Citation: | Zhang Churui, Chen Lixin, Wang Liqun, Song Wuye, Yan Zhiyi. Spatiotemporal heterogeneity and driving factors of ecosystem service value in the Yellow River Basin[J]. Journal of Beijing Forestry University, 2024, 46(6): 70-81. DOI: 10.12171/j.1000-1522.20230226 |
This paper aims to study the spatiotemporal dynamic evolution characteristics and driving factors of ecosystem service value (ESV) in the context of ecological restoration in the Yellow River Basin, and provide theoretical reference for sustainable development.
Based on the land use data of the Yellow River Basin from 2001 to 2020, the ESV of the Yellow River Basin was calculated. Spatial autocorrelation and exploratory spatiotemporal data analysis (ESTDA) were used to reveal the dynamic characteristics of spatiotemporal differentiation of ESV in the Yellow River Basin. The spatiotemporal geographic weighted regression (GTWR) model was introduced to explore the driving factors of spatiotemporal differentiation of ESV in the Yellow River Basin.
(1) From 2001 to 2020, the ESV of the Yellow River Basin showed an overall upward trend, and the value of regulation services accounted for the largest proportion of ecosystem services. Among different land use types, grassland and forest land provided the highest ecological service value. (2) There was a significant positive correlation in the spatial distribution of ESV in the Yellow River Basin. In most regions, the relative length and curvature of the local spatial autocorrelation index time path were relatively small, and the structure was relatively stable, but the spatial dependence effect was weak. The proportion of negative synergistic growth in the direction of ESV movement was the highest, showing a low-speed growth characteristics. The probability of spatiotemporal aggregation of ESV from 2001 to 2020 exceeded 80%, indicating that the local spatial pattern of ESV in the Yellow River Basin was in a relatively locked state. (3) Among the driving factors of watershed ESV, annual rainfall mainly played a negative role, while annual average temperature and vegetation cover mainly played a positive role, while the impact of population density and nighttime light index was relatively weak.
The current situation of ESV growth in the Yellow River Basin is relatively stable and difficult to change in the short term. Natural factors play a dominant role in influencing ESV changes.
[1] |
石涛. 黄河流域生态保护与经济高质量发展耦合协调度及空间网络效应[J]. 区域经济评论, 2020(3): 25−34.
Shi T. Spatial correlation network and regional connected effect of coupling coordination degree between ecological protection and high-quality economic development in the Yellow River Regions[J]. Regional Economic Review, 2020(3): 25−34.
|
[2] |
徐勇, 王传胜. 黄河流域生态保护和高质量发展: 框架、路径与对策[J]. 中国科学院院刊, 2020, 35(7): 875−883.
Xu Y, Wang C S. Ecological protection and high-quality development in the Yellow River Basin: framework, path, and countermeasure[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(7): 875−883.
|
[3] |
李婷, 吕一河, 任艳姣, 等. 黄土高原植被恢复成效及影响因素[J]. 生态学报, 2020, 40(23): 8593−8605.
Li T, Lü Y H, Ren Y J, et al. Gauging the effectiveness of vegetation restoration and the influence factors in the Loess Plateau[J]. Acta Ecologica Sinica, 2020, 40(23): 8593−8605.
|
[4] |
王艳芬, 陈怡平, 王厚杰, 等. 黄河流域生态系统变化及其生态水文效应[J]. 中国科学基金, 2021, 35(4): 520−528.
Wang Y F, Chen Y P, Wang H J, et al. Ecosystem change and its ecohydrological effect in the Yellow River Basin[J]. Bulletin of National Natural Science Foundation of China, 2021, 35(4): 520−528.
|
[5] |
Groot R, Brander L, van der Ploeg S, et al. Global estimates of the value of ecosystems and their services in monetary units[J]. Ecosystem Services, 2012, 1(1): 50−61. doi: 10.1016/j.ecoser.2012.07.005
|
[6] |
Ouyang Z, Zheng H, Xiao Y, et al. Improvements in ecosystem services from investments in natural capital[J]. Science, 2016, 352: 1455−1459. doi: 10.1126/science.aaf2295
|
[7] |
陈玉福, 董鸣. 生态学系统的空间异质性[J]. 生态学报, 2003, 23(2): 346−352.
