Citation: | Du Yu, Yang Hua, He Danni, Chen Qingguo, Zhang Xiaohong. Effects of neighboring tree diversity and competition on tree growth in natural spruce-fir forests[J]. Journal of Beijing Forestry University, 2024, 46(8): 111-121. DOI: 10.12171/j.1000-1522.20230236 |
This study aimed to investigate the effects of neighboring tree diversity and forest competition intensity on the tree growth in natural spruce-fir forests, providing a scientific basis for the structure management of spruce-fir forests.
Data from two fixed-sample surveys of a natural spruce-fir forest in Changbai Mountain of northeastern China in 2015 and 2018 were used to analyze the relationship between neighboring tree diversity, competition, and tree growth by a structural equation model.
(1) The neighboring tree diversity indexes for species, diameter classes, and tree height of the natural spruce-fir forests in the study area were all around 1.04. It indicated an overall even distribution of these three indexes, high degree of species mixture, and complex stand structure. (2) The total impact coefficients for species, diameter-classe, tree-height neighboring tree diversity indexes and the competition index on volume increment in the model were −0.001, 0.166, 0.073 and −0.489, respectively. It indicated that competition was the key factor affecting tree growth. (3) The increases in diameter-class and tree-height diversities both had positive effects on tree growth, with a direct effect of diameter-class diversity, and an indirect effect of tree-height diversity. The species diversity had a directly negative effect and an indirectly positive effect, exhibiting an overall negative effect. The increase of species diversity reduced competition intensity of trees in a stand, while the increase of tree-height diversity might lead to a differentiation of stand structure, which further promoted the growth of individual trees in a stand. (4) Growth pressure of trees in the research area may mainly come from trees of the same diameter-class. Small-diameter trees had poorer growth conditions and greater competition pressure, while large-diameter and medium-diameter trees were opposite.
Selective cutting of the trees within the same or similar diameter-classes, and improving the level of diameter-classe and tree-height diversity within a stand, can reduce the competition level, promote individual tree growth, and enhance the productivity of spruce-fir stands.
[1] |
董利虎, 李凤日, 贾炜玮. 林木竞争对红松人工林立木生物量影响及模型研究[J]. 北京林业大学学报, 2013, 35(6): 15−22.
Dong L H, Li F R, Jia W W. Effects of tree competition on biomass and biomass models of Pinus koraiensis plantation[J]. Journal of Beijing Forestry University, 2013, 35(6): 15−22.
|
[2] |
惠刚盈, 胡艳波, 赵中华, 等. 基于交角的林木竞争指数[J]. 林业科学, 2013, 49(6): 68−73. doi: 10.11707/j.1001-7488.20130610
Hui G Y, Hu Y B, Zhao Z H, et al. A forest competition index based on intersection angle[J]. Scientia Silvae Sinicae, 2013, 49(6): 68−73. doi: 10.11707/j.1001-7488.20130610
|
[3] |
王妍, 杨华, 李艳丽, 等. 基于结构方程模型的林木竞争指标研究[J]. 北京林业大学学报, 2015, 37(4): 28−37.
Wang Y, Yang H, Li Y L, et al. Tree competition index based on the structural equation model[J]. Journal of Beijing Forestry University, 2015, 37(4): 28−37.
|
[4] |
Hegyi F. A simulation model for managing jack-pine stands[M]//Fries J. Growth models for tree and stand simulation. Stockholm: Sweden Royal College of Forest, 1974: 74−90.
|
[5] |
范秀华, 张宝权, 范春雨. 长白山典型天然林不同演替阶段物种多样性和结构多样性对生产力影响[J]. 北京林业大学学报, 2021, 43(12): 1−8. doi: 10.12171/j.1000-1522.20210071
Fan X H, Zhang B Q, Fan C Y. Effects of species diversity and structural diversity on productivity in different succession stages of typical natural forest in Changbai Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(12): 1−8. doi: 10.12171/j.1000-1522.20210071
|
[6] |
朱杰, 吴安驰, 邹顺, 等. 南亚热带常绿阔叶林树木多样性与生物量和生产力的关联及其影响因素[J]. 生物多样性, 2021, 29(11): 1435−1446. doi: 10.17520/biods.2021014
Zhu J, Wu A C, Zou S, et al. Relationships between tree diversity and biomass/productivity and their influence factors in a lower subtropical evergreen broad-leaved forest[J]. Biodiversity Science, 2021, 29(11): 1435−1446. doi: 10.17520/biods.2021014
|
[7] |
Forrester D I, Tang X L. Analysing the spatial and temporal dynamics of species interactions in mixed-species forests and the effects of stand density using the 3-PG model[J]. Ecological Modelling, 2016, 319(9): 233−254.
|
[8] |
惠刚盈. 基于相邻木关系的林分空间结构参数应用研究[J]. 北京林业大学学报, 2013, 35(4): 1−9.
