• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Xu Jingliang, Zhu Jiyou, Yan Xiangru, Xu Chengyang. Effects of urban heat island intensity on leaf water-relevant traits of greening tree species with different leaf textures[J]. Journal of Beijing Forestry University, 2024, 46(9): 97-106. DOI: 10.12171/j.1000-1522.20230254
Citation: Xu Jingliang, Zhu Jiyou, Yan Xiangru, Xu Chengyang. Effects of urban heat island intensity on leaf water-relevant traits of greening tree species with different leaf textures[J]. Journal of Beijing Forestry University, 2024, 46(9): 97-106. DOI: 10.12171/j.1000-1522.20230254

Effects of urban heat island intensity on leaf water-relevant traits of greening tree species with different leaf textures

More Information
  • Received Date: September 22, 2023
  • Revised Date: January 14, 2024
  • Accepted Date: July 08, 2024
  • Available Online: July 09, 2024
  • Objective 

    This paper aims to explore the response of water content correlation between two different leaf textures to urban heat islands, and to reveal whether there are differences in the adaptation methods of varied leaf textures to urban heat islands.

    Method 

    In four typical heat island intensity plots in Beijing, common chartaceous and coriaceous leaf greening tree species were used as objects to study the changes in leaf vein, stomatal traits, and leaf epidermal thickness related to tree water processes.

    Result 

    (1) The leaf vein density, stomatal density, stomatal length, maximum stomatal conductivity, and upper epidermal thickness of chartaceous leaves showed an increasing trend in the strong heat island area compared with the strong cold island area, while the leaf vein diameter showed a decreasing trend in the strong heat island area compared with strong cold island area. (2) The vein density, vein diameter, and stomatal length of coriaceous leaves showed an increasing trend in the strong heat island area compared with strong cold island area, while the stomatal density, maximum stomatal conductivity, and upper epidermal thickness showed a decreasing trend in the strong heat island area compared with strong cold island area. (3) Different leaf textures showed varied water related correlations, but both showed a positive correlation between stomatal density and maximum stomatal conductance (p < 0.05). The two types of leaf textures adapted to urban heat island stress by adjusting the different relationships between water related traits.

    Conclusion 

    Urban heat islands significantly affect the water related traits of tree leaves, and different textures of leaves adopt different adaptation strategies to the urban heat island environment. Chartaceous leaves adopt a strategy of increasing water supply, improving transpiration, and helping plants cool down. The coriaceous leaves adopt a strategy of increasing water transportation and reducing transpiration water dissipation. There is a phenomenon of co-evolution between the leaf veins and stomata of two tree species with different leaf textures. For urban parks with high heat island intensity, high-temperature resistant tree species should be selected based on indicators such as water correlation, and measures such as increasing irrigation and artificial cooling should be taken during the high-temperature season.

  • [1]
    Esperon-Rodriguez M, Baumgartner J B, Beaumont L J, et al. Climate-change risk analysis for global urban forests[J]. Cold Spring Harbor Laboratory, 2021. DOI: 10.1101/2021.05.09.443030.
    [2]
    Esperon-Rodriguez M, Tjoelker M G, Lenoir J, et al. Climate change increases global risk to urban forests[J]. Nature Climate Change, 2022, 12(10): 950−955. doi: 10.1038/s41558-022-01465-8
    [3]
    Valpine D, Perry H. Plant responses to experimental warming in a montane meadow[J]. Ecology, 2001, 82(3): 637−648. doi: 10.1890/0012-9658(2001)082[0637:PRTEWI]2.0.CO;2
    [4]
    Penuelas J, Filella I. Responses to a warming world[J]. Science, 2001, 294: 793−795. doi: 10.1126/science.1066860
    [5]
    Moser A, Uhl E, Thomas R, et al. Effects of climate and the urban heat island effect on urban tree growth in Houston[J]. Open Journal of Forestry, 2017, 7(4): 428−445. doi: 10.4236/ojf.2017.74026
    [6]
    Smith I A, Dearborn V K, Hutyra L R. Live fast, die young: accelerated growth, mortality, and turnover in street trees[J]. PLoS One, 2019, 14(5): e0215846. doi: 10.1371/journal.pone.0215846
    [7]
    Han H, Xi B, Wang Y, et al. Lack of phenotypic plasticity in leaf hydraulics for 10 woody species common to urban forests of North China[J]. Tree Physiology, 2022, 42(6): 1203−1215. doi: 10.1093/treephys/tpac003
    [8]
    Esperon-Rodriguez M, Ordoñez C, van Doorn N S, et al. Using climate analogues and vulnerability metrics to inform urban tree species selection in a changing climate: the case for Canadian cities[J]. Landscape and Urban Planning, 2022, 228: 104578. doi: 10.1016/j.landurbplan.2022.104578
    [9]
    Brodribb T J, Jordan G J. Internal coordination between hydraulics and stomatal control in leaves[J]. Plant, Cell & Environment, 2008, 31(11): 1557−1564.
    [10]
    Sack L, Scoffoni C. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future[J]. New Phytologist, 2013, 198(4): 983−1000. doi: 10.1111/nph.12253
    [11]
    狄丽俊. 水稻不同叶位叶片气孔导度对CO2浓度和温度升高的响应[D]. 南京: 南京农业大学, 2018.