Chen Y F, Dong M. Spatial heterogeneity in ecological systems[J]. Acta Ecologica Sinica, 2003, 23(2): 346−352.
|
[8] |
Rey S J, Janikas M V. STARS: space-time analysis of regional systems[J]. Geographical Analysis, 2006, 38(1): 67−86. doi: 10.1111/j.0016-7363.2005.00675.x
|
[9] |
景海超, 刘颖慧, 贺佩, 等. 青藏高原典型区生态系统服务空间异质性及其影响因素: 以那曲市为例[J]. 生态学报, 2022, 42(7): 2657−2673.
Jing H C, Liu Y H, He P, et al. Spatial heterogeneity of ecosystem services and it’s influencing factors in typical areas of the Qinghai-Tibet Plateau: a case study of Nagqu City[J]. Acta Ecologica Sinica, 2022, 42(7): 2657−2673.
|
[10] |
王耕, 张芙榕. 近30年辽河三角洲生态系统服务价值时空演变及影响因素分析[J]. 环境科学, 2024, 45(1): 228−238.
Wang G, Zhang F R. Spatial and temporal evolution and impact factors analysis of ecosystem service value in the Liaohe River Delta over the past 30 years[J]. Environmental Science, 2024, 45(1): 228−238.
|
[11] |
黄木易, 方斌, 岳文泽, 等. 近20 a来巢湖流域生态服务价值空间分异机制的地理探测[J]. 地理研究, 2019, 38(11): 2790−2803.
Huang M Y, Fang B, Yue W Z, et al. Spatial differentiation of ecosystem service values and its geographical detection in Chaohu Basin during 1995−2017[J]. Geographical Research, 2019, 38(11): 2790−2803.
|
[12] |
夏楚瑜, 国淏, 赵晶, 等. 京津冀地区生态系统服务对城镇化的多空间尺度动态响应[J]. 生态学报, 2023, 43(7): 2756−2769.
Xia C Y, Guo H, Zhao J, et al. Dynamic responses of ecosystem services to urbanization at multi-spatial scales in the Beijing-Tianjin-Hebei region[J]. Acta Ecologica Sinica, 2023, 43(7): 2756−2769.
|
[13] |
赵泳春, 苏方林. 经济差异化增长下生态系统服务价值的时空演变特征: 以珠江–西江经济带为例[J]. 自然资源学报, 2022, 37(7): 1782−1798. doi: 10.31497/zrzyxb.20220709
Zhao Y C, Su F L. Spatio-temporal dynamic characteristics of the ecosystem service values under differential economic growth: a case study of the Pearl River-West River Economic Belt[J]. Journal of Natural Resources, 2022, 37(7): 1782−1798. doi: 10.31497/zrzyxb.20220709
|
[14] |
Huang B, Wu B, Barry M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices[J]. International Journal of Geographical Information Science, 2010, 24(3): 383−401. doi: 10.1080/13658810802672469
|
[15] |
Fotheringham A S, Charlton M E, Brunsdon C. Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis[J]. Environment and Planning A, 1998, 30(11): 1905−1927. doi: 10.1068/a301905
|
[16] |
吴小影, 杨山, 尹上岗, 等. 基于GTWR模型的长三角地区城市建设用地时空动态特征及其驱动机理[J]. 长江流域资源与环境, 2021, 30(11): 2594−2606.
Wu X Y, Yang S, Yin S G, et al. Spatial-temporal dynamic characteristics and its driving mechanism of urban built-up area in Yangtze River Delta based on GTWR model[J]. Resources and Environment in the Yangtze Basin, 2021, 30(11): 2594−2606.
|
[17] |
王海军, 张彬, 刘耀林, 等. 基于重心-GTWR模型的京津冀城市群城镇扩展格局与驱动力多维解析[J]. 地理学报, 2018, 73(6): 1076−1092.
Wang H J, Zhang B, Liu Y L, et al. Multi-dimensional analysis of urban expansion patterns and their driving forces based on the center of gravity-GTWR model: a case study of the Beijing-Tianjin-Hebei urban agglomeration[J]. Acta Geographica Sinica, 2018, 73(6): 1076−1092.
|
[18] |
田晓华, 卢飞, 徐翠蓉. 基于超效率SBM模型的黄河中下游生态效率测度与空间相关性分析[J]. 信阳师范学院学报(自然科学版), 2023, 36(1): 89−97.
