Citation: | Li Haoyan, Liu Guoling, Zhang Chunyu, Yeerjiang Baiketuerhan, Cheng Yanxia, Zhao Xiuhai. Allocation characteristics and prediction models of water storage capacity among different tree species in Jiaohe, Jilin Province of northeastern China[J]. Journal of Beijing Forestry University, 2024, 46(9): 11-25. DOI: 10.12171/j.1000-1522.20230248 |
This paper analyzed the distribution characteristics of moisture contents of 12 tree species in northeastern China and species-specific allometric equations of 12 tree species were established to explore the differences in water storage capacity characteristics among different tree species with forest developing, as well as providing model reference for the estimation of water storage capacity in this area.
One-way ANOVA and multiple comparison methods were used to contrast differences in moisture content and water storage capacity proportion among various organs across the 12 tree species. Utilizing Kendall’s rank correlation analysis to identify DBH (D), tree height (H), and D2H as predictor variables in water storage capacity prediction models with whole-tree and organ-specific water storage capacity serving as response variables. Different forms of water storage capacity prediction models were constructed based on these relationships. Optimal models were selected through evaluation using the coefficient of determination, parameter significance level, and Akaike’s information criterion. Integrating stand information, this approach was employed to calculate the water storage capacity of trees across varied developing stages.
(1) Overall, average moisture content was highest in leaves, followed by roots, branches, and stems. Except for Carpinus cordata, all other species showed a consistent pattern in water allocation across organs: stem > root > branch > leaf. As D increased, the proportion of branch water storage capacity increased, while the proportion of stem and leaf water storage capacity decreased, with no significant changes in root water storage capacity. (2) The water storage capacity prediction models for all 12 tree species were best represented by logarithmic functions. The optimal independent variables for organ moisture content models of different tree species were different. (3) With forest succession, both water storage capacity and biomass per unit area increased.
The study highlights significant differences in water storage capacity and distribution among organs and tree species, with species-specific relationship between water storage capacity and D, as well as H. The percentage of water storage capacity of different organs shows different trends with the increase of breast diameter. The water content prediction models for all 12 tree species were best represented by logarithmic functions. The single-species models have higher fitting accuracy, while the multi-species model has broader application. This research elucidates the spatiotemporal dynamics of water status in temperate-boreal tree species, contributing to a deeper understanding of ecosystem dynamics. It provides a scientific basis for accurate estimation of tree water storage capacity in the forest region of Jiaohe, Jilin Province of northeastern China.
[1] |
Ievinsh G. Water content of plant tissues: so simple that almost forgotten?[J]. Plants, 2023, 12(6): 1238.
|
[2] |
王曙光, 普晓兰, 丁雨龙, 等. 云南箭竹地上部分生物量模型研究[J]. 南京林业大学学报(自然科学版), 2010, 34(1): 141−144.
Wang S G, Pu X L, Ding Y L, et al. A study on the aboveground biomass models of Fargesia yunnanensis[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2010, 34(1): 141−144.
|
[3] |
Yang Y, Kim J E, Song H J, et al. Methodology: non-invasive monitoring system based on standing wave ratio for detecting water content variations in plants[J/OL]. Plant Methods, 2021, 17[2023−10−16]. https://doi.org/10.1186/s13007-021-00757-y.
|
[4] |
刘树华, 李浩, 陆宏芳. 鼎湖山南亚热带森林生态系统服务价值动态[J]. 生态环境学报, 2011, 20(6): 1042−1047. doi: 10.3969/j.issn.1674-5906.2011.06.009
Liu S H, Li H, Lu H F. Dynamics in ecosystem service values of lower subtropical forest in Dinghushan[J]. Ecology and Environment, 2011, 20(6): 1042−1047. doi: 10.3969/j.issn.1674-5906.2011.06.009
|
[5] |
王忠诚, 邓秀秀, 崔卓卿, 等. 洞庭湖区主要森林类型土壤持水性能研究[J]. 中南林业科技大学学报, 2016, 36(5): 79−84.
Wang Z C, Deng X X, Cui Z Q, et al. Research on water holding capacity of forest soil around Dongting Lake[J]. Journal of Central South University of Forestry & Technology, 2016, 36(5): 79−84.
|
[6] |
张远东, 刘世荣, 马姜明, 等. 川西亚高山桦木林的林地水文效应[J]. 生态学报, 2005, 25(11): 147−154.
