Citation: | Ma Erni, Wang Yuyao, Li Jingyu, Zhong Xiang. Research progress on the effect of water on pore structure of wood cell wall[J]. Journal of Beijing Forestry University, 2024, 46(2): 1-8. DOI: 10.12171/j.1000-1522.20230243 |
Wood is a kind of natural renewable resource with multi-pore structure. Its pore structure, especially the cell wall pore structure, is highly important, which is a fundamental scientific issue in wood processing, with practical significance for improving the comprehensive utilization rate of wood. In this paper, the types of pores in wood and their characterization techniques were briefly introduced. On this basis, research progress concerning the effect of water on the pore structure of wood cell wall was reviewed. Existing problems and challenges in the field of pore structure changes of wood cell wall induced by water were summarized, and the future work and prospects were prospected, with the wish of providing new insights and deep understanding for revealing the interaction between wood and water.
[1] |
中户莞二. 木材の空隙構造[J]. 材料(日), 1973, 22(241): 903−907.
Kanji N. Pore structure of wood[J]. Materials, 1973, 22(241): 903−907.
|
[2] |
赵广杰. 木材中的纳米尺度、纳米木材及木材–无机纳米复合材料[J]. 北京林业大学学报, 2002, 24(5/6): 204−207.
Zhao G J. Nano-dimensions in wood, nano-wood, wood and inorganic nano-composites[J]. Journal of Beijing Forestry University, 2002, 24(5/6): 204−207.
|
[3] |
马尔妮, 赵广杰. 木材物理学专论[M]. 北京: 中国林业出版社, 2012.
Ma E N, Zhao G J. Special topics on wood physics[M]. Beijing: China Forestry Publishing House, 2012.
|
[4] |
Everett D H. Manual of symbols and terminology for physicochemical quantities and units, appendix II: definitions, terminology and symbols in colloid and surface[J]. Chemistry Pure and Applied Chemistry, 1972, 31(4): 577−638. doi: 10.1351/pac197231040577
|
[5] |
王哲, 王喜明. 木材多尺度孔隙结构及表征方法研究进展[J]. 林业科学, 2014, 50(10): 123−133.
Wang Z, Wang X M. Research progress of multi-scale pore structure and characterization methods of wood[J]. Scientia Silvae Sinicae, 2014, 50(10): 123−133.
|
[6] |
Pfriem A, Zauer M, André W. Alteration of the pore structure of spruce ( Picea abies (L.) Karst.) and maple ( Acer pseudoplatanus L.) due to thermal treatment as determined by helium pycnometry and mercury intrusion porosimetry[J]. Holzforschung, 2009, 63(1): 94−98. doi: 10.1515/HF.2009.027
|
[7] |
Chang S S, Bruno C, Julien R, et al. Mesoporosity as a new parameter for understanding tension stress generation in trees[J]. Journal of Experimental Botany, 2009, 60(11): 3023−3030. doi: 10.1093/jxb/erp133
|
[8] |
苌姗姗, 胡进波, Clair Bruno, 等. 氮气吸附法表征杨木应拉木的孔隙结构[J]. 林业科学, 2011, 47(10): 137−143.
Chang S S, Hu J B, Bruno C, et al. Pore structure characterization of poplar tension wood by nitrogen adsorption-desorption method[J]. Scientia Silvae Sinicae, 2011, 47(10): 137−143.
|
[9] |
Burghoff H G, Pusch W. Characterization of water structure in cellulose acetate membranes by calorimetric measurements[J]. Journal of Applied Polymer Science, 1979, 23(2): 473−484. doi: 10.1002/app.1979.070230217
|
[10] |
Berthold J, Rinaudo M, Salme´n L. Association of water to polar groups-estimations by an adsorption model for ligno-cellulosic materials[J]. Colloids and Surfaces A, 1996, 112(2−3): 117−129. doi: 10.1016/0927-7757(95)03419-6
|
[11] |
Zauer M, Kretzschmar J, Grossmann L. Analysis of the pore-size distribution and fiber saturation point of native and thermally modified wood using differential scanning calorimetry[J]. Wood Science and Technology, 2014, 48: 177−193. doi: 10.1007/s00226-013-0597-9
|
[12] |
Zhong X, Ma E N. A novel approach for characterizing pore size distribution of wood cell wall using differential scanning calorimetry thermoporosimetry[J]. Thermochimica Acta, 2022, 718(179380): 1−6.
|
[13] |
Li J Y, Ma E N. Characterization of water in wood by time-domain nuclear magnetic resonance spectroscopy (TD-NMR): a review[J]. Forests, 2021, 12: 886. doi: 10.3390/f12070886
|
[14] |
李文郁, 尹健昊, 王健, 等. 低场核磁共振技术在水泥基材料中的理论模型及应用[J]. 硅酸盐学报, 2022, 50(11): 2992−3008.
