业大学学报, 2022, 44(6): 85−95.
Zhou D Z, Guan Y H, Zhang B B, et al. Spatial-temporal evolution of habitat quality in northern Shaanxi Province of northwestern China based on land use change and its driving factors[J]. Journal of Beijing Forestry University, 2022, 44(6): 85−95.
|
[51] |
徐洁, 谢高地, 肖玉, 等. 国家重点生态功能区生态环境质量变化动态分析[J]. 生态学报, 2019, 39(9): 3039−3050.
Xu J, Xie G D, Xiao Y, et al. Dynamic analysis of ecological environmental quality changes in national key ecological function areas in China[J]. Acta Ecologica Sinica, 2019, 39(9): 3039−3050.
|
[52] |
罗腾峰, 叶茂, 殷锡凯, 等. 人为干扰对阿尔泰山林地和草地生态系统健康影响分析[J]. 西北林学院学报, 2022, 37(6): 18−25.
Luo T F, Ye M, Yin X K, et al. Impact of the disturbance of human activities on the health of forest and grassland ecosystems in the Altai Mountains[J]. Journal of Northwest Forestry University, 2022, 37(6): 18−25.
|
[53] |
杜世勋, 刘海江, 张梦莹, 等. 水源涵养型国家重点生态功能区生态系统服务功能评估[J]. 生态学报, 2022, 42(11): 4349−4361.
Du S X, Liu H J, Zhang M Y, et al. Assessment of ecosystem services in the national key ecological function areas for water conservation[J]. Acta Ecologica Sinica, 2022, 42(11): 4349−4361.
|
[54] |
张志尧. 中蒙俄经济走廊西段的“环阿尔泰四国六方”[J]. 新疆师范大学学报(哲学社会科学版), 2016, 37(6): 110−119.
Zhang Z Y. Altay-Rim multi-nation part at Sino-Mongolia-Russia economic corridor at western section[J]. Journal of Xinjiang Normal University (Philosophy and Social Sciences), 2016, 37(6): 110−119.
|
[55] |
武文琦, 赵燕, 田瀚文, 等. 近40 a秦岭生境质量时空变化特征及驱动机制[J]. 地球环境学报, 2023, 14(4): 488−504.
Wu W Q, Zhao Y, Tian H W, et al. Spatio-temporal variation characteristics and driving mechanism of habitat quality of Qinling Mountains in recent 40 years[J]. Journal of Earth Environment, 2023, 14(4): 488−504.
|
[56] |
陈万旭, 曾杰. 中国土地利用程度与生态系统服务强度脱钩分析[J]. 自然资源学报, 2021, 36(11): 2853−2864. doi: 10.31497/zrzyxb.20211110
Chen W X, Zeng J. Decoupling analysis of land use intensity and ecosystem services intensity in China[J]. Journal of Natural Resources, 2021, 36(11): 2853−2864. doi: 10.31497/zrzyxb.20211110
|
[57] |
王琦琨, 武玮, 杨雪琪, 等. 陕西省生境质量时空演变及驱动机制分析[J]. 干旱区研究, 2022, 39(5): 1684−1694.
Wang Q K, Wu W, Yang X Q, et al. Spatial-temporal changes and driving factors of habitat quality in Shaanxi Province during the past 20 years[J]. Arid Zone Research, 2022, 39(5): 1684−1694.
|
[58] |
排日海·合力力, 昝梅, 阿里木江·卡斯木. 乌鲁木齐市生态环境遥感评价及驱动因子分析[J]. 干旱区研究, 2021, 38(5): 1484−1496.
Pariha H, Zan M, Alimjan K. Remote sensing evaluation of ecological environment in Urumqi City and analysis of driving factors[J]. Arid Zone Research, 2021, 38(5): 1484−1496.
|
[59] |
望元庆, 宋书愉, 王杰, 等. 2000—2018年内蒙古沙区“生态–经济–社会”复合系统脆弱性演变及关键影响因素[J]. 生态学报, 2023, 43(6): 2271−2286.
Wang Y Q, Song S Y, Wang J, et al. Vulnerability evolution of the ecological-economic-social complex system and the key influencing factors in the sandy region of Inner Mongolia from 2000 to 2018[J]. Acta Ecologica Sinica, 2023, 43(6): 2271−2286.
|
[60] |
黄豪奔, 徐海量, 林涛, 等. 2001-2020年新疆阿勒泰地区归一化植被指数时空变化特征及其对气候变化的响应[J]. 生态学报, 2022, 42(7): 2798−2809.
