• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Xu Fangze, Sun Hailong, Shi Jingning, He Danni, Wang Fuzeng, Xiang Wei. Spatial pattern analysis of dominant tree species saplings in spruce-fir coniferous and broadleaved mixed forests based on Ripley L function[J]. Journal of Beijing Forestry University, 2024, 46(10): 1-10. DOI: 10.12171/j.1000-1522.20230237
Citation: Xu Fangze, Sun Hailong, Shi Jingning, He Danni, Wang Fuzeng, Xiang Wei. Spatial pattern analysis of dominant tree species saplings in spruce-fir coniferous and broadleaved mixed forests based on Ripley L function[J]. Journal of Beijing Forestry University, 2024, 46(10): 1-10. DOI: 10.12171/j.1000-1522.20230237

Spatial pattern analysis of dominant tree species saplings in spruce-fir coniferous and broadleaved mixed forests based on Ripley L function

More Information
  • Received Date: September 18, 2023
  • Revised Date: December 24, 2023
  • Accepted Date: July 21, 2024
  • Available Online: October 11, 2024
  • Objective 

    The structure and dynamics of dominant tree species saplings determine the structure and growth dynamics of future stand. Investigating the spatial distribution patterns and interspecies associations of dominant tree seedlings is of significant theoretical and practical importance for the restoration of forest ecosystems and the prediction of forest succession dynamics.

    Method 

    This study focused on five dominant tree species in a 1-hectare mixed coniferous and broadleaved forest plot in the Jingouling Forest Farm, Wangqing County, Jilin Province of northeastern China. The spatial correlations between five kinds of saplings and the intraspecific spatial correlations between saplings and juveniles and adults were analyzed by univariate Ripley L and bivariate Ripley L functions.

    Result 

    A total of 471 saplings were investigated in the plot, and the quantity size was as follows: Abies nephrolepis (357) > Picea jezoensis var. komarovii (47) > Tilia amurensis (23) > Acer pictum subsp. mono (22) > Pinus koraiensis (14). Abies nephrolepis occupied an absolute advantage. The spatial patterns of Abies nephrolepis, Picea jezoensis var. komarovii and Tilia amurensis saplings with the increase of scale conformed to the aggregation-uniform-random distribution pattern; the scales of aggregated distribution of Pinus koraiensis were 14−21 m, 31−36 m and 39−50 m, and other scales were random. Acer pictum subsp. mono distributed randomly in 0−50 m and distributed aggregately at few scales (23−38 m). The interspecific relationships between saplings were mostly positively correlated with the significant indigenous space (0−36 m), uncorrelated on the 36−42 m scale, and only saplings of Abies nephrolepis were negatively correlated with the significant indigenous space on a large scale (42−50 m), indicating that the five saplings maintained a good relationship of mutual benefit and symbiosis. The intraspecific correlation was mainly spatial positive correlation, and there was a significant negative correlation between saplings and adult trees in large scale (42−50 m).

    Conclusion 

    The spatial distribution and associations of saplings in this forest stand are primarily influenced by seed dispersal limitations and environmental heterogeneity at the horizontal structure level. Saplings predominantly exhibit an aggregated distribution at smaller scales. In the vertical structure, the main forest layer provides a significant “shelter effect” for the saplings. There exists a beneficial symbiotic relationship both within and between the five sapling species. Therefore, in the restoration of natural mixed secondary forest of spruce and fir, it is feasible to conduct seeding of these saplings at a small scale of 0−36 m, based on forest management needs. The degree of aggregation should prioritize fir, followed by spruce, and then pine, to enhance the survival rate of saplings and promote their nature regeneration.