Zhang Y D, Liu S R, Ma J M, et al. Woodland hydrological effects of birch forests in sub-alpine region of western Sichuan, China[J]. Acta Ecologica Sinica, 2005, 25(11): 147−154.
|
[7] |
Wang B, Wu F, Xiao S, et al. Effect of succession gaps on the understory water-holding capacity in an over-mature alpine forest at the upper reaches of the Yangtze River[J]. Hydrological Processes, 2016, 30(5): 692−703. doi: 10.1002/hyp.10613
|
[8] |
Neris J, Tejedor M, Rodriguez M, et al. Effect of forest floor characteristics on water repellency, infiltration, runoff and soil loss in Andisols of Tenerife (Canary Islands, Spain)[J]. Catena, 2013, 108: 50−57. doi: 10.1016/j.catena.2012.04.011
|
[9] |
Gash J H C. An analytical model of rainfall interception by forests[J]. Quarterly Journal of the Royal Meteorological Society, 1979, 443: 43−55.
|
[10] |
陈振雄, 贺东北. 南方马尾松含水率特征及其模型研建[J]. 中南林业调查规划, 2011, 30(2): 56−60, 64.
Chen Z X, He D B. Moisture content and model of Pinus massoniana in southern China[J]. Central South Forest Inventory and Planning, 2011, 30(2): 56−60, 64.
|
[11] |
张清, 陆素娟, 李品荣, 等. 半干旱石漠化地区直干桉生物量及含水率特征分析[J]. 西部林业科学, 2019, 48(4): 126−131.
Zhang Q, Lu S J, Li P R, et al. Biomass of Eucalyptus maidenii in semi-arid rocky desertification area[J]. Journal of West China Forestry Science, 2019, 48(4): 126−131.
|
[12] |
王柯人, 罗文秀, 舒清态, 等. 龙竹人工林的含水率分析及地上生物量回归模型构建[J]. 西南林业大学学报(自然科学), 2021, 41(6): 168−174.
Wang K R, Luo W X, Shu Q T, et al. Analysis of moisture content and construction of aboveground biomass regression model for Dendrocalamus giganteus plantation[J]. Journal of Southwest Forestry University (Natural Sciense), 2021, 41(6): 168−174.
|
[13] |
薛杨, 王小燕, 宿少锋, 等. 不同径阶木麻黄含水率和生物量的研究[J]. 热带农业科学, 2017, 37(12): 87−91.
Xue Y, Wang X Y, Su S F, et al. Determination of moisture content and biomass of Casuarina equisetifolia with different trunk diameters[J]. Tropical Forestry, 2017, 37(12): 87−91.
|
[14] |
董点, 林天喜, 唐景毅, 等. 紫椴生物量分配格局及异速生长方程[J]. 北京林业大学学报, 2014, 36(4): 54−63.
Dong D, Lin T X, Tang J Y, et al. Biomass allocation patterns and allometric models of Tilia amurensis [J]. Journal of Beijing Forestry University, 2014, 36(4): 54−63.
|
[15] |
兰洁, 肖中琪, 李吉玫, 等. 天山雪岭云杉生物量分配格局及异速生长模型[J]. 浙江农林大学学报, 2020, 37(3): 416−423.
Lan J, Xiao Z Q, Li J M, et al. Biomass allocation and allometric growth of Picea schrenkiana in Tianshan Mountains[J]. Journal of Zhejiang A&F University, 2020, 37(3): 416−423.
|
[16] |
李亚麒, 孙继伟, 李江飞, 等. 云南松不同家系苗木生物量分配及其异速生长[J]. 北京林业大学学报, 2021, 43(8): 18−28.
Li Y Q, Sun J W, Li J F, et al. Biomass allocation and its allometric growth of Pinus yunnanensis seedlings of different families[J]. Journal of Beijing Forestry University, 2021, 43(8): 18−28.
|
[17] |
Enquist B J, Niklas K J. Invariant scaling relations across tree-dominated communities[J]. Nature, 2001, 410: 655−660. doi: 10.1038/35070500
|
[18] |
Dias D P, Marenco R A. Tree growth, wood and bark water content of 28 Amazonian tree species in response to variations in rainfall and wood density[J]. Iforest-Biogeosciences and Forestry, 2016, 9: 445−451. doi: 10.3832/ifor1676-008
|
[19] |
何怀江, 叶尔江·拜克吐尔汉, 张春雨, 等. 吉林蛟河针阔混交林12个树种生物量分配规律[J]. 北京林业大学学报, 2016, 38(4): 53−62.