Li W Y, Yin J H, Wang J, et al. Principles and applications of low-field nuclear magnetic resonance in cementitious materials[J]. Journal of the Chinese Ceramic Society, 2022, 50(11): 2992−3008.
|
[15] |
Li X, Zhao Z. Time domain-NMR studies of average pore size of wood cell walls during drying and moisture adsorption[J]. Wood Science and Technology, 2020, 54(5): 1241−1251. doi: 10.1007/s00226-020-01209-x
|
[16] |
Ge X, Myers M T, Liu J, et al. Determining the transverse surface relaxivity of reservoir rocks: a critical review and perspective[J]. Marine and Petroleum Geology, 2021, 126: 104934. doi: 10.1016/j.marpetgeo.2021.104934
|
[17] |
Kalliat M, Kwak C Y, Schmidt P W, et al. Small angle X-ray scattering measurement of porosity in wood following pyrolysis[J]. Wood Science and Technology, 1983, 17(4): 241−257. doi: 10.1007/BF00349913
|
[18] |
Felhofer M, Bock P, Singh A, et al. Wood deformation leads to rearrangement of molecules at the nanoscale[J]. Nano Letters, 2020, 20(4): 2647−2653. doi: 10.1021/acs.nanolett.0c00205
|
[19] |
Fengel D. The ultrastructure of cellulose from wood-part 2: problems of the isolation of cellulose[J]. Wood Science and Technology, 1970, 4: 15−35. doi: 10.1007/BF00356234
|
[20] |
Li J Y, Ma E N. 2D time-domain nuclear magnetic resonance (2D TD-NMR) characterization of cell wall water of Fagus sylvatica and Pinus taeda L.[J]. Cellulose, 2022, 29: 8491−8508. doi: 10.1007/s10570-022-04789-y
|
[21] |
Stone J E, Scallan A M, Aberson G M A. A study of cell wall structure by nitrogen adsorption[J]. Pulp and Paper Magazine of Canada, 1965, 66: 407−414.
|
[22] |
沢辺攻, 森和雄, 武内保. 木材細胞膜の微細空隙構造[J]. 木材学会志, 1973, 19(2): 55−62.
Osamu S, Kazuo M, Tamotsu T. Micro-pore structure in cell wall of wood[J]. Journal of the Japan Wood Research Society, 1973, 19(2): 55−62.
|
[23] |
沢辺攻. 溶媒置換乾燥した木材およびセルロースのポロシティと空隙構造(第2報)[J]. 木材学会志, 1978, 24(11): 828−832.
Osamu S. Porosity and pore structure of wood and cellulose dried after solvent-replacement II[J]. Journal of the Japan Wood Research Society, 1978, 24(11): 828−832.
|
[24] |
沢辺攻. 膨潤木綿セルロース繊維の空隙構造[J]. 木材学会志, 1980, 26(4): 262−267.
Osamu S. Pore structure in swollen cotton cellulose fibers: effects of treatment with sodium hydroxide[J]. Journal of the Japan Wood Research Society, 1980, 26(4): 262−267.
|
[25] |
罗文圣, 赵广杰. 木材细胞壁的空隙构造及物质的输运过程[J]. 北京林业大学学报, 2001, 23(2): 85−89.
Luo W S, Zhao G J. Pore structure of cell wall of wood and transport processes of substance[J]. Journal of Beijing Forestry University, 2001, 23(2): 85−89.
|
[26] |
Stone J E. The porous of wood and fibers[J]. Pulp and Paper Magazine of Canada, 1964, 65(1): 3−12.
|
[27] |
Hui L, Liu Z, Ni Y. Characterization of high-yield pulp (HYP) by the solute exclusion technique[J]. Bioresource Technology, 2009, 100(24): 6630−6634. doi: 10.1016/j.biortech.2009.07.055
|
[28] |
费本华, 赵勇, 侯祝强, 等. 干燥过程中木材内部孔隙度变化的初步研究[J]. 北京林业大学学报, 2005, 27(增刊1): 1−4.