Tian X H, Lu F, Xu C R. Ecological efficiency measurement and spatial correlation analysis in the middle and lower reaches of the Yellow River based on the super-SBM model[J]. Journal of Xinyang Normal University (Natural Science Edition), 2023, 36(1): 89−97.
|
[19] |
谢高地, 张彩霞, 张雷明, 等. 基于单位面积价值当量因子的生态系统服务价值化方法改进[J]. 自然资源学报, 2015, 30(8): 1243−1254.
Xie G D, Zhang C X, Zhang L M, et al. Improvement of the evaluation method for ecosystem service value based on per unit area[J]. Journal of Natural Resources, 2015, 30(8): 1243−1254.
|
[20] |
郑晓豪, 陈颖彪, 郑子豪, 等. 湖北省生态系统服务价值动态变化及其影响因素演变[J]. 生态环境学报, 2023, 32(1): 195−206.
Zheng X H, Chen Y B, Zheng Z H, et al. Dynamic changes of ecosystem service value and evolution of its influencing factors in Hubei Province[J]. Ecology and Environmental Sciences, 2023, 32(1): 195−206.
|
[21] |
封建民, 郭玲霞, 李晓华. 汉中市土地利用时空变化及其对生态系统服务价值的影响[J]. 水土保持研究, 2020, 27(1): 275−282.
Feng J M, Guo L X, Li X H. Temporal and spatial variations of land uses and their influences on ecosystem service function values in Hanzhong City[J]. Research of Soil and Water Conservation, 2020, 27(1): 275−282.
|
[22] |
乔斌, 祝存兄, 曹晓云, 等. 格网尺度下青海玛多县土地利用及生态系统服务价值空间自相关分析[J]. 应用生态学报, 2020, 31(5): 1660−1672.
Qiao B, Zhu C X, Cao X Y, et al. Spatial autocorrelation analysis of land use and ecosystem service value in Maduo County, Qinghai Province, China at the grid scale[J]. Chinese Journal of Applied Ecology, 2020, 31(5): 1660−1672.
|
[23] |
王蓓, 赵军, 胡秀芳. 基于 InVEST 模型的黑河流域生态系统服务空间格局分析[J]. 生态学杂志, 2016, 35(10): 2783−2792.
Wang B, Zhao J, Hu X F. Spatial pattern analysis of ecosystem services based on InVEST in Heihe River Basin[J]. Chinese Journal of Ecology, 2016, 35(10): 2783−2792.
|
[24] |
Ye X, Rey S. A framework for exploratory space-time analysis of economic data[J]. The Annals of Regional Science, 2013, 50(1): 315−339. doi: 10.1007/s00168-011-0470-4
|
[25] |
张中浩, 聂甜甜, 高阳, 等. 长三角城市群生态安全评价与时空跃迁特征分析[J]. 地理科学, 2022, 42(11): 1923−1931.
Zhang Z H, Nie T T, Gao Y, et al. Ecological security assessment and spatio-temporal transition characteristics in the Yangtze River Delta urban agglomeration[J]. Scientia Geographica Sinica, 2022, 42(11): 1923−1931.
|
[26] |
Rey S J, Murray A T, Anselin L. Visualizing regional income distribution dynamics[J]. Letters in Spatial and Resource Sciences, 2011, 4(1): 81−90. doi: 10.1007/s12076-010-0048-2
|
[27] |
Rey S J. Spatial empirics for economic growth and convergence[J]. Geographical Analysis, 2001, 33(3): 195−214. doi: 10.1111/j.1538-4632.2001.tb00444.x
|
[28] |
Liu Z F, He C Y, Zhang Q F, et al. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008[J]. Landscape and Urban Planning, 2012, 106(1): 62−72. doi: 10.1016/j.landurbplan.2012.02.013
|
[29] |
罗盛锋, 闫文德. 广西北部湾沿岸地区生态系统服务价值变化及其驱动力[J]. 生态学报, 2018, 38(9): 3248−3259.