He H J, Yeerjiang Baiketuerhan, Zhang C Y, et al. Biomass allocation of twelve tree species in coniferous and broad-leaved mixed forest in Jiaohe, Jilin Province, northeast China[J]. Journal of Beijing Forestry University, 2016, 38(4): 53−62.
|
[20] |
何怀江. 采伐干扰对吉林蛟河针阔混交林碳储量和碳平衡的影响[D]. 北京: 北京林业大学, 2018.
He H J. Effects of thinning disturbance on carbon storage and carbon balance in coniferous and broad-leaved mixed forest in Jiaohe, Jilin Province[D]. Beijing: Beijing Forestry University, 2018.
|
[21] |
范娟. 吉林蛟河针阔混交林生物多样性时空格局及其与地上部分生物量的关系[D] 北京: 北京林业大学, 2015.
Fan J. Spatial and temporal pattern of biodiversity and its correlation with aboveground biomass in coniferous and broadleaved mixed forests of Jiaohe, Jilin[D]. Beijing: Beijing Forestry University, 2015.
|
[22] |
吴金卓, 孔琳琳, 王娇娇, 等. 吉林蛟河不同演替阶段针阔混交林凋落物持水特性研究[J]. 南京林业大学学报(自然科学版), 2016, 40(2): 113−120.
Wu J Z, Kong L L, Wang J J, et al. Hydrological characteristics of forest litters in conifer and broad-leaved mixed forests at different forest successional stages in Jiaohe, Jilin Province[J]. Journal of NanJing Forestry University (Natural Science Edition), 2016, 40(2): 113−120.
|
[23] |
Mate R, Johansson T, Sitoe A. Biomass equations for tropical forest tree species in Mozambique[J]. Forests, 2014, 5(3): 535−556. doi: 10.3390/f5030535
|
[24] |
Wang C K. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Forest Ecology and Management, 2006, 222(1): 9−16.
|
[25] |
Niklas K J. Modelling below- and above-ground biomass for non-woody and woody plants[J]. Annals of Botany, 2005, 95(2): 315−321. doi: 10.1093/aob/mci028
|
[26] |
Enquist B J, Niklas K J. Global allocation rules for patterns of biomass partitioning in seed plants[J]. Science, 2002, 295: 1517−1520. doi: 10.1126/science.1066360
|
[27] |
Luo W, Jiang Y, Lu X, et al. Patterns of plant biomass allocation in temperate grasslands across a 2500-km transect in northern China[J]. PLoS ONE, 2013, 8(8): e71749. doi: 10.1371/journal.pone.0071749
|
[28] |
张德军, 张廓玉, 张利梅. 防风固沙林营造技术[J]. 内蒙古林业科技, 2000(1): 30−33.
Zhang D J, Zhang K Y, Zhang L M. Techniques for creating windbreak and sand fixation forests[J]. Inner Mongolia Forestry Science & Technology, 2000(1): 30−33.
|
[29] |
金胶胶, 宋子文, 马晓雨, 等. 大青杨对不同干旱胁迫强度的形态和生理响应[J]. 植物研究, 2019, 39(4): 490−496.
Jin J J, Song Z W, Ma X Y, et al. Morphological and physiological responses of Populus ussuriensis Kom. to drought stress[J]. Bulletin of Botanical Research, 2019, 39(4): 490−496.
|
[30] |
于森. 大青杨PubZIP43基因抗旱功能研究[D] 哈尔滨: 东北林业大学, 2021.
Yu S. Study of drought tolerance function of PubZIP43 in Populus ussuriensis[D]. Harbin: Northeast Forestry University, 2021.
|
[31] |
李金明, 叶玉媛, 刘锦春, 等. 重庆地区几种常见单叶与复叶树种叶内生物量分配及异速生长分析[J]. 植物科学学报, 2021, 39(1): 76−84.
Li J M, Ye Y Y, Liu J C, et al. Analysis of leaf biomass allocation and allometric growth of several common single-leaf and compound-leaf tree species in the Chongqing area[J]. Plant Science Journal, 2021, 39(1): 76−84.
|
[32] |
赵厚本, 周光益, 李兆佳, 等. 南亚热带常绿阔叶林4个常见树种的生物量分配特征与异速生长模型[J]. 林业科学, 2022, 58(2): 23−31.