    Di L J. Response of stomatal conductance of rice leaves at different leaf positions to elevated carbon dioxide concentration and temperature[D]. Nanjing: Nanjing Agricultural University, 2018.
    [12]
    Zhu J, Zhu H, Cao Y, et al. Effect of simulated warming on leaf functional traits of urban greening plants[J]. BMC Plant Biology, 2020, 20(1): 139. doi: 10.1186/s12870-020-02359-7
    [13]
    陈丽华, 宋丽华, 谢云. “灵武长枣”生长和叶片解剖结构对大气增温的响应[J]. 北方园艺, 2020(20): 1−8. doi: 10.11937/bfyy.20194812

    Chen L H, Song L H, Xie Y. Responses of elevated temperature on growth and leaf anatomy of jujube cultivar ‘Lingwu Long Jujube’[J]. Northern Horticulture, 2020(20): 1−8. doi: 10.11937/bfyy.20194812
    [14]
    朱济友, 于强, 徐程扬, 等. 植物功能性状及其叶经济谱对硬化地表的响应[J]. 农业机械学报, 2019, 50(3): 204−211.

    Zhu J Y, Yu Q, Xu C Y, et al. Response of plant functional traits and its leaf economics spectrum to urban pavement[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(3): 204−211.
    [15]
    Funk J L, Cornwell W K. Leaf traits within communities: context may affect the mapping of traits to function[J]. Ecology, 2013, 94(9): 1893−1897. doi: 10.1890/12-1602.1
    [16]
    Lenoir J, Bertrand R, Comte L, et al. Species better track climate warming in the oceans than on land[J]. Nature Ecology & Evolution, 2020, 4(8): 1−16.
    [17]
    岳阳, 韦柳端, 徐程扬, 等. 不同叶片质地行道树枝叶功能性状对冠下硬化地表覆盖的响应[J]. 北京林业大学学报, 2022, 41(23): 9492−9501. doi: 10.12171/j.1000-1522.20210262

    Yue Y, Wei L D, Xu C Y, et al. Response of functional characters of street trees with different leaf textures to impervious land coverage under canopy[J]. Journal of Beijing Forestry University, 2022, 41(23): 9492−9501. doi: 10.12171/j.1000-1522.20210262
    [18]
    潘莹萍, 陈亚鹏. 叶片水力性状研究进展[J]. 生态学杂志, 2014, 33(10): 2834−2841.

    Pan Y P, Chen Y P. Recent advances in leaf hydraulic traits[J]. Chinese Journal of Ecology, 2014, 33(10): 2834−2841.
    [19]
    刘宏伟. 两种不同生态系统中植物叶片功能性状及养分再吸收比较研究[D]. 重庆: 西南大学, 2014.

    Liu H W. The comparative study on leaf functional traits and nutrient resorption in two different ecosystems of Chongqing[D]. Chongqing: Southwest University, 2014.
    [20]
    刘施含, 曹银贵, 贾颜卉, 等. 北京市海淀区热岛特征及形成原因分析[J]. 资源与产业, 2020, 22(5): 86−95.

    Liu S H, Cao Y G, Jia Y H, et al. Analysis on the characteristics and causes of heat island in Haidian District of Beijing[J]. Resources and Industry, 2020, 22(5): 86−95.
    [21]
    Buckley T N. How do stomata respond to water status?[J]. New Phytologist, 2019, 224(1): 21−36. doi: 10.1111/nph.15899
    [22]
    Selvi F, Massimo B. Leaf surface and anatomy in Boraginaceae tribe Boragineae with respect to ecology and taxonomy[J]. Flora, 2001, 196(4): 269−285. doi: 10.1016/S0367-2530(17)30056-7
    [23]
    He N, Liu C, Tian M, et al. Variation in leaf anatomical traits from tropical to cold-temperate forests and linkage to ecosystem functions[J]. Functional Ecology, 2018, 32(1): 10−19. doi: 10.1111/1365-2435.12934
    [24]
    李和平. 植物显微技术[M]. 北京: 科学出版社, 2009.

    Li H P. Plant microscopy technology[M]. Beijing: Science Press, 2009.
    [25]
    Zhang S B, Guan Z J, Sun M, et al. Evolutionary association of stomatal traits with leaf vein density in Paphiopedilum, Orchidaceae[J]. PLoS One, 2012, 7(6): e40080. doi: 10.1371/journal.pone.0040080
    [26]
    徐程扬. 紫椴幼苗、幼树对光的响应与适应研究[D]. 北京: 北京林业大学, 2005.