  • [1]
    Wright S J, Kitajima K, Kraft N J B, et al. Functional traits and the growth-mortality trade-off in tropical trees[J]. Ecology, 2010, 91(12): 3664−3674. doi: 10.1890/09-2335.1
    [2]
    Figueroa-Rangel B L, Olvera-Vargas M. Regeneration patterns in relation to canopy species composition and site variables in mixed oak forests in the Sierra de Manantlan Biosphere Reserve, Mexico[J]. Ecological Research, 2000, 15: 249−261. doi: 10.1046/j.1440-1703.2000.00346.x
    [3]
    Du X C, Ren Y, Dang G D, et al. Distribution and plant community associations of the understory bamboo fargesia Qinlingensis in the Foping National Nature Reserve, China[J]. Annals of Forest Science, 2011, 68: 1197−1206. doi: 10.1007/s13595-011-0104-0
    [4]
    Pham V H, 陈昌雄, 洪伟, 等. 不同林分下胖大海幼树幼苗更新分布格局[J]. 森林与环境学报, 2015, 35(4): 377−384.

    Pham V H, Chen C X, Hong W, et al. Distribution pattern of Sterculia lychnophora saplings regeneration in the different forest stands[J]. Journal of Forest and Environment, 2015, 35(4): 377−384.
    [5]
    闫海冰, 韩有志, 杨秀清, 等. 关帝山云杉天然更新与土壤有效氮素异质性的空间关联性[J]. 应用生态学报, 2010, 21(3): 533−540.

    Yan H B, Han Y Z, Yang X Q, et al. Nature regebreation of Pecia and heterogeneity of soil available nitrogen in Guandi Moutanin[J]. Chinese Journal of Applied Ecology, 2010, 21(3): 533−540.
    [6]
    沈志强, 华敏, 丹曲, 等. 藏东南川滇高山栎种群不同生长阶段的空间格局与关联性[J]. 应用生态学报, 2016, 27(2): 387−394.

    Shen Z Q, Hua M, Dan Q, et al. Spatial pattern analysis and associations of Quercus aquifolioides population at different growth stages in Southeast Tibet, China[J]. Chinese Journal of Applied Ecology, 2016, 27(2): 387−394.
    [7]
    何熙祥, 玉米提·哈力克, 董宗炜, 等. 水分梯度下胡杨荒漠河岸林种内竞争与空间格局研究[J]. 生态学报, 2023, 43(18): 1−10.

    He X X, Halik ÜMÜT, Dong Z W, et al. Spatial distribution pattern and intraspecific competition of Poplus euphratica riparian forests under different water gradients[J]. Acta Ecologica Sinica, 2023, 43(18): 1−10.
    [8]
    郑小贤. 长白山森林研究[M]. 北京: 中国林业出版社. 2014.

    Zheng X X. Research on the forest of Changbai Mountain[M]. Beijing: China Forestry Publishing House, 2014.
    [9]
    李晖, 杨华, 谢榕. 长白山云冷杉林林隙冠层特征及与幼苗幼树的关系[J]. 北京林业大学学报, 2021, 43(7): 54−62. doi: 10.12171/j.1000-1522.20200131

    Li H, Yang H, Xie R. Canopy characteristics in gaps and its relationship with seedlings and saplings in a spruce-fir forest in the Changbai Mountain area of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(7): 54−62. doi: 10.12171/j.1000-1522.20200131
    [10]
    卢军, 张会儒, 雷相东, 等. 长白山云冷杉针阔混交林幼树树高-胸径模型[J]. 北京林业大学学报, 2015, 37(11): 10−25.

    Lu J, Zhang H R, Lei X D, et al. Height-diameter models for saplings in a spruce-fir mixed forest in Changbai Mountains[J]. Journal of Beijing Forestry University, 2015, 37(11): 10−25.
    [11]
    张金屯. 数量生态学[M]. 北京: 科学出版社. 2004.

    Zhang J T. Quantitative ecology[M]. Beijing: Science Press, 2004.
    [12]
    张金屯. 植物种群空间分布的点格局分析[J]. 植物生态学报, 1998, 22(4): 57−62. doi: 10.3321/j.issn:1005-264X.1998.04.008

    Zhang J T. Analysis of spatial piont pattren for plant species[J]. Chinese Journal of Plant Ecology, 1998, 22(4): 57−62. doi: 10.3321/j.issn:1005-264X.1998.04.008
    [13]
    董灵波, 刘兆刚, 张博,等. 基于Ripley L和O-ring函数的森林景观空间分布格局及其关联性[J]. 应用生态学报, 2014, 25(12): 3429−3436.