Hui G Y. Studies on the application of stand spatial structure parameters based on the relationship of neighbourhood trees[J]. Journal of Beijing Forestry University, 2013, 35 (4): 1−9.
|
[9] |
Hui G Y, Zhao X H, Zhao Z H, et al. Evaluating tree species spatial diversity based on neighbourhood relationships[J]. Forest Science, 2011, 57(4): 292−300.
|
[10] |
Man R, Yang H. Construction of neighbourhood diversity indices with stem mapping data[J]. Canadian Journal of Forest Research, 2015, 45(8): 1138−1142.
|
[11] |
Yang H, Man R. Assessing stand species and structural diversity at neighbourhood scale[J]. MethodsX, 2018(5): 141−148.
|
[12] |
白宇, 杨华, 温静, 等. 基于邻近木的林分结构多样性研究[J]. 北京林业大学学报, 2020, 42(6): 52−58. doi: 10.12171/j.1000-1522.20190120
Bai Y, Yang H, Wen J, et al. Study on forest structure diversity based on the neighbourhood trees[J]. Journal of Beijing Forestry University, 2020, 42(6): 52−58. doi: 10.12171/j.1000-1522.20190120
|
[13] |
Laughlin D C, Abella S R, Covington W W, et al. Species richness and soil properties in Pinus ponderosa forests: a structural equation modeling analysis[J]. Journal of Vegetation Science, 2007, 18(2): 231−242. doi: 10.1111/j.1654-1103.2007.tb02534.x
|
[14] |
王树力, 周健平. 基于结构方程模型的林分生长与影响因子耦合关系分析[J]. 北京林业大学学报, 2014, 36(5): 7−12.
Wang S L, Zhou J P. Coupling relationship between stand growth and impacting factors based on structural equation model[J]. Journal of Beijing Forestry University, 2014, 36(5): 7−12.
|
[15] |
舒树淼, 赵洋毅, 段旭, 等. 基于结构方程模型的云南松次生林林木多样性影响因子[J]. 东北林业大学学报, 2015, 43(10): 63−67. doi: 10.3969/j.issn.1000-5382.2015.10.013
Shu S M, Zhao Y Y, Duan X, et al. Impact factors of forest diversity in Yunnan pine secondary forest based on structural equation model[J]. Journal of Northeast Forestry University, 2015, 43(10): 63−67. doi: 10.3969/j.issn.1000-5382.2015.10.013
|
[16] |
孜来比·买木提名, 杨华, 赵广亮, 等. 单木竞争指标的研究进展[J]. 西北林学院学报, 2012, 27(6): 152−158. doi: 10.3969/j.issn.1001-7461.2012.06.31
Zilaibi·Mutiming, Yang H, Zhao G L, et al. A review on the competition Indices of individual trees[J]. Journal of Northwest Forestry University, 2012, 27(6): 152−158. doi: 10.3969/j.issn.1001-7461.2012.06.31
|
[17] |
Biging G S, Dobbertin M. A comparison of distance-dependent competition measures for height and basal area growth of individual conifer trees[J]. Forest Science, 1992, 38(3): 695−720.
|
[18] |
张晔珵, 张怀清, 陈永富, 等. 基于树冠因子的林木竞争指数研究[J]. 林业科学研究, 2016, 29(1): 80−84. doi: 10.3969/j.issn.1001-1498.2016.01.012
Zhang Y C, Zhang H Q, Chen Y F, et al. Study of tree competition index based on crown feature[J]. Forest Research, 2016, 29(1): 80−84. doi: 10.3969/j.issn.1001-1498.2016.01.012
|
[19] |
刘琪璟. 中国立木材积表[M]. 北京: 中国林业出版社, 2017: 381.
Liu Q J. Tree volum tables of China[M]. Beijing: China Forestry Publishing House, 2017: 381.
|
[20] |
Cronbach L. Coefficient alpha and the internal structure of tests[J]. Psychometrika, 1951, 16(3): 297−334. doi: 10.1007/BF02310555
|
[21] |
王妍. 基于结构方程模型的林木竞争指标研究[D]. 北京: 北京林业大学, 2014.
Wang Y, Tree competition index based on the structural equation model[D]. Beijing: Beijing Forestry University, 2014.
|
[22] |
董灵波, 田栋元, 陈莹, 等. 基于结构方程模型的兴安落叶松天然林更新影响因素[J]. 应用生态学报, 2021, 32(8): 2763−2772.
Dong L B, Tian D Y, Chen Y, et al. Clarifying the factors affecting Larix gmelinii forest regeneration based on structural equation model[J]. Chinese Journal of Applied Ecology, 2021, 32(8): 2763−2772.
|
[23] |
曹小玉, 委霞, 赵文菲, 等. 基于结构方程模型的森林健康评价[J]. 生态学杂志, 2021, 40(8): 2635−2647.