Zhao H B, Zhou G Y, Li Z J, et al. Biomass allocation and allometric growth models of four common tree species in southern subtropical evergreen broad-leaved forest[J]. Scientia Silvae Sinicae, 2022, 58(2): 23−31.
|
[33] |
Weiner J. Allocation, plasticity and allometry in plants[J]. Perspectives in Plant Ecology Evolution and Systematics, 2004, 6(4): 207−215. doi: 10.1078/1433-8319-00083
|
[34] |
Gren G I, Franklin O. Root: shoot ratios, optimization and nitrogen productivity[J]. Annals of Botany, 2003, 92(6): 795−800.
|
[35] |
Niklas K J, Enquist B J. Canonical rules for plant organ biomass partitioning and annual allocation[J]. American Journal of Botany, 2002, 89(5): 812−819. doi: 10.3732/ajb.89.5.812
|
[36] |
Poorter H, Niklas K J, Reich P B, et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control[J]. New Phytologist, 2012, 193(1): 30−50.
|
[37] |
Veronica G, Luis P P, Gerardo R. Allometric relations for biomass partitioning of Nothofagus antarctica trees of different crown classes over a site quality gradient[J]. Forest Ecology and Management, 2010, 259(6): 1118−1126. doi: 10.1016/j.foreco.2009.12.025
|
[38] |
周琳月. 千金榆繁殖技术研究[D] 杨陵: 西北农林科技大学, 2016.
Zhou L Y. Study on propagation technique of Carpinus cordata[D]. Yangling: Northwest A&F University, 2016.
|
[39] |
赵儒楠, 何倩倩, 褚晓洁, 等. 气候变化下千金榆在我国潜在分布区预测[J]. 应用生态学报, 2019, 30(11): 3833−3843.
Zhao R N, He Q Q, Chu X J, et al. Prediction of potential distribution of Carpinus cordata in China under climate change[J]. The Journal of Applied Ecology, 2019, 30(11): 3833−3843.
|
[40] |
左舒翟, 任引, 翁闲, 等. 亚热带常绿阔叶林9个常见树种的生物量相对生长模型[J]. 应用生态学报, 2015, 26(2): 356−362.
Zuo S Z, Ren Y, Weng X, et al. Biomass allometric equations of nine common tree species in an evergreen broadleaved forest of subtropical China[J]. Chinese Journal of Applied Ecology, 2015, 26(2): 356−362.
|
[41] |
Lin K, Lyu M, Jiang M, et al. Improved allometric equations for estimating biomass of the three Castanopsis carlesii H. forest types in subtropical China[J]. New Forests, 2017, 48(1): 115−135.
|
[42] |
Peng S, He N, Yu G, et al. Aboveground biomass estimation at different scales for subtropical forests in China[J]. Botanical Studies, 2017, 58(1): 45. doi: 10.1186/s40529-017-0199-1
|
[43] |
范春楠, 郑金萍, 韩士杰, 等. 吉林省中东部森林分布区水曲柳分布及其生态特征[J]. 北京林业大学学报, 2017, 39(4): 1−11.
Fan C N, Zheng J P, Han S J, et al. Resource distribution and ecological characteristics of Fraxinus mandshurica in central-eastern forest region of Jilin Province, northeastern China[J]. Journal of Beijing Forestry University, 2017, 39(4): 1−11.
|
[44] |
吴升仕, 朱国和, 许仲明, 等. 水曲柳引种驯化研究初报[J]. 浙江林业科技, 1992(6): 41−42.
Wu S S, Zhu G H, Xu Z M, et al. Preliminary report on research of introducing variety and domestication of Fraxinus mandshurica Rupr.[J]. Journal of Zhejiang Forestry Science and Technology, 1992(6): 41−42.
|
[45] |
薛思雷, 王庆成, 孙欣欣, 等. 遮荫对水曲柳和蒙古栎光合、生长和生物量分配的影响[J]. 植物研究, 2012, 32(3): 354−359.
Xue S L, Wang Q C, Sun X X, et al. Effects of shading on thephotosynthetic characteristics, growth, and biomass allocation in Fraxinus mandshurica and Quercus mongolica[J]. Bulletin of Botanical Research, 2012, 32(3): 354−359.
|
[46] |
张鑫鑫. 不同光照条件下胡桃楸幼苗生长、生理及分子响应机制研究[D] 哈尔滨: 东北林业大学, 2023.
Zhang X X. Study on physiological and molecular response mechanism of Juglans mandshurica seedlings under different light conditions[D]. Harbin: Northeast Forestry University, 2023.
|
[47] |
李旭华, 于大炮, 代力民, 等. 长白山阔叶红松林生产力随林分发育的变化[J]. 应用生态学报, 2020, 31(3): 706−716.
Li X H, Yu D P, Dai L M, et al. Changes of productivity with stand development in broadleaf-Korean pine forest in Changbai Mountain, China[J]. Chinese Journal of Applied Ecology, 2020, 31(3): 706−716.
|
[48] |
黄柳菁, 林欣, 刘兴诏, 等. 广东不同林龄乔木生物量及物种多样性与叶面积指数的关系[J]. 西南林业大学学报(自然科学), 2017, 37(6): 91−98.