Luo S F, Yan W D. Evolution and driving force analysis of ecosystem service values in Guangxi Beibu Gulf coastal areas, China[J]. Acta Ecologica Sinica, 2018, 38(9): 3248−3259.
|
[30] |
李英利. 财政压力、土地财政与区域房价的时空演化: 基于GTWR模型的实证研究[J]. 财政研究, 2020(5): 78−89.
Li Y L. Fiscal pressure, land finance and the spatio-temporal evolution of regional house price: empirical research based on GTWR model[J]. Public Finance Research, 2020(5): 78−89.
|
[31] |
张琨, 林乃峰, 徐德琳, 等. 中国生态安全研究进展: 评估模型与管理措施[J]. 生态与农村环境学报, 2018, 34(12): 1057−1063.
Zhang K, Lin N F, Xu D L, et al. Research advance on ecological security in China: assessment models and management measures[J]. Journal of Ecology and Rural Environment, 2018, 34(12): 1057−1063.
|
[32] |
王聪, 伍星, 傅伯杰, 等. 重点脆弱生态区生态恢复模式现状与发展方向[J]. 生态学报, 2019, 39(20): 7333−7343.
Wang C, Wu X, Fu B J, et al. Ecological restoration in the key ecologically vulnerable regions: current situation and development direction[J]. Acta Ecologica Sinica, 2019, 39(20): 7333−7343.
|
[33] |
李宗善, 杨磊, 王国梁, 等. 黄土高原水土流失治理现状、问题及对策[J]. 生态学报, 2019, 39(20): 7398−7409.
Li Z S, Yang L, Wang G L, et al. The management of soil and water conservation in the Loess Plateau of China: present situations, problems, and counter-solutions[J]. Acta Ecologica Sinica, 2019, 39(20): 7398−7409.
|
[34] |
孙梦华, 牛文浩, 张蚌蚌, 等. 黄河流域土地利用变化下生态系统服务价值时空演变及其响应: 以陕甘宁地区为例[J]. 应用生态学报, 2021, 32(11): 3913−3922.
Sun M H, Niu W H, Zhang B B, et al. Spatial-temporal evolution and responses of ecosystem service value under land use change in the Yellow River Basin: a case study of Shaanxi-Gansu-Ningxia region, Northwest China[J]. Chinese Journal of Applied Ecology, 2021, 32(11): 3913−3922.
|
[35] |
Austin A T, Vitousek P M. Nutrient dynamics on a precipitation gradient in Hawaii[J]. Oecologia, 1998, 113(4): 519−529. doi: 10.1007/s004420050405
|
[36] |
张明阳, 王克林, 刘会玉, 等. 桂西北典型喀斯特区生态系统服务价值对景观格局变化的响应[J]. 应用生态学报, 2010, 21(5): 1174−1179.
Zhang M Y, Wang K L, Liu H Y, et al. Responses of ecosystem service values to landscape pattern change in typical karst area of northwest Guangxi, China[J]. Chinese Journal of Applied Ecology, 2010, 21(5): 1174−1179.
|
[37] |
王婧, 康荣华, 方媛, 等. 宁夏清水河平原生态脆弱性评价及驱动因子分析[J]. 水利水电快报, 2023, 44(8): 98−105.
Wang J, Kang R H, Fang Y, et al. Eco-environmental vulnerability evaluation in Qingshui River Plain of Ningxia and driving force analysis[J]. Express Water Resources & Hydropower Information, 2023, 44(8): 98−105.
|
[38] |
王殿茹, 薛少冰. 中国人口密度对生态环境的影响: 基于双向固定效应模型的实证分析[J]. 河北地质大学学报, 2022, 45(5): 97−103.
Wang D R, Xue S B. The impact of population density on ecosystem in China based on the two-way fixed effects model[J]. Journal of Hebei Geo University, 2022, 45(5): 97−103.
|
[39] |
桑海云. 财政转移支付、就业机会与相对贫困缓解[J]. 技术经济与管理研究, 2022(9): 124−128.