    Dong L B, Liu Z G, Zhang B, et al. Forest landscapes’ spatial point patterns and associations based on Ripley L and O-ring functions[J]. Chinese Journal of Applied Ecology, 2014, 25(12): 3429−3436.
    [14]
    池森, 王从军, 黎庆菊, 等. 喀斯特次生林幼树更新空间分布格局及种间关联性[J]. 应用生态学报, 2020, 31(12): 3989−3996.

    Chi S, Wang C J, Li Q J, et al. Spatial distribution and interspecific associations of regenerating saplings in karst secondary forests[J]. Chinese Journal of Applied Ecology, 2020, 31(12): 3989−3996.
    [15]
    郭韦韦. 长白山云冷杉针阔混交林天然更新的优化结构和数量标准研究[D]. 北京: 北京林业大学, 2017.

    Guo W W. Optimized structure and quantitative standard of natural regeneration in a spurce-fir mixed broadleaf-conifer forest in Changbai Mountains[D]. Beijing: Beijing Forestry University, 2017.
    [16]
    陈大珂. 天然次生林: 结构、功能、动态与经营[M]. 哈尔滨: 东北林业大学出版社, 1994.

    Chen D K. Natural secondary forests-structure, function, dynamics and management[M]. Harbin: Northeast Forestry University Press, 1994.
    [17]
    Frost I, Rydin H. Spatial pattern and size distribution of the animal-dispersed tree Quercus robur in two spruce dominated forests[J]. Ecology Science, 2000, 7(1): 38−44.
    [18]
    张赟, 张春雨, 赵秀海, 等. 长白山次生林乔木树种空间分布格局[J]. 生态学杂志, 2008, 27(10): 1639−1646.

    Zhang Y, Zhang C Y, Zhao X H, et al. Spatial distribution patterns of tree species in a secondary forest in Changbai Mountains[J]. Chinese Journal of Ecology, 2008, 27(10): 1639−1646.
    [19]
    赵浩彦. 长白山云冷杉林幼树结构和生长动态分析[D]. 北京: 北京林业大学, 2012.

    Zhao H Y. The analysis of structure and growth dynamics of saplings in spruce-fir forest in Changbai Mountain[D]. Beijing: Beijing Forestry University, 2012.
    [20]
    滕毅, 张青, 亢新刚,等. 长白山臭冷杉种群结构与动态[J]. 中南林业科技大学学报, 2017, 37(3): 49−56.

    Teng Y, Zhang Q, Kang X G, et al. Population structures and dynamics of Abies nephrolepis in Changbai Mountain[J]. Journal of Central South University of Forestry & Technology, 2017, 37(3): 49−56.
    [21]
    程福山, 刘志宇, 吴蒙嘉,等. 云冷杉天然次生林种子雨时空分布特征[J]. 东北林业大学学报, 2021, 49(6): 16−18, 52. doi: 10.3969/j.issn.1000-5382.2021.06.004

    Cheng F S, Liu Z Y, Wu M J, et al. Temporal and spatial distribution of seed rain in natural spruce-fir mixed forest[J]. Journal of Northeast Forestry University, 2021, 49(6): 16−18, 52. doi: 10.3969/j.issn.1000-5382.2021.06.004
    [22]
    朴正吉. 红松: 为何幼树难觅?[J]. 森林与人类, 2018(8): 68−77.

    Piao Z J. Korean pine : why saplings are hard to find?[J]. Forest and Human, 2018(8): 68−77.
    [23]
    钱多多, 匡旭, 王绪高,等. 2006—2017年长白山阔叶红松林木本植物种子雨的时空动态[J]. 应用生态学报, 2019, 30(5): 1487−1493.

    Qian D D, Kuang X, Wang X G, et al. Spatio-temporal dynamics of woody plants seed rains in broad-leaved Korean pine mixed forest in Changbai Mountains from 2006 to 2017, China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1487−1493.
    [24]
    陈香茗, 赵秀海, 夏富才, 等. 长白山紫椴种子雨的时空分布格局[J]. 东北林业大学学报, 2011, 39(1): 7−10.