    Xu C Y. Responses and adaptations of Tilia Amurensis seedlings and saplings to light rgimes[D]. Beijing: Beijing Forestry University, 2005.
    [27]
    李乐, 曾辉, 郭大立. 叶脉网络功能性状及其生态学意义[J]. 植物生态学报, 2013, 37(7): 691−698. doi: 10.3724/SP.J.1258.2013.00072

    Li L, Zeng H, Guo D L. Leaf venation functional traits and their ecological significance[J]. Chinese Journal of Plant Ecology, 2013, 37(7): 691−698. doi: 10.3724/SP.J.1258.2013.00072
    [28]
    Givnish T J. Comparative studies of leaf form: assessing the relative roles of selective pressures and phylogenetic constraints[J]. New Phytologist, 1987, 106(S1): 131−160. doi: 10.1111/j.1469-8137.1987.tb04687.x
    [29]
    Zhang Y J, Cao K F, Lawren S, et al. Extending the generality of leaf economic design principles in the cycads, an ancient lineage[J]. New phytologist, 2015, 206(2): 817−829. doi: 10.1111/nph.13274
    [30]
    王颖, 许艺, 陈秉初, 等. 探究环境因素对植物气孔开闭的影响[J]. 生物学通报, 2019, 54(1): 39−42.

    Wang Y, Xu Y, Chen B C, et al. The effect of environmental factors on stomatal opening and closing of plants[J]. Bulletin of Biology, 2019, 54(1): 39−42.
    [31]
    白万鹏, 李虎军, 刘林波, 等. 植物气孔与角质层蜡质响应非生物胁迫的研究进展[J]. 安徽农业科学, 2020, 48(22): 14−18, 46.

    Bai W P, Li H J, Liu L B, et al. Research progress of plant stomata and cuticular wax in response to abiotic stress[J]. Journal of Anhui Agricultural Sciences, 2020, 48(22): 14−18, 46.
    [32]
    Hasanuzzaman M, Davies N W, Shabala L, et al. Residual transpiration as a component of salinity stress tolerance mechanism: a case study for barley[J]. BMC Plant Biology, 2017, 17(1): 107. doi: 10.1186/s12870-017-1054-y
    [33]
    Premachandra G S, Hirofumi S, Kounosuke F, et al. Leaf water relations, osmotic adjustment, cell membrane stability, epicuticular wax load and growth as affected by increasing water deficits in sorghum[J]. Journal of Experimental Botany, 1992, 43(12): 1569−1576. doi: 10.1093/jxb/43.12.1569
    [34]
    朱广龙, 魏学智. 酸枣叶片结构可塑性对自然梯度干旱生境的适应特征[J]. 生态学报, 2016, 36(19): 6178−6187.

    Zhu G L, Wei X Z. Leaf morphological plasticity of Ziziphus jujuba var. spinosa in response to natural drought gradient ecotopes[J]. Acta Ecologica Sinica, 2016, 36(19): 6178−6187.
    [35]
    朱玉, 黄磊, 郑云普, 等. 高温对高丛越橘叶片气孔特征和气体交换参数的影响[J]. 果树学报, 2016, 33(4): 444−456.

    Zhu Y, Huang L, Zheng Y P, et al. Effects of high temperatures on leaf stomatal traits and gas exchanges of highbush blueberries[J]. Journal of Fruit Science, 2016, 33(4): 444−456.
    [36]
    郑云普, 徐明, 王建书, 等. 玉米叶片气孔特征及气体交换过程对气候变暖的响应[J]. 作物学报, 2015, 41(4): 601−612. doi: 10.3724/SP.J.1006.2015.00601

    Zheng Y P, Xu M, Wang J S, et al. Responses of the stomatal traits and gas exchange of maize leaves to climate warming[J]. Acta Agronomica Sinica, 2015, 41(4): 601−612. doi: 10.3724/SP.J.1006.2015.00601
    [37]
    闫润杰, 李菲, 张茜茜, 等. 秸秆还田下不同水肥对玉米气孔形态特征及其分布格局的影响[J]. 节水灌溉, 2021(10): 71−77.

    Yan R J, Li F, Zhang X X, et al. Effects of irrigation and fertilization on the morphological traits and distribution pattern of stomata of maize leaves under straw returning[J]. Water Saving Irrigation, 2021(10): 71−77.
    [38]
    Hetherington A M, Woodward F I. The role of stomata in sensing and driving environmental change[J]. Nature, 2003, 42: 901−908.
    [39]
    Zhang S B, Sun M, Cao K F, et al. Leaf photosynthetic rate of tropical ferns is evolutionarily linked to water transport capacity[J]. PLoS One, 2014, 9(1): e84682. doi: 10.1371/journal.pone.0084682
    [40]
    司怀通. 红树林植物气孔对环境因子的响应特点[D]. 南宁: 广西大学, 2017.