Sang H Y. Fiscal transfer payments, employment opportunities and relative poverty alleviation[J]. Journal of Technical Economics & Management, 2022(9): 124−128.
|
[40] |
安彬, 肖薇薇, 朱妮, 等. 近60 a黄土高原地区降水集中度与集中期时空变化特征[J]. 干旱区研究, 2022, 39(5): 1333−1344.
An B, Xiao W W, Zhu N, et al. Temporal and spatial variations of precipitation concentration degree and precipitation concentration period on the Loess Plateau from 1960 to 2019[J]. Arid Zone Research, 2022, 39(5): 1333−1344.
|
[41] |
程永生, 张德元, 赵梦婵. 黄河流域生态保护和高质量发展的时空演变与驱动因素[J]. 经济体制改革, 2021(5): 61−69.
Cheng Y S, Zhang D Y, Zhao M C. Spatial-temporal evolution and driving factors of ecological protection and high-quality development in the Yellow River Basin[J]. Reform of Economic System, 2021(5): 61−69.
|
[42] |
杨洁, 谢保鹏, 张德罡. 基于InVEST和CA-Markov模型的黄河流域碳储量时空变化研究[J]. 中国生态农业学报(中英文), 2021, 29(6): 1018−1029.
Yang J, Xie B P, Zhang D G. Spatio-temporal evolution of carbon stocks in the Yellow River Basin based on InVEST and CA-Markov models[J]. Chinese Journal of Eco-Agriculture, 2021, 29(6): 1018−1029.
|
[43] |
张世举, 王娟. 黄河河南段滩涂水资源利用研究[J]. 节水灌溉, 2013(5): 37−39.
Zhang S J, Wang J. Comprehensive utilization of water resources in the Yellow River intertidal zone of Henan Province[J]. Water Saving Irrigation, 2013(5): 37−39.
|
[44] |
Li F Z, Yin X X, Shao M. Natural and anthropogenic factors on China’s ecosystem services: comparison and spillover effect perspective[J/OL]. Journal of Environmental Management, 2022, 324: 116064[2023−05−30]. https://doi.org/10.1016/j.jenvman.2022.116064.
|
[45] |
危小建, 辛思怡, 张颖艺, 等. 不同格网尺度下生态服务价值空间分异及其影响因素差异探析[J]. 生态学报, 2023, 43(18): 7585−7597.
Wei X J, Xin S Y, Zhang Y Y, et al. Spatial difference of ecological services and its influencing factors under different scales: taking the Nanchang Urban Agglomeration as an example[J]. Acta Ecologica Sinica, 2023, 43(18): 7585−7597.
|
[1] | Li Yuting, Ma Aiyun, Miao Zheng, Hao Yuanshuo, Dong Lihu. Effects of neighborhood competition on biomass and distribution of Larix olgensis[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20230322 |
[2] | Zhao Qingxia, Xia Yufang. Effects of mowing modes on biomass, crude protein and crude fat contents of Broussonetia papyrifera in karst area[J]. Journal of Beijing Forestry University, 2023, 45(6): 62-68. DOI: 10.12171/j.1000-1522.20210425 |
[3] | Song Runxian, Li Xiang, Mao Xiuhong, Wang Li, Chen Xiangli, Yao Junxiu, Zhao Xiyang, Li Shanwen. Transcriptome analysis of clone Populus deltoides ‘Zhonghe 1’ under cadmium stress[J]. Journal of Beijing Forestry University, 2021, 43(7): 12-21. DOI: 10.12171/j.1000-1522.20210037 |