    Chen X M, Zhao X H, Xia F C, et al, Spatial temporal dynamics of seed rain of Tilia amurensis in forest stands in Changbai Mountain[J]. Journal of Northeast Forestry university, 2011, 39(1): 7−10.
    [25]
    兰航宇, 段文标, 陈立新. 小兴安岭天然针阔混交林主要树种空间格局及其联性[J]. 生态学报, 2019, 39(18): 6660−6669.

    Lan H Y, Duan W B, Chen L X, et al. Spatial point patterns and associations of populations in the coniferous and deciduous broadleaved mixed forest in Xiaoxing’an Mountain[J]. Acta Ecologica Sinica, 2019, 39(18): 6660−6669.
    [26]
    陈材, 唐光大, 董晓全,等. 雷州半岛风水林灌木层优势种群空间分布格局与关联性[J/OL]. 应用生态学报, 2023 [2023−09−10]. DOI: 10.13287/j.1001-9332.202402.006.

    Chen C, Tang G D, Dong X Q, et al, Spatial distribution pattern and correlation of dominant populations in the shrub layer of Fengshui forests in Leizhou Peninsula, China[J/OL]. Chinese Journal of Applied Ecology, 2023 [2023−09−10]. DOI: 10.13287/j.1001-9332.202402.006.
    [27]
    程福山. 吉林汪清云冷杉林种子雨和幼苗时空格局研究[D]. 吉林: 北华大学, 2021.

    Cheng F S. Spatial-temporal pattern of seed rain and seedlings in spruce-fir forest of Wangqing Country, Jilin Province[D]. Jilin: Beihua University, 2021.
    [28]
    杨华, 李艳丽, 沈林, 等. 长白山云冷杉林幼苗幼树空间分布格局及其更新特征[J]. 生态学报, 2014, 34(24): 7311−7319.

    Yang H, Li Y L, Shen L, et al. Spatial distribution patterns of seedling and sapling in a spruce-fir forest in the Changbai Mountains area in northeastern China[J]. Acta Ecologica Sinica, 2014, 34(24): 7311−7319.
    [29]
    He D N, Peng D L, Yang H, et al. The response of seedlings and saplings to canopy structure and light in different gaps in a spruce-fir mixed stand in Changbai Mountains, China[J]. Forest Ecology and Management, 2023, 546: 121365. doi: 10.1016/j.foreco.2023.121365
    [30]
    彭舜磊, 闫小婷, 齐光, 等. 伏牛山栓皮栎群落优势种群种间关联动态分析[J]. 森林与环境学报, 2018, 38(3): 326−333.

    Peng S L, Yan X T, Qi G, et al. Interspecific association dynamic changes among the dominant species of Quercus variabilis community in Funiushan National Nature Reserve[J]. Journal of Forest and Environment, 2018, 38(3): 326−333.
    [31]
    周振钊, 范春楠, 郭忠玲, 等. 长白山红松阔叶林林隙及更新特征[J]. 北华大学学报(自然科学版), 2019, 20(2): 161−167.

    Zhou Z Z, Fan C N, Guo Z L, et al. Gap and regeneration characteristics of Korean pine broad-leaved forest in Changbai Mountain[J]. Journal of Beihua University (Natural Science), 2019, 20(2): 161−167.
    [32]
    金鑫, 胡万良, 丁磊, 等. 遮阴对红松幼苗生长及光合特性的影响[J]. 东北林业大学学报, 2009, 37(9): 12−13, 47. doi: 10.3969/j.issn.1000-5382.2009.09.004

    Jin X, Hu W L, Ding L, et al. Effect of shading on the growth and photosynthetuc characteristics of Pinus koraiensi[J]. Journal of Northeast Forestry University, 2009, 37(9): 12−13, 47. doi: 10.3969/j.issn.1000-5382.2009.09.004
    [33]
    任浩, 高国强, 马耀远, 等. 不同年龄红松根系氮素吸收及其与根形态和化学性状的关系[J]. 北京林业大学学报, 2021, 43(10): 65−72. doi: 10.12171/j.1000-1522.20200385