Huang H B, Xu H L, Lin T, et al. Spatio-temporal variation characteristics of NDVI and its response to climate change in the Altay region of Xinjiang from 2001 to 2020[J]. Acta Ecologica Sinica, 2022, 42(7): 2798−2809.
|
[61] |
李思思, 张飞云, 白磊, 等. 北疆地区生长季参考作物蒸散量的时空变化特征及其敏感性分析[J]. 中国农业气象, 2015, 36(6): 683−691.
Li S S, Zhang F Y, Bai L, et al. Spatiotemporal variation and sensitivity of reference crop evapotranspiration during growth season in northern Xinjiang[J]. Chinese Journal of Agrometeorology, 2015, 36(6): 683−691.
|
[62] |
姜萍, 胡列群, 肖静, 等. 新疆植被NDVI时空变化及定量归因[J]. 水土保持研究, 2022, 29(2): 212−220, 242.
Jiang P, Hu L Q, Xiao J, et al. Spatiotemporal dynamics of NDVI in Xinjiang and quantitative attribution based on geodetector[J]. Research of Soil and Water Conservation, 2022, 29(2): 212−220, 242.
|
[63] |
李旭亮, 杨礼箫, 胥学峰, 等. 基于SEBAL模型的西北农牧交错带生长季蒸散发估算及变化特征分析[J]. 生态学报, 2020, 40(7): 2175−2185.
Li X L, Yang L X, Xu X F, et al. Analysis of evapotranspiration pattern by SEBAL model during the growing season in the agro-pastoral ecotone in Northwest China[J]. Acta Ecologica Sinica, 2020, 40(7): 2175−2185.
|
1. |
孙丽,张颖,李文彬,包红光,孙迎坤. 青岛市3种常绿灌木滞尘量与叶微观特征及光合作用等的相关性分析. 西北林学院学报. 2024(04): 232-241 .
![]() | |
2. |
裴云霞,洪慧,包美玲,邓俊,陈岷轩,张强. 农业环境损害鉴定中受体植物的损害因素判别及损害程度分析. 中国司法鉴定. 2024(04): 40-48 .
![]() | |
3. |
贺丹,李朝梅,华超,李思洁,雷雅凯,张曼. 郑州市10种园林植物叶片滞尘与富集重金属的能力. 西北林学院学报. 2023(01): 230-237 .
![]() | |
4. |
张碧媛,李智琦,阮琳,潘勇军,陈国财,代色平,冯娴慧. 2种常用的植物滞纳能力测定方法对比研究. 林业与环境科学. 2023(01): 112-119 .
![]() | |
5. |
罗建平,王宁,宋菲菲,魏汉博,原白玉,唐钰鑫. 大庆市6种绿化树种对SO_2、NO_2的消减及滞尘效应. 生态学报. 2023(11): 4561-4569 .
![]() | |
6. |
张翠,马瑞,谭立佳,杜婉倩,刘涵科. 兰州市10种常用园林绿化树种叶表面微结构对其滞尘量的影响. 甘肃农业大学学报. 2023(04): 192-200+211 .
![]() | |
7. |
廖慧敏,师凤起,李明,朱逸龙. 长沙市典型园林植物叶片的滞尘等级与模式识别研究. 生态环境学报. 2022(01): 110-116 .
![]() | |
8. |
贺丹,汪安印,李紫萱,王翼飞,李朝梅,雷雅凯,李永华,董娜琳. 郑州市常绿树种滞尘能力与叶片生理结构的响应. 福建农业学报. 2022(02): 203-212 .
![]() | |
9. |
李晓璐,叶锦东,章剑,周毅烈,袁楚阳,于慧,张天然,黄芳,张贵豪,邵锋. 乔木滞留大气颗粒物能力及其与叶表面微结构关系. 中国城市林业. 2022(03): 22-28+120 .
![]() | |
10. |
王军梦,汪安印,王翼飞,贺丹,李永华,董娜琳. 不同污染程度下树种滞尘能力与叶表微形态关系研究. 林业调查规划. 2022(05): 16-21+37 .
![]() | |
11. |
孟畅,彭洋,赵杨,王秀荣,肖枫. 2种叶型膏桐幼苗的形态结构和光合特性. 林业科学. 2022(12): 32-41 .
![]() | |
12. |
岳晨,李广德,席本野,曹治国. 叶片大气颗粒物滞纳能力评估方法的定量对比. 环境科学. 2021(01): 114-126 .
![]() | |
13. |
徐立人,刘宠,张军,柳俊明,王立成,李清泉,杨敏生,李彦慧. 单叶刺槐半同胞子代叶片的滞尘能力及叶表SEM特征分析. 西部林业科学. 2021(01): 124-131 .