Huang L J, Lin X, Liu X Z, et al. The relation among biomass, biodiversity and LAI of trees at different stand ages in Guangdong Province[J]. Journal of Southwest Forestry University, 2017, 37(6): 91−98.
|
1. |
何兰君,李林霞,欧光龙. 基于标志种分布预测的哀牢山植被潜在分布及气候解释研究. 西南林业大学学报(自然科学). 2024(03): 52-60 .
![]() | |
2. |
田刘翔宇,张立世,姚纪元,王利民. 基于MaxEnt探究栖息地质量对百灵科鸟类分布影响. 东北师大学报(自然科学版). 2024(02): 106-116 .
![]() | |
3. |
章蜜,罗伟. 庐山保护区白颈长尾雉生境适宜性评价研究. 湖北林业科技. 2024(05): 44-48 .
![]() | |
4. |
王佩,李英杰,袁家根,耿盼,李蕊. 基于优化MaxEnt模型的原麝生境适宜性评价. 野生动物学报. 2023(01): 38-45 .
![]() | |
5. |
富爱华,郜二虎,布日古德,陈敏豪,提杨,栾晓峰. 我国白琵鹭(Platalea leucorodia)越冬地预测与保护现状分析. 生态与农村环境学报. 2022(01): 69-75 .
![]() | |
6. |
吴艳,王洪峰,穆立蔷. 物种分布模型的研究进展与展望. 高师理科学刊. 2022(05): 66-70 .
![]() | |
7. |
李鑫泽,冯佳楠,支晓亮,钟林强,刘鑫鑫,张明海. 东北地区三种鹿科动物潜在栖息地预测与保护空缺分析. 野生动物学报. 2021(02): 318-328 .
![]() | |
8. |
王艳君,高泰,石娟. 基于MaxEnt模型对舞毒蛾全球适生区的预测及分析. 北京林业大学学报. 2021(09): 59-69 .
![]() | |
9. |
张丽霞,孙冬婷,胡昕,朱向博,张敬,晁青鲜,卫泽珍,张成林. 中国圈养褐马鸡种群和饲养管理现状调查. 野生动物学报. 2021(04): 1123-1130 .
![]() | |
10. |
李宏群,韩培士,牛常会,袁晓青,邢立刚. 气候变化对我国特有濒危动物褐马鸡潜在生境的影响. 林业科学. 2021(10): 102-110 .
![]() | |
11. |
刘博,王晔楠,唐超,刘丽,马光昌,彭正强,阎伟. 云斑斜线天蛾在我国的适生性及限制性环境因子分析. 热带作物学报. 2021(12): 3581-3587 .
![]() | |
12. |
李敏,李秀明,徐家慧,薛琳,武爱明,盘凯筠,闵晓明,李玉太,钱法文. 基于MaxEnt模型预测白琵鹭在中国东北地区的适宜分布区. 生态学杂志. 2020(08): 2691-2703 .
![]() | |
13. |
张丽霞,王志永. 褐马鸡栖息地保护研究. 特种经济动植物. 2020(12): 3-5 .
![]() | |
14. |
唐书培,穆丽光,王晓玲,张静,刘波,孟和达来,鲍伟东. 基于MaxEnt模型的赛罕乌拉国家级自然保护区斑羚生境适宜性评价. 北京林业大学学报. 2019(01): 102-108 .
![]() | |
15. |
吕汝丹,何健,刘慧杰,姚敏,程瑾,谢磊. 羽叶铁线莲的分布区与生态位模型分析. 北京林业大学学报. 2019(02): 70-79 .
![]() | |
16. |
白雪红,王文杰,蒋卫国,师华定,陈坤,陈民. 气候变化背景下京津冀地区濒危水鸟潜在适宜区模拟及保护空缺分析. 环境科学研究. 2019(06): 1001-1011 .
![]() | |
17. |
刘博,覃伟权,阎伟. 基于MaxEnt模型的小巢粉虱在中国的潜在地理分布. 环境昆虫学报. 2019(06): 1276-1286 .
![]() | |
18. |
王浩,杨德宏,满亚洲. 基于GIS技术的动物物种管理及保护. 软件. 2018(12): 111-115 .
![]() | |
19. |
侯海英. 山西褐马鸡种群分布及特性研究. 山西林业科技. 2018(04): 11-13+72 .
![]() |