[4] | Yao Junxiu, Chen Ganniu, Li Shanwen, Qiao Yanhui, Zhong Weiguo, Li Qinghua, Dong Yufeng, Wu Dejun. Physiological and biochemical properties and growth of Aigeiros clones under cadmium stress[J]. Journal of Beijing Forestry University, 2020, 42(4): 12-20. DOI: 10.12171/j.1000-1522.20190462 |
[5] | Xing Lei, Xue Hai-xia, Li Qing-he, Gao Ting-ting. Scaling from leaf to whole plant in biomass and nitrogen content of Nitraria tangutorum seedlings[J]. Journal of Beijing Forestry University, 2018, 40(2): 76-81. DOI: 10.13332/j.1000-1522.20170338 |
[6] | LIU Kun, CAO Lin, WANG Gui-bin, CAO Fu-liang. Biomass allocation patterns and allometric models of Ginkgo biloba[J]. Journal of Beijing Forestry University, 2017, 39(4): 12-20. DOI: 10.13332/j.1000-1522.20160374 |
[7] | DONG Dian, LIN Tian-xi, TANG Jing-yi, LIU Jing-chen, SUN Guo-wen, YAO Jie, CHENG Yan-xia. Biomass allocation patterns and allometric models of Tilia amurensis[J]. Journal of Beijing Forestry University, 2014, 36(4): 54-63. DOI: 10.13332/j.cnki.jbfu.2014.04.013 |
[8] | ZHAO Xi-yang, WANG Jun-hui, ZHANG Jin-feng, ZHANG Shou-gong, ZHANG Zeng-shun, MA Jian-wei, YUN Hui-ling, LI Kui-you. Variation analysis on chlorophyll fluorescence and growth traits of Catalpa bungei clones[J]. Journal of Beijing Forestry University, 2012, 34(3): 41-47. |
[9] | DUAN Wen-xia, ZHU Bo, LIU Rui, CHEN Shi, ZHOU Yu-ping, CHEN Fang. Biomass and soil carbon dynamics in Cryptomeria fortunei plantations[J]. Journal of Beijing Forestry University, 2007, 29(2): 55-59. |
[10] | CHENG Tang-ren, MA Qin-yan, FENG Zhong-ke, LUO Xu. Research on forest biomass in Xiaolong Mountains, Gansu Province[J]. Journal of Beijing Forestry University, 2007, 29(1): 31-36. DOI: 10.13332/j.1000-1522.2007.01.006 |
1. |
苏芝凤,黄德周,朱芷仪,陈荣枢,代廷皓,梁建宏,朱婧. 亚热带森林不同土壤类型团聚体酶活性及化学计量特征的差异. 环境科学. 2025(03): 1716-1728 .
![]() | |
2. |
陈荣枢,王汝儒,孙佳豪,黄玲,杨思娴,蒲纪龙,黄慧敏,朱婧. 漓江流域海拔、土壤及植被对土壤养分和酶化学计量比的影响. 广西植物. 2023(02): 242-252 .
![]() | |
3. |
王吕,马庆兵,姜华,寸兴刚,段新慧,何承刚. 云南寻甸县湿地草甸植被、土壤因子和微生物的特征. 草业科学. 2023(07): 1754-1765 .
![]() | |
4. |
郑武扬,王艳霞,王月江,冯刚刚. 石漠化治理区不同优势树种根际土壤酶活性与土壤理化性质和微生物数量的关系. 东北林业大学学报. 2021(01): 96-100 .
![]() | |
5. |
张艳,王冬梅. 北方土石山区不同植被恢复模式土壤酶活性研究. 农业研究与应用. 2021(01): 42-46 .
![]() | |
6. |
涂志华,周凌峰,黄艳萍,陈夙怡,陈金辉,李胜男. 海南岛黎母山国家自然保护区热带云雾林土壤酶活性的根际效应. 水土保持通报. 2021(03): 1-7 .
![]() | |
7. |
Zhouzhou Fan,Shuyu Lu,Shuang Liu,Zhaorong Li,Jiaxin Hong,Jinxing Zhou,Xiawei Peng. The effects of vegetation restoration strategies and seasons on soil enzyme activities in the Karst landscapes of Yunnan, southwest China. Journal of Forestry Research. 2020(05): 1949-1957 .
![]() |
|
8. |
郑武扬,王艳霞,王月江,冯刚刚. 喀斯特石漠化区不同植被治理模式对土壤质量的影响. 西部林业科学. 2020(04): 41-47 .
![]() | |
9. |
李永双,范周周,国辉,周金星,彭霞薇. 菌剂添加对不同树种根际土壤微生物及碳酸钙溶蚀的影响. 中国岩溶. 2020(06): 854-862 .
![]() | |
10. |
魏安琪,魏天兴,刘海燕,王莎. 黄土区刺槐和油松人工林土壤微生物PLFA分析. 北京林业大学学报. 2019(04): 88-98 .
![]() |