    Si H T. The characteristics of stomatal response to environmental factors in mangrove forest[D]. Nanning: Guangxi University, 2017.
    [41]
    张亚, 杨石建, 孙梅, 等. 基部被子植物气孔性状与叶脉密度的关联进化[J]. 植物科学学报, 2014, 32(4): 320−328.

    Zhang Y, Yang S J, Sun M, et al. Stomatal traits are evolutionarily associated with vein density in basal angiosperms[J]. Plant Science Journal, 2014, 32(4): 320−328.
    [42]
    李林鑫, 陶长铸, 林景泉, 等. 不同杉木无性系叶片解剖结构对大气增温的响应[J]. 生态学报, 2022, 42(20): 8385−8397.

    Li L X, Tao C Z, Lin J Q, et al. Response of needle anatomical structure of different Chinese fir clones to atmospheric warming[J]. Acta Ecologica Sinica, 2022, 42(20): 8385−8397.
    [43]
    王姝, 周道玮. 植物表型可塑性研究进展[J]. 生态学报, 2017, 37(24): 8161−8169.

    Wang S, Zhou D W. Research on phenotypic plasticity in plants: an overview of history, current status, and development trends[J]. Acta Ecologica Sinica, 2017, 37(24): 8161−8169.
    [44]
    Qin M, Hao L, Sun L, et al. Climatic controls on watershed reference evapotranspiration varied during 1961−2012 in southern China[J]. Journal of the American Water Resources Association, 2019, 55(1): 189−208. doi: 10.1111/1752-1688.12714
    [45]
    Almeida A C, Landsberg J J. Evaluating methods of estimating global radiation and vapor pressure deficit using a dense network of automatic weather stations in coastal Brazil[J]. Agricultural & Forest Meteorology, 2003, 118(34): 237−250.
    [46]
    Williams L E, Baeza P. Relationships among ambient temperature and vapor pressure deficit and leaf and stem water potentials of fully irrigated, field-grown grapevines[J]. American Journal of Enology & Viticulture, 2007, 58(2): 173−181.
    [47]
    黄志刚, 李锋瑞, 曹云, 等. 南方红壤丘陵区杜仲人工林土壤水分动态[J]. 应用生态学报, 2007, 18(9): 1937−1944.

    Huang Z G, Li F R, Cao Y, et al. Dynamics of soil water under Eucommia ulmoides plantation in hilly red soil region of southern China[J]. Chinese Journal of Applied Ecology, 2007, 18(9): 1937−1944.
    [48]
    Wright I J, Reich P B, Cornelissen J H C, et al. Modulation of leaf economic traits and trait relationships by climate[J]. Global Ecology Biogeography, 2010, 15(5): 411−421.
    [49]
    陈展宇. 旱稻抗旱解剖结构及其生理特性的研究[D]. 长春: 吉林农业大学, 2008.

    Chen Z Y. Research on anatomic structure of drought resistance and physiological characteristic of upland rice[D]. Changchun: Jilin Agricultural University, 2008.
  • Cited by

    Periodical cited type(6)

    1. 莫崇杏,董明亮,李荣生,余纽,郑显澄,杨锦昌. 米老排杂交子代苗期生长性状遗传变异及选择. 森林与环境学报. 2023(05): 555-560 .
    2. Shuchun Li,Jiaqi Li,Yanyan Pan,Xiange Hu,Xuesong Nan,Dan Liu,Yue Li. Variation analyses of controlled pollinated families and parental combining ability of Pinus koraiensis. Journal of Forestry Research. 2021(03): 1005-1011 .
    3. 潘艳艳,许贵友,董利虎,王成录,梁德洋,赵曦阳. 日本落叶松全同胞家系苗期生长性状遗传变异. 南京林业大学学报(自然科学版). 2019(02): 14-22 .
    4. 秦光华,宋玉民,乔玉玲,于振旭,彭琳. 旱柳苗高年生长与气象因子的灰色关联度. 东北林业大学学报. 2019(05): 42-45+51 .
    5. 李峰卿,陈焕伟,周志春,楚秀丽,徐肇友,肖纪军. 红豆树优树种子和幼苗性状的变异分析及优良家系的初选. 植物资源与环境学报. 2018(02): 57-65 .
    6. 张素芳,张磊,赵佳丽,张莉,张含国. 长白落叶松小RNA测序和其靶基因预测. 北京林业大学学报. 2016(12): 64-72 . 本站查看

    Other cited types(6)

Catalog

    Article views (264) PDF downloads (21) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return