Cao X Y, Wei X, Zhao W F, et al. Evaluation of forest health based on structural equation model[J]. Chinese Journal of Ecology, 2021, 40(8): 2635−2647.
|
[24] |
李建军, 李际平, 刘素青, 等. 基于Hegyi改进模型的红树林空间结构竞争分析[J]. 中南林业科技大学学报, 2010, 30(12): 23−27. doi: 10.3969/j.issn.1673-923X.2010.12.005
Li J J, Li J P, Liu S Q, et al. The Mangrove spatial structure competitive analysis based on Hegyi improved model[J]. Journal of Central South University of Forestry & Technology, 2010, 30(12): 23−27. doi: 10.3969/j.issn.1673-923X.2010.12.005
|
[25] |
闫旭, 张心艺, 李阳宁, 等. 复层林对闽楠幼树生长、叶片形态和光合特性的影响[J]. 植物科学学报, 2022, 40(4): 553−564. doi: 10.11913/PSJ.2095-0837.2022.40553
Yan X, Zhang X Y, Li Y N, et al. Effects of unevenly aged two-layer mixed forest on growth, leaf morphology, and photosynthetic characteristics of Phoebe bournei (Hemsl.) Yang saplings[J]. Plant Science Journal, 2022, 40(4): 553−564. doi: 10.11913/PSJ.2095-0837.2022.40553
|
[26] |
董雪婷, 张静, 张志东, 等. 树种相互作用、林分密度和树木大小对华北落叶松生产力的影响[J]. 应用生态学报, 2021, 32(8): 2722−2728.
Dong X T, Zhang J, Zhang Z D, et al. Effects of tree species interaction, stand density, and tree size on the productivity of Larix principis-rupprechtii[J]. Chinese Journal of Applied Ecology, 2021, 32(8): 2722−2728.
|
[27] |
Versace S, Garfì V, Dalponte M, et al. Species interactions in pure and mixed-species stands of silver fir and European beech in Mediterranean mountains[J]. iForest, 2021, 14: 1−11. doi: 10.3832/ifor3476-013
|
[28] |
黄小荣. 广西马尾松林植物功能多样性与生产力的关系[J]. 生物多样性, 2018, 26(7): 690−700.
Huang X R. Relationship between plant functional diversity andproductivity of Pinus massoniana plantations in Guangxi[J]. Biodiversity Science, 2018, 26(7): 690−700.
|
[29] |
汪清, 潘萍, 欧阳勋志, 等. 马尾松–木荷不同比例混交林种内和种间竞争强度[J]. 生态学杂志, 2021, 40(1): 49−57.
Wang Q, Pan P, Ouyang X Z, et al. Intraspecific and interspecific competition intensity in mixed plantation with different proportion of Pinus massoniana and Schima superba[J]. Chinese Journal of Ecology, 2021, 40(1): 49−57.
|
[30] |
周文嵩. 华北落叶松次生林种内、种间关系及影响机制研究[D]. 北京: 北京林业大学, 2018.
Zhou W S. Research on intraspecific and interspecific relationship and impact mechanism of Larix principis-rupprechtii in secondary forests[D]. Beijing: Beijing Forestry University, 2018.
|
[31] |
邹顺, 周国逸, 张倩媚, 等. 1992—2015年鼎湖山季风常绿阔叶林群落结构动态[J]. 植物生态学报, 2018, 42(4): 442−452.
Zou S, Zhou G Y, Zhang Q M, et al. Long-term (1992–2015) dynamics of community composition and structure in a monsoon evergreen broad-leaved forest in Dinghushan Biosphere Reserve[J]. Chinese Journal of Plant Ecology, 2018, 42(4): 442−452.
|
[32] |
吴初平, 韩文娟, 江波, 等. 浙江定海次生林内物种丰富度与生物量和生产力关系的环境依赖性[J]. 生物多样性, 2018, 26(6): 545−553. doi: 10.17520/biods.2017320
Wu C P, Han W J, Jiang B, et al. Relationships between species richness and biomass/productivity depend on environmental factors in secondary forests of Dinghai, Zhejiang[J]. Biodiversity Science, 2018, 26(6): 545−553. doi: 10.17520/biods.2017320
|
[33] |
朱锦迪. 浙江省针阔混交林生产力及其结构研究[D]. 杭州: 浙江农林大学, 2021.
Zhu J D. Study on the productivity and structure of coniferous and broad-leaved mixed in Zhejiang Province[D]. Hangzhou: Zhejiang A&F University, 2021.
|
[34] |
Hans P. Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures[J]. Forest Ecology & Management, 2014, 327: 251−264.
|
[35] |
Nyfeler D, Huguenin-Elie O, Suter M, et al. Strong mixture effects among four species in fertilized agricultural grassland led to persistent and consistent transgressive overyielding[J]. Journal of Applied Ecology, 2009, 46(3): 683−691.
|
1. |
黄康庭,周娟,陈晓龙,艾辉辉,梁明伟,王荣洁,余平福. 广西珍贵乡土树种人工林林下植物的多样性. 桉树科技. 2025(01): 49-56 .
![]() | |
2. |
符航,谭国华,刘玮,蔡奇良,王琼,潘峰. 基于CiteSpace和VOSviewer软件的城市土壤食物网研究趋势分析. 生物灾害科学. 2025(01): 51-65 .
![]() | |
3. |
江姗,魏天兴,范德卉,于欢,叶小曼,谢宇,李世杰. 晋西黄土区沟谷不同部位植物多样性. 北京林业大学学报. 2024(06): 20-27 .
![]() |