Fei B H, Zhao Y, Hou Z Q, et al. Changes of wood interior porosity during the drying process[J]. Journal of Beijing Forestry University, 2005, 27(Suppl. 1): 1−4.
|
[29] |
Grigsby W J, Kroese H, Dunningham E A. Characterisation of pore size distributions in variously dried Pinus radiata: analysis by thermoporosimetry[J]. Wood Science and Technology, 2013, 47(4): 737−747. doi: 10.1007/s00226-013-0537-8
|
[30] |
Park S, Venditti R A, Jameel H, et al. Changes in pore size distribution during the drying of cellulose fibers as measured by differential scanning calorimetry[J]. Carbohydrate Polymers, 2006, 66(1): 97−103. doi: 10.1016/j.carbpol.2006.02.026
|
[31] |
Borrega M, Karenlämpi P P. Cell wall porosity in Norway spruce wood as affected by high-temperature drying[J]. Wood and Fiber Science, 2011, 43(2): 206−214.
|
[32] |
Aarne N, Kontturi E, Laine J. Influence of adsorbed polyelectrolytes on pore size distribution of a water-swollen biomaterial[J]. Soft Matter, 2012, 8(17): 4740−4749. doi: 10.1039/c2sm07268h
|
[33] |
仲翔, 张少军, 马尔妮. 不同含水率状态下木材细胞壁孔径分布变化[J]. 北京林业大学学报, 2021, 43(11): 128−136. doi: 10.12171/j.1000-1522.20210260
Zhong X, Zhang S J, Ma E N. Variation in pore size distribution of wood cell wall under different moisture states[J]. Journal of Beijing Forestry University, 2021, 43(11): 128−136. doi: 10.12171/j.1000-1522.20210260
|
[34] |
仲翔. 全含水率范围内水分引发的木材细胞壁孔隙结构变化研究[D]. 北京: 北京林业大学, 2022.
Zhong X. Study on structural changes in cell wall pores of wood induced by water within full moisture content range [D]. Beijing: Beijing Forestry University, 2022.
|
[35] |
高鑫, 蔡家斌, 金菊婉, 等. 利用核磁共振测定木材润胀细胞壁的水分含量与孔径分布[J]. 南京林业大学学报: 自然科学版, 2017, 41(2): 150−156.
Gao X, Cai J B, Jin J W, et al. Bound water content and pore size diameter distribution in swollen cell walls determined by NMR cryoporometry[J]. Journal of Nanjing Forestry University: Natural Sciences Edition, 2017, 41(2): 150−156.
|
[36] |
Li J Y, Ma E N, Yang T, et al. Differences between hygroscopicity limit and cell wall saturation investigated by LF-NMR on southern pine ( Pinus spp.)[J]. Holzforschung, 2019, 73(10): 911−921. doi: 10.1515/hf-2018-0257
|
[37] |
Östlund Å, Köhnke T, Nordstierna L, et al. NMR cryoporometry to study the fiber wall structure and the effect of drying[J]. Cellulose, 2010, 17: 321−328. doi: 10.1007/s10570-009-9383-0
|
[38] |
周云洁. 基于时域核磁共振技术的木材孔径分布研究[D]. 呼和浩特: 内蒙古农业大学, 2015.
Zhou Y J. Study of wood pore size distribution based on time-domain nuclear magnetic resonance [D]. Hohhot: Inner Mongolia Agricultural University, 2015.
|
[39] |
李新宇. 利用时域核磁共振技术研究木材孔隙分布及水分运动[D]. 呼和浩特: 内蒙古农业大学, 2017.
Li X Y. The pore distribution and water movement in wood studied by time domain nuclear magnetic resonance technique [D]. Hohhot: Inner Mongolia Agricultural University, 2017.
|
[40] |
Bailey P J, Preston R D. Some aspects of softwood permeability[J]. Holzforschung, 1969, 23(4): 113−120. doi: 10.1515/hfsg.1969.23.4.113
|
[41] |
王瑜瑶, 马尔妮. 不同预处理方法对木材细胞壁孔隙结构影响研究[J]. 北京林业大学学报, 2023, 45(11): 140−151.
Wang Y Y, Ma E N. Study on the effect of different pretreatment methods on the pore structure of wood cell wall[J]. Journal of Beijing Forestry University, 2023, 45(11): 140−151.
|
[42] |
Shi J, Avramidis S. Water sorption hysteresis in wood (Ⅱ): mathematical modeling-functions beyond data fitting[J]. Holzforschung, 2017, 71(9): 317−326.