![]() | |
14. |
杨克彤,陈国鹏,李广,汤东,张凯. 兰州市常见阔叶树种对大气颗粒物吸滞能力的评估. 东北林业大学学报. 2021(05): 84-89 .
![]() | |
15. |
刘宇,张楠,王晓立,周力行,韩浩章. 冬季苏北8种常绿乔木吸滞颗粒物能力与叶表微结构关系. 西北林学院学报. 2021(03): 80-87+127 .
![]() | |
16. |
王薇,张蕾. 基于CiteSpace的城市环境中细颗粒物研究进展的可视化分析. 生态环境学报. 2021(06): 1321-1332 .
![]() | |
17. |
谢长坤,郭健康,梁安泽,汪静,姜睿原,车生泉. 园林植物表面对大气颗粒物削减过程研究进展. 世界林业研究. 2021(05): 38-43 .
![]() | |
18. |
吴桂香,徐成林,刘杰,杨燕飞. 城市道路植物叶面滞尘的微观效应研究. 昆明理工大学学报(自然科学版). 2021(06): 109-115 .
![]() | |
19. |
陈胜楠,陈左司南,张志强. 北京山区油松和元宝槭冠层气孔导度特征及其环境响应. 植物生态学报. 2021(12): 1329-1340 .
![]() | |
20. |
王琴,冯晶红,黄奕,王鹏程,谢梦婷,万好,苏泽琳,王仁鹏,王征洋,余刘思. 武汉市15种阔叶乔木滞尘能力与叶表微形态特征. 生态学报. 2020(01): 213-222 .
![]() | |
21. |
童凌云,何婉璎,裘璐函,陈健,刘美华. 基于层次分析法的杭州市8种园林植物林分环境质量评价. 浙江林业科技. 2020(01): 56-62 .
![]() | |
22. |
苏维,刘苑秋,赖胜男,古新仁,刘青,龚鹏. 南昌市8种乔木叶片性状对叶表滞留颗粒物的影响. 西北林学院学报. 2020(04): 61-67 .
![]() | |
23. |
刘开琳,李学敏,万翔,刘淑娟,李菁菁,徐先英,刘虎俊. 民勤植物园3种灌木的叶面微结构及其滞尘能力研究. 中国农学通报. 2020(26): 62-68 .
![]() | |
24. |
孙应都,陈奇伯,李艳梅,杨思莹. 昆明市6个绿化树种叶表微结构与滞尘能力的关系研究. 西南林业大学学报(自然科学). 2019(03): 78-85 .
![]() | |
25. |
张俊叶,邹明,刘晓东,王林,朱晨晨,俞元春. 南京城市森林植物叶面颗粒物的含量特征. 环境污染与防治. 2019(07): 837-843 .
![]() | |
26. |
林星宇,李海梅,李彦华,姜月梅. 八种乔木滞尘效益及其与叶表面特征关系. 北方园艺. 2019(17): 94-101 .
![]() | |
27. |
林星宇,李海梅,李彦华,刘志科. 灌木滞尘能力与重金属含量间的关系. 江苏农业科学. 2019(15): 180-183 .
![]() | |
28. |
姜霞,侯贻菊,刘延惠,舒德远,崔迎春,李成龙,杨冰,丁访军. 3种木樨科树种叶片滞尘效应动态变化及其与叶片特征的关系. 江苏农业科学. 2019(16): 150-154 .
![]() | |
29. |
林星宇,李彦华,李海梅,李士美. 乔木对不同粒径颗粒物吸滞作用研究. 福建农业学报. 2019(08): 912-919 .
![]() | |
30. |
阿丽亚·拜都热拉,甄敬,潘存德,张中远,胡梦玲,喀哈尔·扎依木. 乌鲁木齐市河滩快速路林带内颗粒物浓度变化特征. 新疆农业大学学报. 2019(05): 378-384 .
![]() | |
31. |
林星宇,李海梅,李彦华,郑茗月. 5种灌木的滞尘效益研究. 现代农业科技. 2018(02): 150-151+155 .
![]() | |
32. |
赵文君,侯贻菊,舒德远,刘延惠,崔迎春,丁访军. 贵阳市木兰科树种叶片滞尘效应及影响因素. 贵州林业科技. 2018(02): 19-24 .
![]() | |
33. |
李艳梅,陈奇伯,王邵军,孙应都,杨淏舟,杨思莹. 昆明市主要绿化树种叶片滞尘能力的叶表微形态学解释. 林业科学. 2018(05): 18-29 .
![]() | |
34. |
朱济友,于强,刘亚培,覃国铭,李金航,徐程扬,何韦均. 植物功能性状及其叶经济谱对城市热环境的响应. 北京林业大学学报. 2018(09): 72-81 .
![]() |