    Ren H, Gao G Q, Ma Y Y, et al. Root nitrogen uptake and its relationship with root morphological and chemical traits in Pinus koraiensis at different ages[J]. Journal of Beijing Forestry University, 2021, 43(10): 65−72. doi: 10.12171/j.1000-1522.20200385
    [34]
    纪文文, 王立海, 时小龙, 等. 基于树木雷达的小兴安岭典型树种粗根分布及其影响因素研究[J]. 北京林业大学学报, 2020, 42(5): 33−41. doi: 10.12171/j.1000-1522.20190285

    Ji W W, Wang L H, Shi X L, et al. Coarse root distribution and its influencing factors of typical species in Lesser Xing’an Range based on tree radar unit[J]. Journal of Beijing Forestry University, 2020, 42(5): 33−41. doi: 10.12171/j.1000-1522.20190285
    [35]
    孙慧杰. 色木槭形态特征及播种育苗方法[J]. 特种经济动植物, 2013, 16(4): 36. doi: 10.3969/j.issn.1001-4713.2013.04.016

    Sun H J. Morphological characteristics and sowing and seedling raising methods of Acer mono[J]. Journal of Special Economic Animals and Plant, 2013, 16(4): 36. doi: 10.3969/j.issn.1001-4713.2013.04.016
    [36]
    Maciel-Nájera J F, Hernández-Velasco J, Gonzalez-Elizondo M. Unexpected spatial patterns of natural regeneration in typical uneven-aged mixed pine-oak forests in the Sierra Madre Occidental, Mexico[J]. Global Ecology and Conservation, 2020, 23: 1111−1123.
    [37]
    Fibich P, Lep J, Novotny V, et al. Spatial patterns of tree species distribution in New Guinea primary and secondary lowland rain forest[J]. Journal of Vegetation Science, 2016, 27(12): 328−339.
    [38]
    张凌宇. 大兴安岭中部天然次生林种子雨动态、更新分布格局及影响因子研究[D]. 哈尔滨: 东北林业大学, 2020.

    Zhang L Y. Seed rain dynamics, regeneration distribution pattern and influencing factors of natural secondary forests in the central of Greater Xin’an Mountains[D]. Harbin: Northeast Forestry University, 2020.
    [39]
    王磊, 孙启武, 郝朝运. 皖南山区南方红豆杉种群不同龄级立木的点格局分析[J]. 应用生态学报, 2010, 21(2): 272−278.

    Wang L, Sun Q W, Hao C Y. Pattern analysis of different age-class Taxus chinensis var. mairei individuals in mountainous area of southern Anhui Province[J]. Chinese Journal of Applied Ecology, 2010, 21(2): 272−278.
    [40]
    Stoll P, Prati D. Intraspecific arrregation alters competitive interactions in experimental plant communities[J]. Ecology, 2001, 82(2): 319−327. doi: 10.1890/0012-9658(2001)082[0319:IAACII]2.0.CO;2
    [41]
    Flores J, Jurado E. Are nurse-protégé interactions of dominant woody species in desert-oasis ecotone of South Junggar Basin, NW China[J]. Journal of Plant Interactions, 2014, 9(1): 738−744.
    [42]
    李艳丽, 杨华, 邓华锋. 蒙古栎–糠椴天然混交林空间格局研究[J]. 北京林业大学学报, 2019, 41(3): 33−41.

    Li Y L, Yang H, Deng H F. Spatial distribution patterns of Quercus mongolica and Tilia mandshurica natural mixed forests[J]. Journal of Beijing Forestry University, 2019, 41(3): 33−41.
    [43]
    王大伟. 小兴安岭阔叶红松林大径级个体对邻木空间格局的影响[D]. 哈尔滨: 东北林业大学, 2019.

    Wang D W. The influence of large trees on spatial distribution of adjacent trees in bordleaved Korean pine forests in Xiaoxing’an Mountains[D]. Harbin: Northeast Forestry University, 2019.

Catalog

    Article views (243) PDF downloads (40) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return