|
[43] |
Shi J, Avramidis S. Water sorption hysteresis in wood Ⅲ physical modeling by molecular simulation[J]. Holzforschung, 2017, 71(9): 733−741. doi: 10.1515/hf-2016-0231
|
[44] |
Shi J, Avramidis S. Dried cell wall nanopore configuration of douglas-fir, western red cedar and aspen heartwoods[J]. Wood Science and Technology, 2018, 52(4): 1025−1037. doi: 10.1007/s00226-018-1011-4
|
[45] |
Shi J, Avramidis S. Evolution of wood cell wall nanopore size distribution in the hygroscopic range[J]. Holzforschung, 2019, 73(10): 899−910. doi: 10.1515/hf-2018-0198
|
[46] |
Papadopoulos A N, Hill C A S, Gkaraveli A. Determination of surface area and pore volume of holocellulose and chemically modified wood flour using the nitrogen adsorption technique[J]. Holz als Roh-und Werkstoff, 2003, 61(6): 453−456. doi: 10.1007/s00107-003-0430-5
|
[47] |
Kulasinski K. Physical and mechanical aspects of moisture adsorption in wood biopolymers investigated with atomistic simulations[D]. Zurich: Eidgenössische Technische Hochschule Zürich, 2015.
|
[48] |
Paajanen A, Zitting A, Rautkari L, et al. Nanoscale mechanism of moisture-induced swelling in wood microfibril bundles[J]. Nano Letters, 2022, 22: 5143−5150.
|
[49] |
王凯清, 周子懿, 马尔妮. 基于糠醇改性的木材细胞壁孔隙变化对水分的影响研究[J]. 北京林业大学学报, 2023, 45(9): 127−136. doi: 10.12171/j.1000-1522.20230156
Wang K Q, Zhou Z Y, Ma E N. Study on the effect of cell wall pore changes on water of wood modified by furfuryl alcohol[J]. Journal of Beijing Forestry University, 2023, 45(9): 127−136. doi: 10.12171/j.1000-1522.20230156
|
[1] | Wang Yuyao, Ma Erni. Effects of different pretreatment methods on the pore structure of wood cell wall[J]. Journal of Beijing Forestry University, 2023, 45(11): 140-151. DOI: 10.12171/j.1000-1522.20230158 |
[2] | Wang Kaiqing, Zhou Ziyi, Ma Erni. Effects of cell wall pore changes on water of wood modified by furfuryl alcohol[J]. Journal of Beijing Forestry University, 2023, 45(9): 127-136. DOI: 10.12171/j.1000-1522.20230156 |
[3] | Li Yunke, Li Zhenxin, Zhang Yutong, Yi Qirui, Ma Erni. Water-induced effects of matrix in wood cell wall on cellulose crystalline structure[J]. Journal of Beijing Forestry University, 2022, 44(12): 121-131. DOI: 10.12171/j.1000-1522.20220150 |
[4] | Jin Zhi, Zeng Zhen, Zhao Guangjie. Microcrystalline structure evolution and pore structure formation of liquefied Chinese fir carbon fibers during different carbonization-activation processes[J]. Journal of Beijing Forestry University, 2022, 44(4): 138-146. DOI: 10.12171/j.1000-1522.20220043 |
[5] | Zhong Xiang, Zhang Shaojun, Ma Erni. Variation in pore size distribution of wood cell wall under different moisture states[J]. Journal of Beijing Forestry University, 2021, 43(11): 128-136. DOI: 10.12171/j.1000-1522.20210260 |
[6] | Ao Jiakun, Niu Jianzhi, Xie Baoyuan, Luo Ziteng, Lin Xingna, Yang Lan. Influence of soil macropore structure on saturated hydraulic conductivity[J]. Journal of Beijing Forestry University, 2021, 43(2): 102-112. DOI: 10.12171/j.1000-1522.20190429 |
[7] | LI Wei-yi, ZHANG Qiu-hui, ZHAO Guang-jie.. Structure and properties characterization of the flame retardant wood wallpaper.[J]. Journal of Beijing Forestry University, 2016, 38(7): 91-97. DOI: 10.13332/j.1000-1522.20150453 |
[8] | XIA Xiang-you, WANG En-heng, YANG Xiao-yan, CHEN Xiang-wei. Pore characteristics of mollisol argillic horizon under simulated freeze-thaw cycles[J]. Journal of Beijing Forestry University, 2015, 37(6): 70-76. DOI: 10.13332/j.1000-1522.20140474 |
[9] | CHANG Shan-shan, HU Jin-bo, ZHAO Guang-jie. .Effects of different drying pretreatments on pore structure of poplar tension wood[J]. Journal of Beijing Forestry University, 2011, 33(2): 91-95. |
[10] | LÜ Wen-hua, ZHAO Guang-jie. Structure and characterization of Cunninghamia lanceolata wood-MMT inter-calation nanocomposite(WMNC)[J]. Journal of Beijing Forestry University, 2007, 29(1): 131-135. DOI: 10.13332/j.1000-1522.2007.01.024 |
1. |
黄娜,刘洪海. 木材吸湿特性及其机理研究综述. 家具. 2025(02): 7-11 .
![]() |